14. Medical Devices and Human Engineering Four Volume Set [Text] / E. J. D. Bronzino, D. R. Peterson (Eds.). — CRC Press, 2014.

15. Becchetti, C. Medical instrument design and development: from requirements to market placements [Text] / C. Becchetti, A. Ne-
ri. — JohnWiley & Sons Ltd, 2013. — 891.

16. Psikos, C. A. Meanko-connaibHblil MOHUTOPUHT B cucTeMe oxpanbl 3perus nikoabHukoB [Tekcr] / C. A. Poixos, H. M. OpJiosa,
A. A. Kocrenkast // Odranmsmosorus. Bocrounast Espora. — 2013, — Ne 2. — C. 105-111.

17. JlurBunenko, M. B. [Ipunnunum mamionaspHoi cricTeMyn 0XOpoHU 3710poB’st B Ykpaini [Texct] / M. B. JlutBunenxo // Teopis ta
MpaKTHKa JepskaBHOTO yrpasminas. — 2015. — Bum. 2 (49). — C. 198-205.

18. @ipcosa, O. [I. Cucrema oxopouu 310pos’st Hopserii, ocobssocri ii opranisarii Ha MyHIIHIaIsHOMY PiBHI: ZOCBIZ AT YKpaiHu
[Texer] / O. 1. @ipcosa // Exonomika ta gepxasa. — 2011, — Ne 1. — C. 100-104.

19. Bwicoukas, E. B. Vlndopmannonnas cucrema paHHeil [MarHoCTHKY HEPBUYHOI OTKPbITOyrosbHOI ritaykomsl [Texer| / E. B. Boicorikas,
A. H. Crpaurenko, C. A. Cunerko, 0. A. [lemun // Pazioenextponi i komir'torepti cucremut. — 2012, — Bum. 1 (53). — C. 105-109.

20. Kusek, J. Z. Ten steps to a results-based monitoring and evaluation system : a handbook for development practitioners [Text] /
J. Z. Kusek, R. C. Rist. — Washington, DC: The World Bank, 2004. — 248 p.

21. Cherednichenko, O. Models of Research Activity Measurement: Web-Based Monitoring Implementation [Text] / O. Cherednichenko,
O. Yanholenko, O. Takovleva, O. Kustov // Lecture Notes in Business Information Processing. — 2014. — Vol. 193. — P. 75-87.
doi: 10.1007,/978-3-319-11373-9 7

22. Liu, B. Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data. 2nd edition [Text] / B. Liu. — Springer, 2011. — 622 p.
doi: 10.1007,/978-3-642-19460-3

23. e-Health Sensor Platform V2.0 for Arduino and Raspberry Pi. Biometric/Medical Applications [Electronic resource]. — Available
at: https://www.cooking-hacks.com/documentation/tutorials /ehealth-biometric-sensor-platform-arduino-raspberry-pi-medical

24.

Araxansth, T. M. DuiekTpoHHbIe yeTpoiicTBa B Meannnackux npubopax [Tekcr] / T. M. Araxausin, B. I. Hukuraes. — M.: HUAY

MU®, 2010. - 480 c.

yu] =,

Axmuenuil pineepnpinmune € npoyecom nepe-
daui moougpixosanux uu oueno eidopmamosa-
HUX naxemié Ha UiNb08Y OnePauiiiny cucmemy
ma ananizy ii 6i0n06idi 011 nOWYKY 6paA3NUBUX
Micyb. 30ilicCHeHO NOPIGHANLHUU 02150 Memo0i
aKmueHozo pinzepnpinmunzy, AKi 6UKOPUCMOBY -
10MmovCs 8 mpancnopmuomy (uemeepmomy) pieHi
6 cmexy Inmepnem npomoxony TCP/IP. Taxosc
npodemMoncmposano pisni peaxuii onepauiuHux
cucmem Ha nposedeHi mecmu

Kmouosi cnosa: axmuenuii pinzepnpinmune,
mpancnopmuuii pigeHv» nepedaui 0AHUX, CMeEK
piena TCP/IP

=, u|

Axmuenoiii unzepnpunmune aensem-
¢ mpoueccom nepedauu MoOUPUUUPOBAHHBIX
UMY CMPAHHO OMPOPMAMUPOBCAHHBIX NAKEMOB
Ha Uene6yr0 ONEPavuUoOHHYl0 Ccucmemy u aua-
au3a ee omeema 0 NOUCKA YAIGUMbBIX MeCH.
Ocywecmenen cpasnumenvhvlii 0630p Memooos
axkmuenozo punzepnpurnmunea, Komopvie UCNONb-
3yromcs 6 mpancnopmuom (uemeepmom) yposie
6 cmexe Hnmepnem npomoxoaa TCP/IP. Taxice
nPOOEeMOHCMPUPOBAHDL PA3NUYHBIE PEAKUUU One-
PAUUOHHBIX CUCTeM HA NPOBedeHHbIe MeCmbl

Kntouesvie caosa: axmusnoii unzepnpum-
mume, MPAHCNOPMHBLIL YpoBeHb nepedauu 0au-
Hoblx, cmex ypoenua TCP/IP

u] =,

1. Introduction

Today’s cyber world is more than programs, computer
games, or even the Internet. This is interconnected net-
works, containing a telecommunications networks, embed-

|DOI: 10.15587,/1729-4061.2015.5 1352|

ANALYSIS OF AN
ACTIVE FINGERPRINTING
APPLICATION OF THE
TRANSPORT LAYER

OF TCP/IP STACK FOR
REMOTE OS DETECTION

V. Mosorov

Doctor of Technical Science

Department of Computer Science in Economics
Narutowicha str., 65, Lodz, Poland, 90-131
E-mail: wmosorow@uni.lodz.pl

S. Biedron

Postgraduate student*

E-mail: SBiedron@wpia.uni.lodz.pl

T. Panskyi

Postgraduate student*

E-mail: panskyy@gmail.com

*Institute of Applied Computer Science

Lodz University of Technology
Stefanowskiego str., 18 /22, Lodz, Poland, 90-924

ded systems and critically important objects of infrastruc-
ture, which are closely linked with each other and with
the user. Malicious attacks on critical infrastructure are
a serious threat for a physical person, firms, business and
even government operations. Today, the cyber criminal can

become anyone with desire and with the necessary train-
ing. Many people want with the minimal technical means
and with a sense of impunity become rich or get valuable
information.

Cyber-actions are divided into cyber-attacks, cy-
ber-crime and cyber-warfare. A cyber-attack is one of the
cyber actions and it consists of any action taken to under-
mine the functions of a computer network for a political or
national security purpose [1]. Cyber-attacks objective is to
undermine the function of a computer network and it must
have a political or national security purpose. Cyber-warfare
is a same as cyber-attack but it is narrower term, when the
effects are equivalent to an “armed attack,” or activity must
occur in the context of armed conflict. Cyber-crime involves
only non-state actors.

By observing the normal operations of target useful
information can be collected and analyzed for the future of
cyber crime. Reconnaissance phase is used for the gathering
the weak points of the targets system: network information
(IP addresses, network topology etc.), host information
(user names, versions of TCP services etc.), human data
(telephone numbers, personal information, dark secrets),
security policies (detection systems, firewall, password com-
plexity, password change frequency) [2].

As one of the risks in the context of cyber crime is the
remote identification operating system on the computer
network. This paper aims to bring aspects of an active fin-
gerprinting application of the transport layer in the network
TCP/IP stack and the consequences of different operating
system vulnerability.

2. Analysis of published data and problem statement

Active fingerprinting functions by sending oddly for-
matted and slightly modified TCP packets. The result is
that each target responds differently to these malformed
packets. Remote OS detection boils down to identify-
ing the operating system or applications running on the
scanned device, which are determined by certain methods
using the slight differences between implementations of
the protocol TCP/IP. Thanks to these seemingly insig-
nificant errors, we can increase our chance to get to know
important information about the device and the software
used by scanned user. Among the many methods of finger-
printing one of the most interesting are those that use the
fourth (transport) layer protocols of TCP/IP stack. Used
methods such as Flag probing [3], Window size probing [4]
Time of retransmission, where the TCP is used gives huge
opportunities because of the many options that comes with
the named protocol. A tool that carries out the most tests
using these methods is Nmap. The result of its performance
is a list of scanned addresses with additional information
dependent on used options. One of the main information
is a “list of interesting ports”. It contains the port numbers
and protocols, the names of the service and the detected
condition. The condition can be described as an open [5],
filtered, closed, or unfiltered. Open means that the applica-
tion in the analyzed address waits for connections/packets
arriving at this port. Filtered means that the system is
prohibitive, or other device that block the network traffic
does not allow the communication to that port and for this
reason Nmap [6] is not able to determine whether the test
port is open or closed. Closed port has no application that

supports network communication. Ports classified as unfil-
tered responded to Nmap requests, but it was not possible
to determine whether they were open or closed [7, 8]. Apart
from the Nmap there are many different currently available
programs for fingerprinting using transport layer for scan-
ning which in greater or lesser extent are effective [9]. It
should always reckon with the fact that it can never be one
hundred percent [10, 11] specified a system/application of
a scanned the device and the test should always take this
into account.

In this article the basic methods of active fingerprinting
of the transport layer of TCP/IT stack have been mentioned.
Also the various reactions of certain systems for carried out
scanning have been presented.

3. Purpose and objectives of the study

The main objective of this publication is to present basic
methods and functioning of an active fingerprinting Trans-
port TCP/IP stack.

In accordance with the set goal the following research
objectives are identified:

1. Analysis of active fingerprinting methods, namely the
transport layer.

2. Present the potential threats that fingerprinting could
pose to ordinary users.

4. The transport layer and its protocols

The purpose of this layer is to provide the data to the
particular application. This type of transmission of the
data stream to a location is based on the identification
using port numbers. To each process that needs to com-
municate with the network is assigned a unique port. It is
a “navigator” for informing the transport layer to which
applications have to be sent to part of the data. Port redi-
rects the request to a particular service which is under a
given IP address. The port number is specified when con-
nection is created. Due to the fact that different programs
have different requirements, the transport layer must have
specialized protocols. Some applications require delivery
reliability, while for others matters speed at the cost of
losing some data.

Ports are divided into:

—0-1023 — generally known — they are registered for
services and applications such as http(80), FTP(20, 21),
SSH(22), Telnet(23), SMTP (25), DNS(53), Gopher(70),
POP2(109), POP3(110), NETBIOS(137, 138, 139),
IMAP(143), SNMP(161, 162), BGP(179), HTTPS(443) etc;

—1024-49151 — registered ports - they are assigned to
programs launched by users;

—49152-65535 — private ports — are usually allocated
dynamically to the client when it initiates the connection.

In the transport layer two protocols are distinguished:

— TCP (Transmission Control Protocol) is one of
the most important protocols in TCP/IP stack. It has
been entirely described in the standardization document
RFC 793 as a connection protocol enabling initiate first
connection wherein the data is efficiently and reliably
sent on. This connection can control the flow, send an ac-
knowledgment of receipt, divide larger data on parts and
correctly submit them in the order on the destination host

and perform the retransmission. A characteristic feature
of this protocol is a way to connect, so-called three-way
handshake. Host starting transmission sends a packet
containing a TCP segment with the SYN flag set. The
call recipient sends a package with the set SYN and ACK.
flags. The initiating of the communication should now
send the first portion of the data by setting only ACK flag.
If the destination node does not want to connect or cannot
pick him up, then it should respond by the packet with a
set RST flag. Successful completion of the communication
is based on sending FIN flag. The above described three-
way handshake procedure is shown in a Fig. 1.

SYN

T~

ACK, SYN

ACK

T

Fig. 1. Three-way handshake

Reliability in providing data provides a method called
positive acknowledgment with retransmission. It requires
that a recipient communicate with the broadcaster, indicat-
ing it using the sequential number field and confirmation of
whether the data has been correctly delivered. The broad-
caster waits for confirmation, and then depending on the
situation accedes to the retransmission of damaged, lost data
or continues the transmission of others.

— UDP (User Datagram Protocol) is a protocol TCP/IP
standard defined in RFC 768. Its characteristic feature is
the lack of establish connection before transmission and the
lack of data retransmission mechanisms in a place of dam-
aged or lost data. This design of datagram makes it much
less of a TCP packet, and so the number of outgoing control
information is reduced. This type of construction enables
faster transmissions, which allow applications to directly
benefit from IP services.

5. Fingerprinting of the transport layer

o FIN probe — this test is based on sending a segment
without the set of SYN and ACK flag to an open port of
the scanned machine. According to the standardization
document RFC 793, the system should react sending a re-
sponse with a set of the RST flag. Up to this point every-
thing is clear and understandable, there should not be any
problems with implementation. However, further part of
the message sounds: RST should not be sent if the system
is not sure that the segment does not belong to the com-
munication conducted by this port. This inaccuracy in the
document meant that many systems rejects quietly modi-
fied by us segment, while others send back a message with
the RST flag for example Cisco IOS, Microsoft products.

o The Bogus flag — is based on sending an undefined
flag with SYN flag set in the TCP segment. Versions
2.0.35 of Linux system not only return an answer, but
also post the copy of the values of our manipulated flag
in it. According to Gordon Lyon, “Nmap” developer that
test identifies the above-mentioned system, although oth-
er sources indicate that there are groups other OS’s that
respond to such a segment of RST flag.

o ACK Values — that test draws attention to certain
exceptions in the implementation behavior of TCP/IP
stack. Our attention should attract the irregularity in
the values of sequence numbers. If we send a segment
FIN | PSH | URG to a closed port of the scanned machine,
then most systems will answer with ACK segment for the
same sequence number that was in our message. However,
there will also be a group of OS, which increases the value
by one, or insert pseudo-random value. The situation is
similar with sending SYN | FIN | PSH | URG segment
to an open port. Both experiments using irregularity in
the ACK responses are implemented in the “Nmap” as a
test T7, T3.

— Window size probing [13] — this test relies on obser-
vations the value of the “window” in packages that come
back. As it turns out, their size may vary considerably,
depending on the used data link layer technology and the
type of incoming message. This can be seen by the follow-
ing example in Table 1.

As it is described before the transport layer consists of
two of two major protocols TCP and UDP. In the experi-
ments [12] whose purpose is to decrypt the type of system
on a scanned machine the first of these protocols will be
used. As it turns out a huge amount of options offered
those used, as well as those who currently have no appli-
cation, it is used in various types of fingerprinting tests.
In the case of TCP it gives us the quite a lot of serious
discrepancies between systems, which include:

— Flag probing — to carry out this test we use the
“flags” in the TCP protocol. We distinguish the following
tests:

Table 1
Used technologies
Used technology Maximuan'I:Ir‘z[i?)sfer Unit
Hyperchannel 65535
16 Mbits/sec token ring (IBM) 17914
4 Mblts/secg(());e;; ring (IEEE 464
FDDI 4352
Ethernet 1500
IEEE 802.3/802.2 1492
X.25 576
Point-to-Point (low delay) 296

Before analyzing the table with the tests should be
remembered [14]: MSS is the field that informs us of the
maximum segment size that cannot be divided into parts.
The most common value set by the system can be seen in
Table 2.

Database of window field

Table 2

Window
System
RST/ACK SYN/ACK
BEOS 5 0 12288
FreeBSD 2.0.5, 2.1.0, 2.1.5, 2.1.6, 2.1.7.1, 2.2.0, 2.2.1, 2.2.2, 2.2.5, 2.2.6, 2.2.7,2.2.8 0 12*MSS
FreeBSD 2.2.9, 3.0, 3.1, 3.2,3.3,3.4,3.5.1,4.0,4.1,4.1.1, 4.2, 4.3, 4.4 0 12*MSS
FreeBSD 4.5, 4.6, 4.6.2, 4.7, 4.8 0 65535
FreeBSD 4.6, 4.6.2, 4.7, 4.8 0 57344
FreeBSD 5.0, 5.1 0 65535
Linux 2.0.29 (Debian) 0 15360
Linux 2.0.30 (RedHat) 0 31744
Linux 2.0.32, 2.0.36 (RedHat) 0 32736
Linux, 2.2.0,2.2.1,2.2.2,2.2.3,2.2.4,2.2.5, 2.2.5-15,2.2.6,2.2.7,2.2.8, 2.2.9, 2.2.10, 2.2.11,
2.2.12,2.2.12-20,2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18, 2.2.20, 0 22*MSS
2.2.21,2.2.22,2.2.23,2.2.24
Linux 2.2.19, 2.2.20-idepci (Debian) 11*MSS
Linux 2.4.0,2.4.1,2.4.2,2.4.2-2, 2.4.3, 2.4.4, 2.4.4-4GB 4*MSS
Linux 2.4.5. 2.4.6,2.4.7,2.4.8,2.4.9, 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13, 2.4.14,
2.4.15, 2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-4GB, 2.4.18-14, 2.4.19, 2.4.19-4GB, 2.4.20, 0 4*MSS
2.4.20-8, 2.4.21-0.13mdk
MacOS 7.5.3,7.5.5 0 12*MSS
MacOS 7.6, 7.6.1, 8.0, 8.1 0 12*MSS / 44*MSS
Mac0S99.0,99.1,9.2.1,9.2.2 0 32768 / 65535
MacOS 10.1.0, 10.1.1, 10.1.2, 10.1.3, 10.11.04.,2.12.1.5, 10.2.1, 10.2.2, 10.2.3, 10.2.4, 10.2.5, 0 93*MSS
NetBSD 1.1,1.2,1.2.1 0 12*MSS
NetBSD 1.3,1.3.1,1.3.2,1.3.3, 1.4, 1.4.1, 1.4.2,1.4.3, 1.5, 1.5.1, 1.5.2, 1.5.3, 1.6, 1.6.1 0 16384
Netware 4.11 0 2000 / 32768 / 65535
Netware 4.11 sp9 0 6144
Netware 5 0 8191 / 32768 / 65535
Netware 5 spba 0 6144
Netware 5.1 0 8191 / 65535
Netware 5.1 sp6 0 6144
Netware 6, 6 sp3 0 6144
OpenBSD 2.0, 2.1, 2.2,2.3,2.4,2.5, 2.6, 2.7 0 12*MSS
OpenBSD 2.8, 2.9, 3.0, 3.1, 3.2, 3.3 0 12*MSS / 17366
ONX RTP 4, 6.0 Duplicates the value 8192
ONX RTP 6.1, 6.2, 6.2.1 0 16384
SunOS 5.5, 5.5.1 0 6*MSS
5.6 0 44*MSS /6*MSS
5.7 0 6*MSS
5.8 0 17*MSS
59 0 34*MSS
SunOS (Intel) 5.8 0 44*MSS
Windows 95 0 6*MSS
Windows NT 3.51 standard 0 6*MSS
Windows 98, 98 SE 0 6*MSS
Windows NT 4 standard, sp3, sp4, sp6 0 12*MSS
Windows Millennium standard 0 12*MSS
Windows 2000 standard, sp2, sp3, sp4 0 12*MSS
Windows XP Home, Professional 0 12*MSS
Windows 7 0 12*MMS
Windows Server 2008 0 12*MMS
Windows 8, Windows 8.1 1] 12*MMS

— Time of Retransmission — this scanning uses the
mileage of start communicating using the “three-way hand-
shake” method. The creators of the fluctuations are Veysset,
Courtay, Heen, who in 2002 presented this method of fin-
gerprinting. This test does not require any effort from the
striker. It is based on a sending of a packet with SYN flag set
as information for the other machine of its wish to start “di-
alogue”. A further part of the experience relies on listening.
The scanned operating system will react as it is described in
the standardization document RFC 793 by sending a SYN +
ACK response [15]. The user receives a scanning packet, but
still remains in hiding, without giving any sign of life. The
observed OS after a specified period comes to the conclusion
that package with its response was lost during transmission,
so it sends the next. This situation is repeated several times,
in ever larger intervals (increasing intervals is intended to
prevent the network overloading, if there are any technical
problems indeed). The system then comes to the conclusion
that, no one wants to communicate with it on a particular
port. At this time another irregularity in the systems behav-
ior may appear. Some of them, when it realize that communi-
cation is not going to happen send a packet with a RST flag,
while others simply interrupt broadcast on the last sent reply
that can be seen in Fig. 2.

Microsoft Windows Vista, Windows 7 or Windows 8
and newer OS use a new algorithm protecting against at-
tacks and scanning with the SYN packets. It implies that
the use of the “Time of Retransmission” method becomes
ineffective in this case.

(s) " "

»
-=m—

Fig. 2. Time of Retransmission

— Options sequence — this test is performed by sending
a packet with SYN flag to an open or close port with a set of
particular additional options in the TCP header. Requests
of additional parameters from the scanned machine is best
to set for achieving transparency in alphabetical order (L —
“End of list options” M — “Maximum segment size” N — “Do
not execute” S — “Selective confirmation” T — “Date Stamp”
W — “Scaling windows “), omitting the” Do not execute”. As it
turns out operating systems react in different ways, responding
in their reply packets SYN / ACK or RST / ACK (depending
on the state of the port, to which was sent our SYN) addressing
options in different sequences, adding a few of its parameters, or
failing to respond to some of them that we see in Table 3.

Table 3
Database of imprints — the sequence of elements of the “Option” field
TCP OPTIONS
System Sent in the SYN package Received II)I; ;E:;YN/ ACK
1 2 3
M@1459 M@1460
BEOS 5 M@1460 M@1460
M@1460STW M@1460
M@1459 M@1460
FreeBSD 2.0.5, 2.1.0, 2.1.5, 212(23,7212721;, 2.2.0,2.21,2.22,2.2.5,2.2.6, M@1460 M@1460
M@1460STW M@1460NW@ONNT
M@1459 M@1460
FreeBSD 2.2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5.1, 4.0, 4.1, 4.1.1, 4.2, 4.3 M@1460 M@1460
M@1460STW M@1460
M@1459 M@1460
FreeBSD 4.4 M@1460 M@1460
M@1460STW M@1460NW @ INNT
M@1459 M@1460
FreeBSD 4.5 M@1460 M@1460
M@1460STW M@1460NW @ | NNT
M@1459 M@1460
FreeBSD 4.6, 4.6.2, 4.7, 4.8 M@1460 M@1460
M@1460STW M@1460NW @ONNT
M@1459 M@1460
FreeBSD 5.0, 5.1 M@1460 M@1460
M@1460STW M@1460NW @ 1 NNT

Continuation of Table 3

1 2 3
M@1459 M@1459
Linux 2.0.29 (Debian) M@1460 M@1460
M@1460STW M@1460
M@1459 M@1459
Linux 2.0.30 (RedHat) M@1460 M@1460
M@1460STW M@1460
M@1459 M@1459
Linux 2.0.32, 2.0.36 (RedHat) M@1460 M@1460
M@1460STW M@1460
Linux, 2.2.0,2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.5-15,2.2.6, 2.2.7, 2.2.8, M@1459 M@1459
2.2.9,2.2.10, 2.2.11, 2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, M@1460 M@1460
2.2.16,2.2.16-22, 2.2.17, 2.2.18, 2.2.20, 2.2.21, 2.2.22, 2.2.23, 2.2.24 M@1460STW M@1460STNW@0
M@1459 M@1459
Linux 2.2.19, 2.2.20-idepci (Debian) M@1460 M@1460
M@1460STW M@1460STNW@0
M@1459 M@1459
Linux 2.4.0, 2.4.1, 2.4.2, 2.4.2-2, 2.4.3, 2.4.4, 2.4.4-4GB M@1460 M@1460
M@1460STW M@1460STNW@0
Linux 2.4.5. 2.4.6, 2.4.7, 2.4.8, 2.4.9, 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, M@1459 M@1459
2413, 2.4.14, 2.4.15, 2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-4GB, 2.4.18- M@1460 M@1460
14,2.4.19, 2.4.19-4GB, 2.4.20, 2.4.20-8, 2.4.21-0.13mdk M@1460STW M@1460STNW@0
M@1459 M@1459
MacOS 7.5.3,7.5.5 M@1460 M@1460
M@1460STW M@1460 / M@ 1460W @OL
M@1459 M@1459
MacOS 7.6, 7.6.1, 8.0, 8.1 M@1460 M@1460
M@1460STW M@1460 / M@ 1460W @OL
M@1459 M@1459
MacOS 99.0,99.1,9.2.1,9.2.2 M@1460 - 1422%142;\]“/
M@1460STW M%1460W%2NNNT
M@1459 M@1460
MacOS 10.1.0, 10.1.1, 10.11.3-,;21.03.,;3.11.3.,21(5).1.5, 10.2.1,10.2.2, 10.2.3, M@1460 M@1460
M@1460STW M@1460NW @ONNT
M@1459 M@1460
NetBSD 1.1, 1.2, 1.2.1 M@1460 M@1460
M@1460STW M@1460NW @ONNT
M@1459 M@1460
NetBSD 1.3, 1.3.1, 1.3.2, 1.3.3, 1.4, 1.4.1, 1.4.2, 1.4.3, 1.5, 1.5.1, 1.5.2, 1.5.3 M@1460 M@1460
M@1460STW M@1460NW @ONNT
M@1459 M@1460
NetBSD 1.6, 1.6.1 M@1460 M@1460
M@1460STW M@ 1460NW @ONNT @0
M@1459 M@1459
Netware 4.11, 4.11 sp9, 5, 5 sp6a, 5.1 M@1460 M@1460
M@1460STW M@1460
M@1459 M@1459
Netware 5.1 sp6, 6, 6 sp3 M@1460 M@1460
M@1460STW M@1460W@ONSNN
M@1459 M@1460
OpenBSD 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3 M@1460 M@1460
M@1460STW M@1460NW @ONNT

Continuation of Table 3

1 2 3
M@1459 M@1460
ONX RTP 4 M@1460 M@1460
M@1460STW M@1460
M@1459 M@1460
ONX RTP 6.0 M@1460 M@1459
M@1460STW M@1459 / M@1460
M@1459 M@1460
ONX RTP 6.1, 6.2, 6.2.1 M@1460 M@1460
M@1460STW M@1460NW @ONNT
M@1459 M@1459
Sun0S 5.5, 5.5.1 M@1460 M@1460
M@1460STW M@1460
M@1459 M@1459
Sun0S 5.6 M@1460 M@1460
NNTNW@OM@, 1460 / NNT-
M@1460STW Nw@@lg@l%o
M@1459 M@1460
SunOS 5.7 M@1460 M@1460
M@1460STW NNTNW @OM@ 1460
M@1459 M@1460
SunOS 5.8 M@1460 M@1460
M@1460STW NNTNW @ONN SM@ 1460
M@1459 M@1460
Sun0S 5.9 M@1460 M@1460
M@1460STW NNTM@ 1460NW @ONN S
M@1459 M@1460
SunOS (Intel) 5.8 M@1460 M@1460
M@1460STW NNTNW@ INNSM@1460
M@1459 M@1460
Windows 95 M@1460 M@1460
M@1460STW M@1460
M@1459 M@1460
Windows NT 3.51 standard M@1460 M@1460
M@1460STW M@1460
M@1459 M@1460
Windows 98, 98 SE M@1460 M@1460
M@1460STW M@1460NNS
M@1459 M@1460
Windows NT 4 standard, sp3, sp4, sp6 M@1460 M@1460
M@1460STW M@1460
M@1459 M@1460
Windows Millennium standard M@1460 M@1460
M@1460STW M@ 1460NW @ONNT @ONNS
M@1459 M@1460
Windows 2000 standard, sp2, sp3, sp4 M@1460 M@1460
M@1460STW M@ 1460NW @ONNT @ONNS
M@1459 M@1460
Windows XP Home, Professional M@1460 M@1460
M@1460STW M@ 1460NW @ONNT @ONNS
M@1459 M@1460
Windows Vista, Windows 7 M@1460 M@1460

M@1460STW

M@ 1460NW @ONNT @ONNS

As it can be seen from the Table 3, there are systems and
devices that react quite irregularly on the performed test,
significantly allowing its identification in the network.

— TCP Timestamp — this test uses TCP additional option
called “date stamp”. As previously mentioned, this feature is
intended to help in the diagnosis of calculating the time it
takes for messages traveling from one place to another. This
option consists of four fields, two of which are worthy of
interest. These are the “Timestamp Value” or in short TSval
[16], which informs us about the exact time of sending by
a given TCP/IP communication, and the field “Timestamp
Echo Reply Field” in short Tsecr, which contains the time
the message, was received by the second system. Both of the
data are taken from the so-called timestamp clock. Each of
the clocks is periodically incremented by the operating sys-
tem in order to give the most current time. The important
factor [17] is the frequency at which the clock timestamp
gets updated. As it turns out not all systems increase in the
same period of time, the value of the clock by the same time
unit [18] what can be seen in Table 4.

— TCP ISN - this test is based on the relationship [19] of
the TCP sequence numbers. This experience uses the value of
the consecutive numbers which are allocated to this field in
the response of our sent packages. In practice, this consists in
“filling up” on a variety of scanned system open ports of SYN
packages. The OS we are interested at sends the messages in
response to SYN/ACK with further sequence numbers set

by itself. On this basis, we are able to determine what their
assignment algorithm was used, and hence the name of the
system being scanned or the group to which it belongs. When
performing this test, it must be remembered that it can be eas-
ily mistaken. The scanned system is capable during our expe-
rience make other connections, which resulted in significant
variance of the sequence numbers [20]. here are the following
ways to generate successive sequence numbers:

o Constant (Const) — number in the return SYN/ACK
package is the same which in sent in.

o 64k — the numbers in the return SYN/ACK package
are a multiple of the value 64000.

0 800x — the numbers in the return SYN/ACK package
are a multiple of the value 800.

o RPI (Random positive increments) — the numbers in
the return SYN/ACK package are random values greater
than the previous value of SEQ.

o RI (Random increments) — the numbers in the return
SYN/ACK package are random values.

o TR (True random) — the numbers in the return SYN/
ACK package are the truly random values (probability of
selecting the numbers are the same).

o TDI (Time dependent increments) — the numbers in
the return SYN/ACK package are dependent on the time
value.

In Table 5 it could be distinguished a several different
anomalies observed in operating systems.

Table 4

Database of “timestamp” option

System

Timestamp clock update

3.1,3.2,33,34,3.51,4.0,4.1,4.1.1, 4.2, 43

FreeBSD 2.0.5,2.1.0, 2.1.5,2.1.6,2.1.7.1, 2.2.0, 2.2.1,2.2.2,2.2.5,2.2.6, 2.2.7, 2.2.8, 3.0,

2 times per second

FreeBSD 4.4,4.5,4.6,4.6.2,4.7, 4.8, 5.0, 5.1

100 times per second

Linux 2.2.0,2.2.1,2.2.2,2.2.3,2.2.4,2.2.5,2.2.5-15,2.2.6,2.2.7,2.2.8, 2.2.9

100 times per second

2.2.17,2.2.18,2.2.19

Linux 2.2.10, 2.2.11, 2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22,

100 times per second

Linux 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24

100 times per second

Linux 2.4.0,24.1,2.4.2,2.4.2-2, 2.4.3, 2.4.4, 2.4.4-4GB, 2.4.5,2.4.6,2.4.7,2.4.8, 2.4.9

100 times per second

2.4.18-3, 2.4.18-4GB

Linux 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13, 2.4.14, 2.4.15, 2.4.16, 2.4.17, 2.4.18,

100 times per second

Linux 2.4.18-14

500 times per second

Linux 2.4.19, 2.4.19-4GB, 2.4.20, 2.4.20-8, 2.4.21-0.13mdk

100 times per second

MacOS 9.0,9.1,9.2.1,9.2.2

1000 times per second

10.2.2, 10.2.3, 10.2.4, 10.2.5, 10.2.6

MacOS 10.1.0, 10.1.1, 10.1.2, 10.1.3, 10.1.4, 10.1.5, 10.2.1,

2 times per second

NetBSD 1.1,1.2,1.2.1,1.3,1.31,1.32,1.33, 1.4, 1.4.1,1.4.2,1.4.3,1.5,1.5.1,1.5.2,1.5.3

2 times per second

NetBSD 1.6, 1.6.1

Timestamp Value = 0 until establish a connection

OpenBSD 2.0, 2.1,2.2, 2.3, 2.4, 2.5, 2.6,2.7, 2.8, 2.9, 3.0, 3.1,3.2, 3.3

2 times per second

ONXRTP6.2,6.2.1

2 times per second

SunOS 5.5,5.5.1,5.6,5.7,5.8,5.9

100 times per second

SunOS (Intel) 5.8

100 times per second

Windows 95

Timestamp Value = 0 until establish a connection

Windows NT 3.51 standard

Timestamp Value = 0 until establish a connection

Windows 98, 98 SE

Timestamp Value = 0 until establish a connection

Windows NT 4 standard, sp3, sp4, sp6

Timestamp Value = 0 until establish a connection

Windows Millennium standard

Timestamp Value = 0 until establish a connection

Windows 2000 standard, sp2, sp3, sp4

Timestamp Value = 0 until establish a connection

Windows XP Home, Professional

Timestamp Value = 0 until establish a connection

Windows Net standard

Timestamp Value = 0 until establish a connection

Windows 2003 Server standard

Timestamp Value = 0 until establish a connection

Windows Vista

Timestamp Value = 0 until establish a connection

Windows 7

Timestamp Value = 0 until establish a connection

Windows Server 2008

Timestamp Value = 0 until establish a connection

Table 5

Database — methods of generating the sequence numbers

System ISN

BEOS 5 RI

Commodore 64 Const

FreeBSD 2.0.5,2.1.0, 2.1.5, 2.1.6, 2.1.7.1 64k

FreeBSD 2.2.0,2.2.1,2.2.2,2.2.5,2.2.6,2.2.7,2.2.8, 3.0,

3.1,3.2,3.3,3.4,35.1,4.0,4.1,4.1.1, 42, 4.3 RI
FreeBSD 4.4, 4.5, 4.6, 4.6.2, 4.7, 4.8, 5.0, 5.1 TR
IBM OS2 800x
Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 TR
Linux 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.5-15, -
2.2.6,2.2.7,2.2.8,2.2.9
Linux 2.2.10, 2.2.11, 2.2.12, 2.2.12-20, 2.2.13, 2.2.14, RI

2.2.14-5,2.2.15,2.2.16,2.2.16-22, 2.2.17, 2.2.18, 2.2.19

Linux 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24 RI

Linux 2.4.0,2.4.1, 2.4.2, 2.4.2-2, 2.4.3, 2.4.4, 2.4.4-4GB,

6. Conclusions

Looking at such a growing market for operating systems
and the growing group of regular users who use the computer
only as a tool for surfing the Internet it can be mentioned
that the number of incidents involving theft, destruction of
confidential data will increase a lot.

Summarizing, based on the comparative active finger-
printing tests and analysis of obtained results using this pub-
lication the interest of Internet users in active Fingerprint-
ing is expected to grow. Transport layer protocols provide
process-to-process connectivity across the Internet. Due to
the fact that layer is fundamental to Internet connectivity
and that many attack tools probe TCP ports in an attempt
to discover vulnerabilities.

Also in this article were submitted a series of tests that
help to identify the system on the other side, namely: Flag
probing, Window size probing, Time of Retransmission,

10.2.1, 10.2.2, 10.2.3, 10.2.4, 10.2.5, 10.2.6

NetBSD 1.1, 1.2.1 64k

NetBSD 1.3,1.3.1,1.3.2,1.3.3, 1.4, 1.4.1, 1.4.2, 1.4.3,

1.5,15.1,15.2, 15.3 RI
NetBSD 1.6, 1.6.1 RI
Netware 4.11 TDI

Netware 4.11 sp9 RI
Netware 5 TDI

Netware 5 spba RI

Netware 5.1 RI

Netware 5.1 sp6 TR

Netware 6 RI

Netware 6 sp3 TR

OpenBSD 2.0, 2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8 RI
OpenBSD 2.9, 3.0, 3.1, 3.2, 3.3 TR
ONX RTP 6.2, 6.2.1 RI

SunOS 5.5,5.5.1,5.6,5.7,5.8,5.9 RI
SunOS (Intel) 5.8 RI
Windows 95 TDI
Windows NT 3.51 standard TDI
Windows 98, 98 SE TDI
Windows NT 4 standard, sp3, sp4, sp6 TDI
Windows NT 4 sp6 RI
Windows Millennium standard RI
Windows 2000 standard, sp2, sp3, sp4 RI
Windows XP Home, Professional RI
Windows Net standard RI
Windows 2003 Server standard TR
Windows Vista RI

Windows 7 RI

On the basis of the above table, even those systems from
the same family can generate different behaviors.

2.4.5,24.6,2.4.7,2.4.8,2.4.9 RI Options sequence, TCP Timestamp, TCP ISN. The reaction
Linux 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13, 2.4.14, RI of operating systems on carried out tests was ambiguous,
2.4.15,2.4.16,2.4.17,2.4.18, 2.4.18-3, 2.4.18-4GB in some cases operating systems from even one family react
Linux 2.4.18-14 RI differently to the same test.
Linux 2.4.19, 2.4.19-4GB, 2.4.20, 2.4.20-8, 2.4.21- A general overview of the main operating system reac-
0.13mdk RI tions is intended to help users protect their computers, or at
MacOS 7.6, 7.6.1, 8.0, 8.1 64k worst to own some basic information about who and how can
MacOS 9.0,9.1,92.1,9.2.2 RI illegally make a crime.
MacOS 10.1.0, 10.1.1, 10.1.2, 10.1.3, 10.1.4, 10.1.5, TR References

1. Hathaway, O. A. The law of cyber-attack [Text] /
O. A. Hathaway, R. Crootof, P. Levitz, H. Nix, A. Nowlan,
W. Perdue, J. Spiegel. — Yale Law School Legal Scholarship
Repository, 2011. — 76 p.

2. Sanghvi, H. P. Cyber Reconnaissance: An Alarm before Cy-
ber Attack [Text] / H. P. Sanghvi, M. S. Dahiya // Interna-
tional Journal of Computer Applications. — 2013. — Vol. 63,
Issue 6. — P. 36-38. doi: 10.5120,/10472-5202

3. Schiffman, M. Building Open Source Network Security
Tools: Components and Techniques [Text] / M. Schiff-
man. — Wiley, 2002. — 416 p.

4. Lyon, G. Nmap Network Scanning [Text] / G. Lyon. —
2013. — 467 p.

5. Hills, R. NTA Monitor UDP Backoff Pattern Fingerprint-
ing White Paper [Electronic resource] / R. Hills. — 2003. —
7 p. — Available at: http://www.nta-monitor.com/files/
udp-backoff-whitepaper.pdf

6. Allen, J. M. OS and Application Fingerprinting Techniques
[Text] / J. M. Allen. — SANS Institute InfoSec Reading
Room, 2007. — 49 p.

7. Lyon, G. Nmap Scripting Engine Documentation [Text] /
G. Lyon. — 2013. — 42 p.

8. Bennieston, A. J. NMAP-A Stealth Port Scanner [Text] /
A. J. Bennieston. — 2006. — 20 p. — Available at: http://
www.csc.villanova.edu/~nadi/csc8580/S11/nmap-
tutorial.pdf

9. Spangler, R. Analysis of Remote Active Operating System
Fingerprinting Tools [Text] / R. Spangler. — University of
Wisconsin — Whitewater, 2003. — 36 p.

10. Schwartzenberg, J. Using Machine Learning Techniques
for Advanced Passive Operating System Fingerprinting
[Text] / J. Schwartzenberg. — Essay (Master), 2010.

11. Jirsik, T. Identifying Operating System Using Flow-based Traffic Fingerprinting [Text] / T. Jirsik, P. Celeda // 20th EUNICE/IFIP
EG 6.2, 6.6 International Workshop, 2014. — P. 70-73. doi: 10.1007,/978-3-319-13488-8 7

12. Arkin, O. Xprobe - Remote ICMP Based OS Fingerprinting Techniques [Text] / O. Arkin. — 2001

13. Zalewski, M. Cisza w sieci [Text] / M. Zalewski. — Helion, 2005. — 304 p.

14. Montigny-Leboeuf, A. De. A Multi-Packet Signature Approach to Passive Operating System Detection [Text] / A. De Montigny-

Leboeuf. — Communications Research Centre Canada, 2005.

15. Gutkowski, M. Kilka ciekawych metod rozpoznawania systemu operacyjnego [Text] / M. Gutkowski // Hakin9. — 2004. — Vol.2
16. Allen, J. M. OS and Application Fingerprinting Techniques [Text] / J. M. Allen. — SANS Institute InfoSec Reading Room,

2007. — 49 .

17. Lloyd, G. G. Evaluating Tests used in Operating System Fingerprinting [Text] / G. G. Lloyd, J. T. Tavaris. — LGS Bell Labs Inno-

vations Technical Memorandum TM-071207.

18. Shu, G. Network Protocol System Fingerprinting — A Formal Approach [Text] / G. Shu, D. Lee // Proceedings of 25th IEEE In-
ternational Conference on Computer Communications, 2006. — P. 12. doi: 10.1109/infocom.2006.157
19. Lippmann, R. Passive Operating System Identification From TCP/IP Packet Headers [Text] / R. Lippmann, D. Fried, K. Piwowar-

ski, W. Streilein. — Springer, 2005.

20. Nostromo, Techniques in OS-Fingerprinting [Text] / Nostromo. — Hagenberg, 2005. — 24 p.

| =,

Pospobaeno npoepamy o6pobxu cuenanie
6 mamemamuunomy naxemi MATLAB i eip-
myanvHul npuaao 3 niompumroro 00 cemu
sumiprosanviux kananie. Iposederno ouinky
KOpucHux cuenanie. Y epagiunomy naxemi
CATIA cmeopeno mpusumipuy mooero peep-
syapa 06’cmom 0,04 »3. Ilposedeno moodann-
Hull ananiz KOHCMpYKUii 3 6UKOPUCTMAHHAM
npoezpamnozo komnaexcy ANSYS. Ilokazano,
wo epexmuenicmos Maxema KaHay UMIPHO-
eanns eiopauii cmanosums nonao 90 %

Knmouosi cnoea: eibpauiina oiazmoc-
muka, 6epmuKaivHull cmanesuil pesepsy-
ap, LabVIEW, odiaznocmuunuii xomnuexc,
ANSYS

=, u]

Paspabomana npozpamma oopaéom-
KU CUZHAI08 6 MAMeMAMU4eCKOM naxeme
MATLAB u eupmyanvuvtii npu6op ¢ noo-
deporckoli 00 cemu uMepumenbHvIX KaHA-
n06. Ilposedena ouenrka nonesnvix cueHa-
106. B epaguuecrcom naxeme CATIA cozdana
mpexmepnas mooenv pezepsyapa 00semMom
0,04 M. Ilposeden modanvnolil anaius Kom-
CMPYKUUU ¢ UCNOTb308AHUEM NPOZPAMMHOZ0
xomnaexca ANSYS. Iloxazano, umo 3pgpex-
MUGHOCMb MaKema Kanana usmepenus 6uo-
pauuu cocmasasem ceévtute 90 %

Kniouesvie cnosa: subpayuonnas ouazno-
cmuKa, 6epmuKaivHbIll CIMAIbHOU pe3epsy-
ap, LabVIEW, oduaznocmuueckuii Kkomniexc,
ANSYS

u] =,

1. Beenenne

B nocaegnue necsTuseTHSs BO MHOTUX Pa3BUTHIX
cTpanax Mupa 60sblioe BHUMaHUe yaesusieTcs: obecnede-
HU©O 6e30MaCHOI IKCIIyaTallMy CJIOKHBIX MHIKEHEPHBIX
COOPY’KeHNH W KOHCTPYKIHUU Pa3JTUIHOTO Ha3HAUCHUS,

YK 004.925.8: 624.953: 004.03
DOI: 10.15587,/1729-4061.2015.50980

UCCNEQOBAHMUE
MAKETA KAHAJIA
U3MEPEHUA BUBPALIUU
KOMMNEKCHOMU
CUCTEMbI
MOHUTOPUHT A
CTANIbHbIX
PE3EPBYAPOB

H. U. Bypay

LloKTOp TEXHUUECKUX HayK,

npocheccop, 3aBeayoLLmMi Kacdenpon™

E-mail: burau@pson.ntu-kpi.kiev.ua

C. A. UbibynbHHUK

Acnupant*

E-mail: Tsybulnik.s.a@gmail.com

A. B. WeBuyk

Acnupant*

E-mail: 00012066@ukr.net

*Kadpenpa npubopoBs 1 cUCTeM OpUEHTALMHK U HaBUraLmK
HauuoHanbHbIM TEXHUYECKUHM YHUBEPCUTET YKpauHbI
«KuneBcKkui NonUTEXHUUECKUI MHCTUTYT»

np. Mo6epapbl, 37, r. Kues, YkpauHa, 03056

K KOTOPBIM OTHOCSITCSI TAKME OTBETCTBEHHBbIE 0OBEKTHI,
KaK: MOCTBI, TU[POTEXHUYECKIE COOPY KEHMU s, XPAHUJIH-
12 OTACHBIX BEIIECTB, 3JEKTPOCTAHI[UU, OOBEKTHI ra3o-
un HedTeTpaHCIOpTHON o6JacTu, a Takxe apyrue. Ha
CETOMHSIIHUN JeHb MPOEKTUPOBaHUE OOJBIIUHCTBA OT-
BETCTBEHHBIX KOHCTPYKIINI OCHOBBIBAETCS HA TIPUHITUIIE

