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IIposedeno myavmudpaxmanvnuil ananiz nocaidoenocmei
RR-inmepsanis xapoiopimma 100unu 00 ma nics 3acmocy-
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B patome nposedeo uucnennoe ucciedoganue myaomug-
PAKMATLHBIX C80UCME AMMPAKMOPO8 HETUHEUHBIX OUCKpent -
HbIX cucmem 0J1s pasHvlx xaomuveckux pexcumos. Ilposeden
Myavmuppaxmanvuuiii anaau3 nocaedosamenvrocmeti RR-
UHMEPB8anos Kapouopumma ueaoéexa 00 u nocie npumene-
HUSL MEOUUUHCKUX npenapamos
Knrouesvie crosa: xaomuueckas ounamuxa, ammpaxmop
cucmemot, myavmudpaxmain, RR-unmepesanot
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In this paper a numerical investigation of multifractal pro-
perties of the attractors of nonlinear discrete systems for dive-
rse chaotic regimes is carried out. Also a multifractal analysis
of RR-interval’s sequences of human heart rate was conduct-
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Introduction and relevance

Chaotic dynamics of nonlinear systems [6-7]

It’s generally recognized now that many of the inform-
ational, biological, physical and manufacturing processes
have a complex fractal structure. Fractal analysis is used
for modeling, analysis and control a complex system in
various areas of science and technology. For example, the
fractal analysis of medical and biological signals is used in
the identification of irregular heart rate and blood flow’s
turbulence according to the electrocardiogram; for deter-
mination of apoplectic seizure or epileptic seizure on the
electroencephalographic signal; for improving the image’s
quality on mammograms; for optimal compression of med-
ical signals etc. [1-3].

The investigation of bioelectric medical signals can
be made by using the methods developed in the theory of
dynamical chaos under the assumption that the physiolo-
gical signal is considered as nonlinear system sensitive to
initial conditions. Thus, it’s assumed that the bioelectrical
activity is described by the implicit chaotic system and
despite the absence of the modeling system of equations,
it’s possible to study the behavior of the system from its
output data. [4-7]

Phase trajectories of a dissipative chaotic systems are
never closed and seek to fill a certain area that called a
strange attractor. The strange attractor is located in the
bounded area of phase space of the system that is attracted
all sufficiently close trajectories and has a complicated
fractal structure.

The aim of the presented work is a numerical investiga-
tion of fractal structure of attractors of nonlinear discrete
systems with diverse chaotic behaviors and application
of the results to the analysis of an experimental medical
data.

Chaos is a complex form of deterministic system’s beha-
vior in a steady state. Although the evolution of this system
is uniquely determined by the dynamical laws and it isn’t
affected by any other random forces, system’s dynamic is
stochastic. The main property of such systems is sensitive
dependence of behavior to arbitrary small changes in initial
conditions. If d, is initial distance between two points, the
distance between paths coming out of these points in a short
time t will be d(t)=d,e", where A is Lyapunov exponent.
This fact leads to loss of deterministic predictability and
the necessity to bring in new probability characteristics to
describe dynamic systems with chaotic behavior.

One of the simplest mathematical models that have chao-
tic behavior are iterated maps x,,, =f(C,x,), where C — the
control parameter. For a wide class of nonlinear functions f

sequence of values {x,}"is chaotic. In the case of dissipa-

0
tive maps orbits {x, }” tend to an attractor that in general
has multifractal structure.

While changing the control parameter of dynamic sy-
stems its nonlinear properties are shown differently. The
complexity of dynamic regime and consequently of attractor
structure occurs with the growing of influence of the non-
linearity. Changing of systems dynamic while parameter is
changing allows us to observe bifurcation’s sequence which
resulted in a forming of chaotic attractor. Typical bifurcat-
ion sequences are combined by the meaning of scenarios of
chaos development. Many systems demonstrate transition to
the chaos by a cascade of doubling period bifurcations.

In many cases one-dimensional maps occur in descri-
bing of complex multidimensional processes and allow to
significantly simplify dynamic system’s analysis. One way to



obtain such map is to construct map by using local maxima
of system’s paths. Let first maxima M, is culminated at time
t,, second M, - in time t, etc. Sequence of values {M, } is
orbit of one-dimensional map that allows to construct simple
models of learning facts.

Characteristics of attractors with multifractal structure.
[2,3,8,9]

Self-similarity of fractal objects is confined in saving obj-
ect’s structure of zooming. Let consider main characteristics
of multifractal set. Suppose that, in general, multifractal
attractor occupies some bounded region in d-dimensional
Euclidean space and defines set of N — oo points. Let divi-
de the entire region into box of side € and volume &*. Let
consider the partition function Z(q,e) characterized by an
exponent q (—eo<q <40 ):

N(e)

Z(q,8)= Y, pi(®), (1)

i=1

where p,(e)= Il\jm% , n;(g) - number of points get
into the box with number i, N(g) - total number of occupi-
ed cells that depends from the size of the box € . Probabilities

p, characterize relative population of the box.

In general multifractal set is characterized of nonlinear
function t(q), that determine behavior of partition function
7(q,e) with €e—>0:

2(q,e) o< €7 . )

Function 1(q) usually is called scaling exponent and
defined as

InZ(q,¢)
Ine

3)

©(q)=lim

In the case of homogeneous fractal set with fractal dime-
nsion D all busy boxes have the same number of points, that
mean p,(e)=p(e)=1/N(e) and partition function is

Zq.0)=N" ()=

and function ©(q)=(q—1)D is linear. If the distribution
of points in the boxes isn’t the same, the fractal set is hetero-
geneous, i.e. multifractal, and is t(q) is a nonlinear function.
If q— 4, the main contribution to the partition function
is made by the boxes that contain the greatest number of
particles n; and, consequently, most likely characterized by
the filling p, . Conversely, if q — —e , the main contribution
to the partition function is made by the most sparse boxes
with small values p,. Thus, the function t(q) shows how
heterogeneous set of points is investigated.

Along with the scale exponent t(q) for the multifra-
ctal characteristics of the set the function of multifractal
spectrum (the spectrum of singularities) f(a) is used. The
dependence of the probability from the box size p,(¢) hasan
exponential character

pi(g)e<e”,

where o, is some exponent, in general various for the
diverse boxes (a measure of the singularity). For the homog-
eneous fractal all of the exponents o, are the same and equal
to the fractal dimension D .

Function of multifractal spectrum f(o) characterize a
probability distribution for the diverse values o . If value
n(o)do is probability of the fact that o, is in the interval
(o ,0+da ), i.e. the number of the boxes i that have the
same measure p,(e) with o, € (o, 0+da ), then

n(o) =g, 5)

So function f(a) is fractal dimension of the some ho-
mogeneous fractal subset &,  from the original set & that
is characterized by the same probabilities of the box filling
b; (8) =~e".

Taking into account the expressions (1) and (5), the ge-
neralized partition function Z(q,e) can be written by using
function of multifractal spectrum f(a) the next way:

N(e)

7(q.e)= Z P?(S):J-docn((x)eq“ :J.doceq“‘f(“).

Formally, the transition of variables {q,7(q)} to the
variables {o,f(c)} can be made with the help of the next
Legendre transformations:

4 and do (6)
f(o) = g—1: T( )—ag—f
~94q V=40

The method of modulus maxima of wavelet transform
[10-12]

One of the most popular tools in multifractal analysis
is the method of modulus maxima of wavelet transform
(WTMM). It’s based on wavelet analysis that is called “ma-
thematical microscope” because of its ability to maintain a
good resolution at diverse scales. Because wavelet functions
are localized in time and frequency, method WTMM is a
powerful tool for the statistical description of non-stationary
processes.

The wavelet transform of one-dimensional function — is
its representation as generalized series or integral in the sy-

stem of basic functions wab(t):%\y(ﬂ) derived from
a a

the mother’s wavelet y(t), that has certain properties due
to the shift of operations in time b and changing the time
scale a.

Continuous wavelet-transform of function X(t) can be
written as W(a,b) = % J. X(t)y,, (t)dt . Function W(a,b) is
a

called Wavelet—spectrurﬂmand can be presented as the surface
of wavelet coefficients in three-dimensional space. The most
important information is contained in lines of local extremes
of the surface W(a,x), which search is conducted on every
scale a.



Method WTMM is allowed to get numerically the par-
tition function:

2aa)= ¥ (

leL(a)

sup | W' x )]

a’<a

where L(a) — is the set of all lines | of maxima of wavelet
coefficient’s modulus on the scale a; x,(a) - is the location of
maximum on this scale.

To calculate Z(q,a) the maximum absolute value of wav-
elet-coefficients is selected along each line on the scales that
smaller than a given value of scale a.

In this case the dependence is executed:

Za)=a

where 1(q) is scale exponent that is defined for each val-
ue q by calculating the slope of InZ(q,a) from In a.

The investigation of the model chaotic realization’s
characteristics

In the paper was investigated using of WTMM method
realizations of diverse one-dimensional maps obtained for
different chaotic regimes. Multifractal analysis has showed
the presence of multifractal structure for the majority of
attractors of chaotic sequences: scaling exponent t(q) is
non-linear function. For every considering chaotic regime
defined by a control parameter, we calculated the Lyapunov
exponent A and multifractal characteristics ©(q) and f(a) .

One of the most famous examples of chaotic maps is logi-
stic map [6,7]. It’s one-dimensional square map defined as:

Xn+1 = AXn(1_Xn) )

where A - is control parameter, Ae(0,4] and values
x, €[0,1] . Graphic presentation of logistic function for the
value A=4 is showed at the Fig. 1(a). When A>3 fixed
point loses its stability and two-cycle’s period stands out:
steady state is an alternating sequence of two numbers. Then
a stable cycle of period 4 appears, further in the same way
there are losing of stability to infinity. The corresponding
cascade of doubling bifurcations is showed in Fig. 2(a) abo-
ve, that shows the bifurcation diagram of logistic map. The
abscissa represents the values of control parameter A, and
the vertical axis — values of orbits {x,} in the steady state.
The chaos is observed, when values A > A" =3.569... . Areas of
chaos alternate with “windows of stability” — narrow areas
where dynamic becomes periodic.

As the next example let consider a triangle map [7]:

)

where 1 - is control parameter, r € (0,1], values x, €[0,1] .
Graphic of this function for parameter r=1 is showed on fig.
1(b).

1 . .
If the value of parameter r< 5 then attractor is a fixed

Xn+1 = r[1—21—X“
2

point 0. When r>1/2 this function generates a chaotic
sequence. In this case the transition to the chaos occurs
immediately without a cascade of bifurcations. The corres-
ponding bifurcation diagram is showed in Fig. 2(b) above.

In general for the triangle map the Lyapunov exponent is
equaled A =In2r.

a) 6)
Fig. 1. Logistic function (a) and triangle (6) maps

Fig. 2(a) shows a time series of logistic map with par-
ameters A, =3.79 and A, =3.94. The bifurcation diagram
shows attractors for given values of control parameter. The
corresponding Lyapunov exponent equals A, =0.433 and
A, =0.563 . Obviously, in the second case chaotic regime is
more developed because initially close trajectories diverge
at a faster rate. Multifractal analysis conducted by the
WTMM showed the presence of multifractal structure for
the attractors of logistic map with the values of control pa-
rameter A, and A, . The corresponding functions of mult-
ifractal spectrum are showed in fig. 2(a) below. The values
of multifractal spectrum for more developed chaotic regime
shifted to the right and have a larger range that indicating
a more heterogeneous structure of the strange attractor.

Fig. 2(b) shows trajectories of triangle map with pa-
rameter’s values 1,=0.77 and 1,=0.98. The correspon-
ding attractors are showed in the bifurcation diagram.
TheLyapunovexponentsforthesechaoticregimesequal A, = 0.318
and A, =0.665 . In the second case chaotic regime is more
developed. The corresponding functions of multifractal sp-
ectrum are showed in fig. 2(b) below. As the case of logistic
map multifractal spectrum for more developed chaotic re-
gime possess a larger range, i.e. the corresponding strange
attractor is more nonhomogeneous.

Investigation of characteristics of RR-interval’s
realizations

It’s known that for the diagnosis and detection of diverse
heart’s diseases analysis of the electrocardiogram (ECG)
has an important place. ECG is a recording of electrical
heart’s activity.

The slightest deviation from the norm may indicates a
violation of the cardiac rhythm and also of the presence of
diverse diseases. One of the methods of diagnosing heart
diseases is an analysis of the series constructed by the RR-
intervals.

RR-interval is the time interval between adjacent teeth
of electrocardiogram and it equals to the duration of the
cardiac cycle. These intervals are very important in determ-
ining the heart rate and diagnosis of diverse types of cardiac
arrhythmias. fig. 3 shows the construction of the series by
using RR-intervals. It’s known, that these types of series
have chaotic structure [5,7], so it’s possible to analyze them
by using multifractal methods.

Initial data for the research in this paper were obtained
on a dedicated website [13] containing an extensive medical
database. Fig. 4 shows scaling exponent and multifractal
spectrum typical for RR-intervals of the person, who has no
heart diseases.



Bifurcation diagram
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Fig. 2. Bifurcation diagrams, trajectories, multifractal spectrum for logistic (a) and triangle (b) maps
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Fig. 3. The image of normal ECG-signal with RR-intervals and
the constructing of RR-interval’s sequence

The database contains cardiogram records of the pa-
tients involved in medication trials. In a medical invest-
igation were involved patients belonging to the age group
from 45 to 69 years and have a heart arrhythmia The data
of RR-intervals before and after taking medication used
to treat and prevent tachycardia by increasing heart rate,
are showed in this paper. Fig. 5 shows the values of scaling
exponent and multifractal spectrum of two patients that
was a typical for the majority of patients before and after
drug application.

Researches have shown that drug’s application causes
changes of multifractal characteristics of RR-interval’s se-
quence.



Fig. 5. Scale exponents (a) and multifractal spectrum (b) before drug’s application (points / stars) and after
it’s application (crosses) before drug’s application (points /) and after it’s application (line 2)

The most evident characteristic that distinguishes time
series before and after medication is function of multifractal
spectrum f(o) . Almost all patients have shifted to the right
function f(o) after medication, i.e. values of o has increa-
sed and became closer to the characteristics of healthy pers-
on. From the viewpoint of nonlinear dynamics, changing of
multifractal properties of the trajectories indicates a change
in the functional regime of the system.

Conclusions and prospectives for further researh

In this paper we investigate multifractal characteristics
of attractors of discrete-time chaotic maps for diverse values
of bifurcation parameter. It’s shown that increasing chaos
of the system defined by the Lyapunov exponent, causes

a complication of the attractor’s structure that appears as
enhancing of multifractal properties.

The analysis of multifractal characteristics of RR-inter-
val’s sequence of the person was carried out before and after
medication.

Research has shown that drug’s using causes a changes
of multifractal characteristics of RR-interval’s sequence that
is expressed in the shift of the function of multifractal spe-
ctrum to the values of spectrum typical for normal cardiac
rhythm.

These results suggest that fractal methods can be used in
the analysis of electrocardiological signals and allow to fix
functional changes in heart’s activity. Multifractal analysis
of ECG can be the basis for statistical studies that will allow
to formulate such methods of ECG analysis that will be im-
portant for clinical practice.
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Y cmammi nooaemovcsa noee piwmennsa npoone-
MU HOpMANI3auii 6XIOHUX 6eKMOPIE 0N HEUPOHHUX
Mepedxc 3a 00nomozo010 Oykackonii, 30kKpema 0as
nPOZHO3YBAHNA UACOBUX PADiE

Kntrouogi crosa: nopmanizauis, Heliponni mepe-
oci, OYKACKONis, npoeHo3y6anns

[m, ]

B cmamve npedcmasnsemcs mnosoe pewenue
npodIeMbL HOPMATUIAUUU 6XO0OHBLX 6EKMOPOEB OISt
HeUpoHnblX cemell NOCPedCmeom OYKACKOnuu, 6
yacmnocmu 0438 NPoOZHOZUPOGAHUSA EPEeMEHHBLX
pados

Kniouesvte cnosa: nopmanusauus, meiiponioie
cemu, 0YyKackonus, npozHo3uposanue

[m, ]

The paper presents a new solution of the probl-
em of normalization of the input vectors for neural
networks through dukascopy, particularly for time
series prediction

Keywords: normalization, neural networks,
dukascopy, prediction
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Cama njest MHBECTHUIIMI - BJIOKEHU JleHeT cefiyac ¢
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