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Abstract
The characteristics of the radio waves scattering over the acoustic wave packets created by sophisticated acou-

stic sounding signals in radio acoustic sounding systems of atmosphere are analyzed. In this case, there is an expa-
nsion of the scattering body along spatial frequencies, expanding the wave numbers range of effective interaction 
acoustic sounding and electromagnetic signals, and a decrease in the duration of the scattered radio signals is also 
observed. The physical reason signal length decrease is the signal length duration spatial domain decrease of aco-
ustic and electromagnetic waves, due to the presence of modulation parameters in space. The form and parameters 
of the spatial spectrum, that is embedded in the scattering signal, in a great degree acts on the quality character-
istics resulting estimates of signal parameters and atmospheric parameters. The presence of specific errors in the 
estimation of the Doppler frequency information parameters and radio signals time delay, scattered on the compl-
ex acoustic sounding signals is shown. The use of sound oscillations can significantly increase the efficiency of the 
radio acoustic sounding stations when measuring vertical temperature profiles of the atmosphere

Keywords: radio acoustic sounding of atmosphere, dispersion bodies, complex acoustic signal

УДК 621.396

USING 
ADAPTIVE 

EQUALIZING IN 
LTE WITH MIMO

A l - J a n a b i  H u s s a m  D h e a a
Graduate student

Department of Telecommunication Systems
Kharkiv National University of Radio Electronics

Lenina, 14, Kharkov, Ukraine, 61166
Contact tel.: 063-651-11-06

E-mail: en.husam @ mail.com

Робота присвячена аналізу використання 
методу еквалізації в LTE системах з різни-
ми конфігураціями MIMO з метою підвищення 
характеристик якості зв’язку

Ключові слова: LTE, MIMO, просторово-
часове кодування, адаптивний еквалайзер, Zero 
Forcing, метод мінімуму середньоквадратичної 
помилки

Pабота посвящена анализу использования 
метода эквализации в LTE системах с различ-
ными конфигурациями MIMO с целью повыше-
ния характеристик качества связи

Ключевые слова: LTE, MIMO, пространст-
венно-временное кодирование, адаптивный 
эквалайзер, Zero Forcing, метод минимума 
среднеквадратической ошибки

© Al-Janabi Hussam Dheaa, 2012

1.Introduction

Equalization is the process of adjusting the balance be-
tween frequency components within an electronic signal. It 
has important applications in telecommunications. Equaliz-
ation is used to render the frequency response and prepare 
data signals for transmission. When a channel has been “eq-
ualized” the frequency domain attributes of the signal at the 
input are faithfully reproduced at the output.

Equalizers are critical to the successful operation of 
LTE systems. In this application the actual waveform of the 
transmitted signal must be preserved, not just its frequency 
content. Adaptive Equalizer filters must cancel out any 
group delay and phase delay between different frequency 
components. Especially in broadband applications where 
Intersymbol Interference (ISI) is a critical factor. Equalizers 
are employed to reduce such interference. MIMO systems 
transmits different signals from each transmit element so 
that the receiving antenna array receives a superposition of 
all the transmitted signals.

2. Intersymbol Interference and Equalization

The all-pass assumption made in the AWGN (or non-
dispersive) channel model is rarely practical. Due to the 
scarcity of the frequency spectrum, we usually filter the 
transmitted signal to limit its bandwidth so that efficient 
sharing of the frequency resource can be achieved. Moreo-
ver, many practical channels are bandpass and, in fact, they 
often respond differently to inputs with different frequency 
components, i.e., they are dispersive. We have to refine the 
simple AWGN (or non-dispersive) model to accurately rep-
resent this type of practical channels. One such commonly 
employed refinement is the dispersive channel model1

r t u h t n tc( ) = ∗ ( ) + ( ),  (1)

where u t( )  - the transmitted signal, h tc ( )  - the impulse 
response of the channel, n t( )  - AWGN with power spectral 
density N0 2/ .

In essence, we model the dispersive characteristic of the 
channel by the linear filter h tc ( ) . The simplest dispersive 
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channel is the bandlimited channel for which the channel 
impulse response h tc ( ) is that of an ideal lowpass filter. 
This lowpass filtering smears the transmitted signal in time 
causing the effect of a symbol to spread to adjacent symbols 
when a sequence of symbols are transmitted. The resulting 
intersymbol interference (ISI) degrades the error performa-
nce of the communication system. There are two major ways 
to mitigate the detrimental effect of ISI. The first method is 
to design bandlimited transmission pulses which minimize 
the the effect of ISI. We will describe such a design for the 
simple case of bandlimited channels. The ISI free pulses obt-
ained are called the Nyquist pulses. The second method is to 
filter the received signal to cancel the ISI introduced by the 
channel impulse response. This approach is generally known 
as equalization.

Let us consider the transmission sequence of symbols
b u t nTn

n

−( )∑  [1]. Based on the dispersive channel model, 

the received signal is given by

r t b v t nT n tn
n

( ) = −( )+ ( )∑ , (2)

where v t u h tc( ) = ( )*  is the received waveform for a 
symbol.

If a single symbol, say the symbol b0 , is transmitted, the 
optimal demodulator is the one that employs the matched 
filter, i.e., we can pass the received signal through the mat-
ched filter v t v t( ) = −( ) , and then sample the matched filter 
output at time t = 0  to obtain the decision statistic. When 
a sequence of symbols are transmitted, we can still employ 
this matched filter to perform demodulation. A reasonable 
strategy is to sample the matched filter output at t mT=  to 
obtain the decision statistic for the symbol bm . At t mT= , 
the output of the matched filter is [1]

z b v v mT nT n

b b mT nT n

m n m
n

m n
n m

m

= −( ) + =

= + ∗ −( ) +

∑

∑
≠

*

,



ν ν ν2
 (3)

where nm  is a zero-mean Gaussian random variable with 
variance N v0

2
2/ .

The first term in (3) is the desired signal contribution due 
to the symbol bm and the second term contains contributions 
from the other symbols. These unwanted contributions from 
other symbols are called intersymbol interference (ISI).

3. The ISI Channel Model

A model for linear ISI channels is shown in Fig. 1. In this 
model, xk is scaled by p to form xp k, so that ε εx xp

p= *
2

. 
The additive noise is white Gaussian, although it can be 
included

Fig. 1. The ISI-Channel model

by transforming the correlated-Gaussian-noise chann-
el into an equivalent white Gaussian noise channel using 
the methods in the previous subsection and illustrated in 
Fig. 2a,b.

The channel output y tp ( ) is passed through a matched 
filter to generate y t( ) . Then, y t( )  is sampled at the symbol 
rate and subsequently processed by a discrete time receiver. 
The following theorem illustrates that there is no loss in 
performance that is incurred via the matched-filter/sampler 
combination [2].

The discrete-time signal samples yk y kT= ( )  in Fig. 3. 
are sufficient to represent the continuous-time ISI-model 
channel output y t( ), if 0 < < ∞p .

φ φp k pt t kT, ,( )= −( )
∆

 (4)

where φp k k
t, ,

( ){ } ∈ −∞ ∞( )
 is a linearly independent set of 

functions.

a)

b)
Fig. 2. White Noise Equivalent Channel

Fig. 3. Equivalent diagram of ISI-channel model matched-
filter/sampler

The set φp k k
t, ,

( ){ } ∈ −∞ ∞( )
is related to a set of orthogonal 

basis functions φp k k
t, ,

( ){ } ∈ −∞ ∞( )
by an invertible transformat-

ion Γ (use Gram-Schmidt an infinite number of times). The 
transformation and its inverse are written:
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φ φp k k p k k
t t, , , ,

( ){ } = ( ){ }( )∈ −∞ ∞( ) ∈ −∞ ∞( )
Γ ;

φ φp k k p k k
t t, , , ,

,( ){ } = ( ){ }( )∈ −∞ ∞( )
−

∈ −∞ ∞( )
Γ 1

 (5)

where Γ is the invertible transformation. In Fig. 3, the 
transformation outputs are the filter samples y kT( ) . The 
infinite set of filters φp k k

t,
*

,
−( ){ } ∈ −∞ ∞( )

 followed by Γ−1  is equi-

valent to an infinite set of matched filters to φp k k
t,

*

,
−( ){ } ∈ −∞ ∞( )

. 

Equation (4) is equivalent a single matched filter φp t* −( ) , 
whose output is sampled at t kT=  to produce y kT( ) . Since 
the set φp k k

t, ,
−( ){ } ∈ −∞ ∞( )

 is orthogonal, the set of sampled 

filter outputs in Fig. 3. are sufficient to represent y tp ( ) , the 
sampled matched filter output y(kT ) is a sufficient represe-
ntation of the ISI-channel output yp(t) [2]

y t p x q t kT n t tk p p
k

( ) = −( )+ ( ) −( )∑ * * *φ . (6)

4. Adaptive Equalizers

Digital communication LTE using MIMO, has recently 
emerged as one of the most Significant technical breakth-
roughs in modern wireless communications. The effect of 
fading and interference always causes an issue for signal 
recovery in wireless communication. This can be combated 
with application of an equalizer. Equalization compensates 
ISI created by multipath signal prorogation within time 
dispersive channels. Take investigate the performance cha-
racteristics of two types of equalizers namely, Zero Forcing 
(ZF) and Minimum Mean Square Error Estimator (MMSE) 
equalizers for MIMO wireless receiver.

4.1. Zero Forcing Equalizer Mathematics
Zero Forcing Equalizer is a linear equalization algo-

rithm used in communication systems, which inverts the 
frequency response of the channel [3]. This equalizer was 
first proposed by Robert Lucky [4, 5]. The Zero-Forcing 
Equalizer applies the inverse of the channel to the rece-
ived signal, to restore the signal before the channel. The 
name Zero Forcing corresponds to bringing down the ISI 
to zero in a noise free case. This will be useful when ISI 
is significant compared to noise. For a channel with fre-
quency response F f( )  the zero forcing equalizer C f( )  is 
constructed such that C f F f( ) = ( )1/ .Thus the combination 
of channel and equalizer gives a flat frequency response 
and linear phase F f C f( ) ( ) =* .1

If the channel response for a particular channel is H(s) 
then the input signal is multiplied by the reciprocal of its 
value. This is intended to remove the effect of channel from 
the received signal, in particular the Intersymbol Interf-
erence (ISI). For simplicity let us consider a 2x2 MIMO 
channel. Model of such system can be represented in matrix 
form

y

y

h h

h h
s

s

n

n
1

2

11 1 2

2 1 2 2

1

2

1

2
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, ,

, ,

 (7)

or

Y HS N= + . (8)

To solve equation (8) for s , we need to find a matrix W 
which satisfies WH I= . The Zero Forcing (ZF) detector for 
meeting this constraint is given by 

W H H HH H= ( )−1
, (9)

where W  - Equalization Matrix, H  - Channel Matrix.
This matrix is known as the Pseudo inverse for a general 

m x n matrix, where

H H
h h
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 (10)

Note that the off diagonal elements in the matrix H HH  
are not zero, because the off diagonal elements are non-zero 
in values. Zero forcing equalizer tries to null out the inte-
rfering terms when performing the equalization, i.e. when 
solving for s1  the interference from s2  is tried to be nulled 
and vice versa. While doing so, there can be an amplific-
ation of noise. Hence the Zero forcing equalizer is not the 
best possible equalizer. However, it is simple and reasonably 
easy to implement. For Binary phase-shift keying (BPSK) 
Modulation in fading channel, the Bit Error Rate (BER) is 
defined as

P
E N

E Nb
b

b

= −
( )

( ) +













1
2

1
1

0

0

, (11)

where Pb  - Bit Error Rate, E Nb 0 - Signal to noise 
Ratio.

The algorithm ZF can work without knowing the chan-
nel in form of the triangular matrix Hu . We identify G Hu

H= . 
For this algorithm on the other hand we have to find the 
smallest eigenvalue of H H H H H Hu u

H
u u

H
u u

H( ) + ( )− −1 1
in order to 

find the upper step-size bound which is practically impossi-
ble without knowing the matrix:

S
E g g

g
rel k

ZF k

ZF

, =
− 

2

2

2

2
; (12)

S
E H f f

H f
rel k

u
H

ZF k

u
H

ZF

, =
−( )

2

2

2

2 , (13)

where f k
  is equalizer estimate.

4.2. Minimum Mean Square Error Estimator
A minimum mean square error (MMSE) estimator des-

cribes the approach which minimizes the mean square error 
(MSE), which is a common measure of estimator quality. 
The classical adaptive MMSE equalizer as it is much easier 
to analyze than its ZF counterpart. Such algorithm is also 
known under the name Least-Mean-Square (LMS) algorit-
hm for equalization [6]. The main feature of MMSE equal-
izer is that it does not usually eliminate ISI completely but, 
minimizes the total power of the noise and ISI components 
in the output. Let s  be an unknown random variable, and let 
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r  be a known random variable. An estimator S r^ ( )  is any 
function of the measurement r , and its mean square error is 
given by

MSE E S S= −( ){ }^ 2 , (14)

where the expectation is taken over both s  and r .
The MMSE estimator is then defined as the estimator 

achieving minimal MSE. In many cases, it is not possible to 
determine a closed form for the MMSE estimator. In these 
cases, one possibility is to seek the technique minimizing 
the MSE within a particular class, such as the class of linear 
estimators. The linear MMSE estimator is the estimator 
achieving minimum MSE among all estimators of the form
AR b+ . If the measurement R is a random vector, A  is a 
matrix and b is a vector.

Let us now try to understand the math for extracting the 
two symbols which interfered with each other. The equation 
can be represented in matrix notation as follows

y
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, ,

 (15)

or

y Hs n= + . (16)

The Minimum Mean Square Error (MMSE) approach 
tries to find a coefficient W  which minimizes the Criterion

E W Wr s r s

H

− −[ ][ ]{ } ,

where W - Equalization Matrix, H - Channel Matrix, n
- Channel noise, y - Received signal.

To solve (16) for s , we need to find a matrix W  wh-
ich satisfies WH I= . The Minimum Mean Square Error 
(MMSE) detector for meeting this constraint is given by

W H H N IH HH

= +( )−

0

1
. (17)

This matrix is known as the pseudo inverse for a general 
m x n matrix 
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 (18)

When comparing the (18) to the (19) in Zero Forcing 
equalizer, apart from N I0  the term in both equations are 
comparable. In fact, when the noise term is zero, the MMSE 
equalizer reduces to Zero Forcing equalizer.

In first experiment it is investigated the classical ada-
ptive MMSE equalizer for channel h  [6]. Fig. 8. depicts 
the l2 norm of the parameter error vector (relative system 
distance) over iteration numbers for various normalized 
step-sizes α µ= k kr 2

2
 for a time-variant step-size µk  and for 

the condition below 

0
2

2

2< <µk

kr
. (19)

As expected the stability is guaranteed for 0 2< <α . The 
learning behavior is very much as expected. If we compare 
the following theoretically derived values:

S
E f f

f
rel k

MMSE k

MMSE

, =
− 

2

2

2

2
 =

−
αγ σ

α
s vk

MMSEf

2
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22
1

; (20)

S
v

f
Nrel

s MMSE

MMSE

,∞ =
−

+










αγ
α2

2

2

2

2 0 , (21)

where fMMSE  is MMSE solution, f k
 is equalizer estimate,

VMMSE  is MMSE modeling noise.

5. The Simulation Results

The results of simulated the Bit Error Rate (BER) for 
Binary phase-shift keying (BPSK) Modulation in fading ch-
annel with 2x2 MIMO and ZF equalizer is shown on Fig. 4.

Fig. 4. BER for BPSK modulation with 2x2 MIMO and ZF 
equalizer

In the simulation result of the adaptive ZF equalizer it 
again employed the normalized step-size α µ µ= k k  with 
µk kS= 1

2

2
 to speed up convergence. Note that due to the 

QPSK symbols for Sk the norm is constant µ = 1 M  and the 
algorithm can also be interpreted as a fixed step-size algori-
thm [6] it’s shown on Fig. 5.

Fig. 5. ZF equalizer with normalized step-size on channel h
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The result is shown in Fig. 6. The stability bound varies 
with the noise and in our example for noise variances larger 
than one, the algorithm indeed became unstable.

Fig. 6. ZF equalizer with fixed normalized step-size on 
channel when varying additive noise variance No

The results of simulation Bit Error Rate of BPSK Mo-
dulation in fading channel with 2x2 MIMO and MMSE 
equalizer is shown on Fig. 7.

Fig. 7. BER for BPSK modulation with 2x2 MIMO and MMSE 
equalizer

The result of simulations MMSE equalizer does not di-
fferentiate between various channels and behaves perfectly 
robust.

The step-size bound for α = 2 is tight and holds for vari-
ous sequences independent of the channel and the noise, it’s 
shown in Fig. 8.

Fig. 8. MMSE equalizer with normalized step-size on channel h

Conclusions

The adaptive MMSE equalizer has shown to be robust, 
guaranteeing stability for a fixed range of step-sizes indep-
endent of additive noise or the channel itself. Novel criteria 
have been found to ensure convergence of a well-known 
adaptive ZF receiver.

Different to the general belief these criteria strongly 
depend on the channel that is to be equalized as well as on 
the additive noise that is present. The feedback delay and the 
time variability of the channel are factors that need to be 
considered both in the design of a rate adaptive system and 
in the choice of MIMO.
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Abstract
The given work is devoted to the analysis of using method of equalization in LTE systems with different MIMO 

configuration for purpose increasing characteristics quality of communication. Although equalizers promise to 
improve the signal to noise energy ratio, zero forcing (ZF) equalizers are derived classically in a deterministic setti-
ng minimizing intersymbol interference, while minimum mean square error (MMSE) equalizer solutions are derived 
in a stochastic context based on quadratic Wiener cost functions. The problem of InterSymbol Interference (ISI) 
and the basic concept of transversal equalizers are introduced followed by a simplified description of some practi-
cal adaptive equalizer structures and their properties. Adaptive equalizers compensate for signal distortion attrib-
uted to intersymbol interference, which is caused by multipath within time-dispersive channels
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