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У роботi проведено чисельне дослiдження муль-
тифрактальних властивостей атракторiв нелiнiй-
них дискретних систем для рiзних хаотичних режимiв. 
Проведено мультифрактальний аналiз послiдовностей 
RR-iнтервалiв кардiорiтма людини до та пiсля застосу-
вання препаратів
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В работе проведено численное исследование мультиф-
рактальных свойств аттракторов нелинейных дискрет-
ных систем для разных хаотических режимов. Проведен 
мультифрактальный анализ последовательностей RR-
интервалов кардиоритма человека до и после примене-
ния медицинских препаратов

Ключевые слова: хаотическая динамика, аттрактор 
системы, мультифрактал, RR-интервалы

In this paper a numerical investigation of multifractal pro-
perties of the attractors of nonlinear discrete systems for dive-
rse chaotic regimes is carried out. Also a multifractal analysis 
of RR-interval’s sequences of human heart rate was conduct-
ed before and after using a drugs

Keywors: chaotic dynamic, system’s attractor, multifract-
al, the RR-intervals

Introduction and relevance

It’s generally recognized now that many of the inform-
ational, biological, physical and manufacturing processes 
have a complex fractal structure. Fractal analysis is used 
for modeling, analysis and control a complex system in 
various areas of science and technology. For example, the 
fractal analysis of medical and biological signals is used in 
the identification of irregular heart rate and blood flow’s 
turbulence according to the electrocardiogram; for deter-
mination of apoplectic seizure or epileptic seizure on the 
electroencephalographic signal; for improving the image’s 
quality on mammograms; for optimal compression of med-
ical signals etc. [1-3].

The investigation of bioelectric medical signals can 
be made by using the methods developed in the theory of 
dynamical chaos under the assumption that the physiolo-
gical signal is considered as nonlinear system sensitive to 
initial conditions. Thus, it’s assumed that the bioelectrical 
activity is described by the implicit chaotic system and 
despite the absence of the modeling system of equations, 
it’s possible to study the behavior of the system from its 
output data. [4-7]

Phase trajectories of a dissipative chaotic systems are 
never closed and seek to fill a certain area that called a 
strange attractor. The strange attractor is located in the 
bounded area of phase space of the system that is attracted 
all sufficiently close trajectories and has a complicated 
fractal structure.

The aim of the presented work is a numerical investiga-
tion of fractal structure of attractors of nonlinear discrete 
systems with diverse chaotic behaviors and application 
of the results to the analysis of an experimental medical 
data.

Chaotic dynamics of nonlinear systems [6-7]

Chaos is a complex form of deterministic system’s beha-
vior in a steady state. Although the evolution of this system 
is uniquely determined by the dynamical laws and it isn’t 
affected by any other random forces, system’s dynamic is 
stochastic. The main property of such systems is sensitive 
dependence of behavior to arbitrary small changes in initial 
conditions. If d0  is initial distance between two points, the 
distance between paths coming out of these points in a short 
time t will be d t d e t( ) = 0

λ , where λ is Lyapunov exponent. 
This fact leads to loss of deterministic predictability and 
the necessity to bring in new probability characteristics to 
describe dynamic systems with chaotic behavior.

One of the simplest mathematical models that have chao-
tic behavior are iterated maps x C xn n+ =1 f( , ) , where С – the 
control parameter. For a wide class of nonlinear functions f 
sequence of values xn n 0{ } =

∞
 is chaotic. In the case of dissipa-

tive maps orbits xn n 0{ } =

∞
 tend to an attractor that in general 

has multifractal structure.

While changing the control parameter of dynamic sy-
stems its nonlinear properties are shown differently. The 
complexity of dynamic regime and consequently of attractor 
structure occurs with the growing of influence of the non-
linearity. Changing of systems dynamic while parameter is 
changing allows us to observe bifurcation’s sequence which 
resulted in a forming of chaotic attractor. Typical bifurcat-
ion sequences are combined by the meaning of scenarios of 
chaos development. Many systems demonstrate transition to 
the chaos by a cascade of doubling period bifurcations.

In many cases one-dimensional maps occur in descri-
bing of complex multidimensional processes and allow to 
significantly simplify dynamic system’s analysis. One way to 
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obtain such map is to construct map by using local maxima 
of system’s paths. Let first maxima M1  is culminated at time 
t1 , second M2 - in time t2  etc. Sequence of values Mn{ }  is 
orbit of one-dimensional map that allows to construct simple 
models of learning facts.

Characteristics of attractors with multifractal structure. 
[2,3,8,9]

Self-similarity of fractal objects is confined in saving obj-
ect’s structure of zooming. Let consider main characteristics 
of multifractal set. Suppose that, in general, multifractal 
attractor occupies some bounded region in d-dimensional 
Euclidean space and defines set of N → ∞  points. Let divi-
de the entire region into box of side ε  and volume εd . Let 
consider the partition function Z q( , )ε  characterized by an 
exponent q  ( −∞ < < +∞q ):

Z q pi
q

i

N

( , ) ( )
( )

ε ε
ε

=
=
∑

1

, (1)

where p
n

Ni N

i( ) lim
( )

ε
ε

=
→∞

, ni( )ε  - number of points get 

into the box with number i , N( )ε  - total number of occupi-
ed cells that depends from the size of the box ε . Probabilities 
pi  characterize relative population of the box.

In general multifractal set is characterized of nonlinear 
function τ( )q , that determine behavior of partition function 
Z q( , )ε  with ε → 0 :

Z q q( , ) ( )ε ετ∝ . (2)

Function τ( )q  usually is called scaling exponent and 
defined as

τ
ε

εε
( ) lim

ln ( , )
ln

q
Z q

=
→0

. (3)

In the case of homogeneous fractal set with fractal dime-
nsion D  all busy boxes have the same number of points, that 
mean p p Ni( ) ( ) / ( )ε ε ε= = 1  and partition function is

Z q N q D q( , ) ( ) ( )ε ε ε= =− − −1 1

and function τ( ) ( )q q D= −1  is linear. If the distribution 
of points in the boxes isn’t the same, the fractal set is hetero-
geneous, i.e. multifractal, and is τ( )q  is a nonlinear function. 
If q → +∞ , the main contribution to the partition function 
is made by the boxes that contain the greatest number of 
particles ni  and, consequently, most likely characterized by 
the filling pi . Conversely, if q → −∞ , the main contribution 
to the partition function is made by the most sparse boxes 
with small values pi . Thus, the function τ( )q  shows how 
heterogeneous set of points is investigated.

Along with the scale exponent τ( )q  for the multifra-
ctal characteristics of the set the function of multifractal 
spectrum (the spectrum of singularities) f( )α  is used. The 
dependence of the probability from the box size pi( )ε  has an 
exponential character

pi
i( )ε εα∝ ,

where α i  is some exponent, in general various for the 
diverse boxes (a measure of the singularity). For the homog-
eneous fractal all of the exponents α i  are the same and equal 
to the fractal dimension D .

Function of multifractal spectrum f( )α  characterize a 
probability distribution for the diverse values α i . If value 
n d( )α α  is probability of the fact that α i  is in the interval 
( α , α α+ d ), i.e. the number of the boxes i  that have the 
same measure pi( )ε  with α i ∈( α , α α+ d ), then

n f( ) ( )α ε α≈ − . (5)

So function f( )α  is fractal dimension of the some ho-
mogeneous fractal subset ξα  from the original set ξ  that 
is characterized by the same probabilities of the box filling 
pi( )ε εα≈ .

Taking into account the expressions (1) and (5), the ge-
neralized partition function Z q( , )ε  can be written by using 
function of multifractal spectrum f( )α  the next way:

Z q p d n di
q

i

N
q q f( , ) ( ) ( )

( )
( )ε ε α α ε α ε

ε
α α α= ≈ ≈

=

−∑ ∫ ∫
1

.

Formally, the transition of variables { , ( )}q qτ  to the 
variables { , ( )}α αf  can be made with the help of the next 
Legendre transformations:
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The method of modulus maxima of wavelet transform 
[10-12]

One of the most popular tools in multifractal analysis 
is the method of modulus maxima of wavelet transform 
(WTMM). It’s based on wavelet analysis that is called “ma-
thematical microscope” because of its ability to maintain a 
good resolution at diverse scales. Because wavelet functions 
are localized in time and frequency, method WTMM is a 
powerful tool for the statistical description of non-stationary 
processes.

The wavelet transform of one-dimensional function – is 
its representation as generalized series or integral in the sy-

stem of basic functions ψ ψab t
a

t b
a

( ) =
−





1
 derived from 

the mother’s wavelet ψ( )t , that has certain properties due 
to the shift of operations in time b  and changing the time 
scale a .

Continuous wavelet-transform of function X t( )  can be 

written as W a b
a

X t t dtab( , ) ( ) ( )=
−∞

∞

∫
1

ψ . Function W a b( , )  is 

called wavelet-spectrum and can be presented as the surface 
of wavelet coefficients in three-dimensional space. The most 
important information is contained in lines of local extremes 
of the surface W a x( , ) , which search is conducted on every 
scale a.
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Method WTMM is allowed to get numerically the par-
tition function:

Z q a W a x a
a a

l

q

l L a

( , ) sup ( , ( ))
( )

= ′ ′



′≤∈

∑ ,

where L(a) – is the set of all lines l of maxima of wavelet 
coefficient’s modulus on the scale a; x al( )  - is the location of 
maximum on this scale. 

To calculate Z q a( , ) the maximum absolute value of wav-
elet-coefficients is selected along each line on the scales that 
smaller than a given value of scale a.

In this case the dependence is executed:

Z q a a q( , ) ( )≈ τ ,

where τ( )q  is scale exponent that is defined for each val-
ue q by calculating the slope of ln ( , )Z q a  from ln a.

The investigation of the model chaotic realization’s 
characteristics

In the paper was investigated using of WTMM method 
realizations of diverse one-dimensional maps obtained for 
different chaotic regimes. Multifractal analysis has showed 
the presence of multifractal structure for the majority of 
attractors of chaotic sequences: scaling exponent τ( )q  is 
non-linear function. For every considering chaotic regime 
defined by a control parameter, we calculated the Lyapunov 
exponent λ and multifractal characteristics τ( )q  and f( )α .

One of the most famous examples of chaotic maps is logi-
stic map [6,7]. It’s one-dimensional square map defined as:

x Ax xn n n+ = −1 1( ) ,

where A - is control parameter, A ∈( , ]0 4  and values 
xn ∈[ , ]0 1 . Graphic presentation of logistic function for the 
value A = 4  is showed at the Fig. 1(a). When A > 3  fixed 
point loses its stability and two-cycle’s period stands out: 
steady state is an alternating sequence of two numbers. Then 
a stable cycle of period 4 appears, further in the same way 
there are losing of stability to infinity. The corresponding 
cascade of doubling bifurcations is showed in Fig. 2(a) abo-
ve, that shows the bifurcation diagram of logistic map. The 
abscissa represents the values of control parameter A , and 
the vertical axis – values of orbits xn{ }  in the steady state. 
The chaos is observed, when values λ λ> =* . ...3 569 . Areas of 
chaos alternate with “windows of stability” – narrow areas 
where dynamic becomes periodic.

As the next example let consider a triangle map [7]:

x r xn n+ = − −




1 1 2

1
2

.

where r - is control parameter, r ∈( , ]0 1 , values xn ∈[ , ]0 1 . 
Graphic of this function for parameter r = 1  is showed on fig. 
1(b).

If the value of parameter r <
1
2

, then attractor is a fixed 

point 0. When r > 1 2/  this function generates a chaotic 
sequence. In this case the transition to the chaos occurs 
immediately without a cascade of bifurcations. The corres-
ponding bifurcation diagram is showed in Fig. 2(b) above. 

In general for the triangle map the Lyapunov exponent is 
equaled λ = ln 2r .

а)                                                    б)
Fig. 1. Logistic function (а) and triangle (б) maps

Fig. 2(a) shows a time series of logistic map with par-
ameters A1 3 79= .  and A2 3 94= . . The bifurcation diagram 
shows attractors for given values of control parameter. The 
corresponding Lyapunov exponent equals λ1 0 433= .  and 
λ2 0 563= . . Obviously, in the second case chaotic regime is 
more developed because initially close trajectories diverge 
at a faster rate. Multifractal analysis conducted by the 
WTMM showed the presence of multifractal structure for 
the attractors of logistic map with the values of control pa-
rameter A1  and A2 . The corresponding functions of mult-
ifractal spectrum are showed in fig. 2(a) below. The values 
of multifractal spectrum for more developed chaotic regime 
shifted to the right and have a larger range that indicating 
a more heterogeneous structure of the strange attractor.

Fig. 2(b) shows trajectories of triangle map with pa-
rameter’s values r1 0 77= .  and r1 0 98= . . The correspon-
ding attractors are showed in the bifurcation diagram. 
The Lyapunov exponents for these chaotic regimes equal λ1 0 318= .  
and λ2 0 665= . . In the second case chaotic regime is more 
developed. The corresponding functions of multifractal sp-
ectrum are showed in fig. 2(b) below. As the case of logistic 
map multifractal spectrum for more developed chaotic re-
gime possess a larger range, i.e. the corresponding strange 
attractor is more nonhomogeneous.

Investigation of characteristics of RR-interval’s 
realizations

It’s known that for the diagnosis and detection of diverse 
heart’s diseases analysis of the electrocardiogram (ECG) 
has an important place. ECG is a recording of electrical 
heart’s activity.

The slightest deviation from the norm may indicates a 
violation of the cardiac rhythm and also of the presence of 
diverse diseases. One of the methods of diagnosing heart 
diseases is an analysis of the series constructed by the RR-
intervals.

RR-interval is the time interval between adjacent teeth 
of electrocardiogram and it equals to the duration of the 
cardiac cycle. These intervals are very important in determ-
ining the heart rate and diagnosis of diverse types of cardiac 
arrhythmias. fig. 3 shows the construction of the series by 
using RR-intervals. It’s known, that these types of series 
have chaotic structure [5,7], so it’s possible to analyze them 
by using multifractal methods.

Initial data for the research in this paper were obtained 
on a dedicated website [13] containing an extensive medical 
database. Fig. 4 shows scaling exponent and multifractal 
spectrum typical for RR-intervals of the person, who has no 
heart diseases. 
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Fig. 3. The image of normal ECG-signal with RR-intervals and 
the constructing of RR-interval’s sequence

The database contains cardiogram records of the pa-
tients involved in medication trials. In a medical invest-
igation were involved patients belonging to the age group 
from 45 to 69 years and have a heart arrhythmia The data 
of RR-intervals before and after taking medication used 
to treat and prevent tachycardia by increasing heart rate, 
are showed in this paper. Fig. 5 shows the values of scaling 
exponent and multifractal spectrum of two patients that 
was a typical for the majority of patients before and after 
drug application.

Researches have shown that drug’s application causes 
changes of multifractal characteristics of RR-interval’s se-
quence.

а)                                                                                              б)
Fig. 2. Bifurcation diagrams, trajectories, multifractal spectrum for logistic (a) and triangle (b) maps
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The most evident characteristic that distinguishes time 
series before and after medication is function of multifractal 
spectrum f( )α . Almost all patients have shifted to the right 
function f( )α  after medication, i.e. values of α  has increa-
sed and became closer to the characteristics of healthy pers-
on. From the viewpoint of nonlinear dynamics, changing of 
multifractal properties of the trajectories indicates a change 
in the functional regime of the system.

Conclusions and prospectives for further researh

In this paper we investigate multifractal characteristics 
of attractors of discrete-time chaotic maps for diverse values 
of bifurcation parameter. It’s shown that increasing chaos 
of the system defined by the Lyapunov exponent, causes 

a complication of the attractor’s structure that appears as 
enhancing of multifractal properties.

The analysis of multifractal characteristics of RR-inter-
val’s sequence of the person was carried out before and after 
medication.

Research has shown that drug’s using causes a changes 
of multifractal characteristics of RR-interval’s sequence that 
is expressed in the shift of the function of multifractal spe-
ctrum to the values of spectrum typical for normal cardiac 
rhythm.

These results suggest that fractal methods can be used in 
the analysis of electrocardiological signals and allow to fix 
functional changes in heart’s activity. Multifractal analysis 
of ECG can be the basis for statistical studies that will allow 
to formulate such methods of ECG analysis that will be im-
portant for clinical practice.

а)                                                                                          b)
Fig. 4. Scaling exponent (а) and multifractal spectrum (b) for RR – intervals of healthy person

Fig. 5. Scale exponents (а) and multifractal spectrum (b) before drug’s application (points / stars) and after 
it’s application (crosses) before drug’s application (points / ) and after it’s application (line 2)
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У статті подається нове рішення пробле-
ми нормалізації вхідних векторів для нейронних 
мереж за допомогою дукаскопії, зокрема для 
прогнозування часових рядів

Ключові слова: нормалізація, нейронні мере-
жі, дукаскопія, прогнозування

В статье представляется новое решение 
проблемы нормализации входных векторов для 
нейронных сетей посредством дукаскопии, в 
частности для прогнозирования временных 
рядов

Ключевые слова: нормализация, нейронные 
сети, дукаскопия, прогнозирование

The paper presents a new solution of the probl-
em of normalization of the input vectors for neural 
networks through dukascopy, particularly for time 
series prediction

Keywords: normalization, neural networks, 
dukascopy, prediction

1. Введение

Предсказание финансовых временных рядов - 
необходимый элемент любой инвестиционной дея-
тельности.

Сама идея инвестиций - вложения денег сейчас с 
целью получения дохода в будущем - основывается 
на идее прогнозирования будущего. Соответствен-
но, предсказание финансовых временных рядов ле-
жит в основе деятельности всей индустрии инве-


