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gral equation that includes the correlation functions ( )XXR τ  
and ( )XYR τ  of the input ( )X τ  and output ( )Y τ  signals. It 
allows us to obtain the dynamic characteristics of an object 
without disturbing its normal operation mode. Therefore, 
statistical methods are widely used for determining the 
dynamic characteristics of objects during their normal op-
eration [6–8].

However, the application of statistical methods for build-
ing mathematical models of real-life industrial objects pres-
ents the following difficulty. Interferences and noises are 
imposed upon the useful signal (that has to be obtained with 
the least possible amount of distortion), thus hindering the 
calculation of the estimates of their static characteristics.

One should take into account that interferences and 
noises are also represented by random functions ( )ε τ . The 
reasons behind the formation of interferences and noises can 
be very diverse [6–9]:

a) thermal noises;
b) noises caused by other machinery and equipment op-

erating nearby;
c) noises caused by power supply sources;
d) noised caused by self-oscillations generated in feed-

back circuits, etc.
For instance, for deep-water offshore platforms, noises 

are caused by waves, wind, etc. Another example is the radio 
detector of an antenna under a wind load, which also rep-
resents a random time function.

1. Introduction

It is known [1–6] that one of the main challenges in 
solving problems of automated control of industrial objects 
is establishing the quantitative interrelations between tech-
nological parameters characterizing the processes in those 
objects both in statics and dynamics. Such interrelations are 
called static and dynamic characteristics, respectively. These 
characteristics can be determined from differential equations 
of control objects [1–6]. However, those differential equations 
are often unknown, which is why statistical methods are 
widely used – they make it possible to determine dynamic 
characteristics during normal operation of objects [1–6]. In 
practice, such dynamic characteristics as impulsive admit-
tance ( )k t  and transfer functions ( )sϕ  of linear systems are 
determined by applying to their input artificial stimulation 
of a certain type (impulse, step function, sinusoids) and mea-
suring the response. However, in that case, random uncon-
trollable disturbances are superimposed on these impacts. As 
a result, it proves impossible to precisely determine dynamic 
characteristics based on typical input signals [6–8].

2. Analysis of published data and problem statement

The statistical correlation method for determining these 
dynamic characteristics is based on the solution of an inte-
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In view of the above, many algorithms and technologies 
of filtration have been proposed with the aim of eliminat-
ing the effects of the noise on the result of identification of 
statistical models of the dynamics of control objects over 
a long period of time [8–10]. The ones that allow for elim-
inating the error of the noises caused by external factors 
have found a wide application [10–12]. However, in real-life 
objects, noises of technological processes form under the 
influence of various factors. Some of them reflect indirectly 
certain processes that cause defects in the objects under 
investigation. For this reason, the range of the noise spec-
trum frequently overlaps the spectrum of the useful signal. 
Besides, the spectra of the noise and the useful signal in 
real-life technological parameters are not strictly stable. 
Therefore, filtration does not always yield the desired re-
sult. Sometimes, the spectrum of the useful signal is even 
distorted from the filtration [11, 12].

Taking into account the above, the paper considers one 
possible option of creating alternative digital methods and 
technologies for eliminating the error induced by noise 
during the formation of correlation matrices in the process 
of identification of the dynamic model of industrial objects.

As stated above [6, 7], the main dynamic characteristics 
of linear objects are their impulsive admittance ( )k t  and 
transfer ( )sϕ  functions. The differential equations of those 
objects are often unknown, and the methods based on the 
application of artificial stimulation are inapplicable, usually 
due to the following reasons:

– it is undesirable or impossible to apply a special kind of 
stimulation to the object’s input, as it disturbs the 
normal running of the process;

– random uncontrollable disturbances are im-
posed on that stimulation, and their effects are im-
possible to separate from the effect of the artificial 
stimulation.

In this regard, in creating systems for automat-
ed control of continuous stochastic processes, the 
statistical method is widely used, allowing one to 
determine the dynamic characteristics of complex 
objects during their normal operation. In practice, the solving 
of this problem comes to solving the problem of identification 
of the mathematical model of object’s dynamics by methods of 
theory of stochastic processes [6–8, 13, 14]. Object’s state in 
the general case is described by ma-
trix equations of the following type:

( )XYR m ≈


( )XXR m


( )W m


, 

( )0, t, 2 t,..., N 1 tm = ∆ ∆ − ∆ , (1)

where

( )XYR m ≈


( ) ( ) ( )
T

XY XY XYR 0 R t R N 1 t  ∆ − ∆   ,  (3)

( )W m ≈


( ) ( ) ( )( ) T

W 0 W t W N 1 t ∆ − ∆  ,

( )XXR m ≈ ( ) ( )( )
N

k 1

1
X i t X i t

N =

∆ + m ∆∑ ,

( )XYR m ≈ ( ) ( )( )
N

k 1

1
X i t Y i t

N =

∆ + m ∆∑ . 

( )XXR m


 is the square symmetric matrix of the autocorrela-
tion functions with dimension N N×  of the centered input 
signal ( )X t ; ( )XYR m



 is the column vector of the cross-cor-
relation functions between the input ( )X t  and the output 

( )Y t , ( )W m


 is the column vector of the impulsive admit-
tance functions.

For equation (1), matrices (2), (3) are formed from the 
estimates of the useful signals ( )X t  and ( )Y t . 

As previously stated, the real-life technological param-
eters ( )g t∆  and ( )i tη ∆  are the sum of the useful signals 

( )X t , ( )Y t  and noises ( )i t ,ε ∆ ( )i tη ∆ , i. e.

( ) ( ) ( )
( ) ( ) ( )

g t X t t ,

t Y t t .

= + ε

η = + φ   

Therefore, matrix equation (1) and the correlation matrix 
of real technological processes can be represented as follows:

( ) ( ) ( ) ( )g ggR R W , 0, t, 2 t, , N 1 tη m = m m m = ∆ ∆ − ∆
  

  

      
 ( )gR η m ≈


( ) ( ) ( )
T

g g gR 0 R t R N 1 tη η η
  ∆ − ∆   , (5)

where

( )g ggD R 0≈ , Dη ≈ ( )gR 0η  are the estimates of 
variances of the signals ( )g t , ( )tη  at 0m = ;  

gm , mη  are the mathematical expectations of 
( )g t , ( )tη .

It is impossible to calculate the estimates 
of the correlation functions ( )XXR m , ( )XYR m  of 
the useful signals ( )X t  and ( )tη  of the tech-
nological parameters ( )g t , ( )tη  in practice. 
For this reason, correlation matrices (4), (5) 
are formed based on the estimates of ( )ggR m ,  

( )gR η m  correlation functions of the noisy signals 
( )g t , ( )tη .

However, obvious inequalities emerge in this case:

( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

XX XX XX

XX XX XX

XX

XX XX XX

R 0 R t R N 1 t

R t R 0 R N 2 t

R , (2)

R N 1 t R N 2 t R 0

 ∆ − ∆ 
 ∆ − ∆ 

m ≈

   − ∆ − ∆   







   



( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

gg gg gg

gg gg gg

gg

gg gg gg

R 0 R t R N 1 t

R t R 0 R N 2 t

R , (4)

R N 1 t R N 2 t R 0

 ∆ − ∆ 
 ∆ − ∆ 

m ≈

   − ∆ − ∆   







   



( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( )( )( )
( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( )( )( )

N N

gg
i 1 i 1

N N

g
i 1 i 1

1 1
R g i t g i t X i t i t X i t i t ,

N N
(6)

1 1
R g i t i t Y i t i t Y i t i t ,

N N

= =

η
= =


m ≈ ∆ + m ∆ = ∆ + ε ∆ + m ∆ + ε + m ∆ 


m ≈ ∆ η + m ∆ = ∆ + ε ∆ + m ∆ + φ + m ∆ 

∑ ∑

∑ ∑
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( ) ( )
( ) ( )

XX gg

XY g

R R ,

R R ,η

m ¹ m 


m ¹ m 

due to which the following inequalities take place

( ) ( )
( ) ( )

XX gg

XY g

R R ,

R R .φ

m ¹ m 


m ¹ m 

 

 
  (7)

As a result, in practice, adequacy of identification of the 
model of the dynamics (1) of technological processes fails in 
many cases.

At the same time, in many real-life industrial objects, 
various sensors are used, in which 
signals often represent various 
physical quantities (such as tem-
perature, pressure, displacement, 
vibration, etc.). In such cases, the 
estimates of correlation function 
of the signals ( )X t , ( )Y t  are re-
duced to dimensionless values [8]. 
To that end, the estimates of the 
normalized auto- and cross-cor-
relation functions of the useful sig-
nals ( )X t , ( )Y t  are calculated 
from formulas [4, 6]:

( ) ( )
( ) ( )

XX XX X

XY XY X Y

r R / D ,

r R / D D ,

m ≈ m 


m ≈ m 
 

where XD ≈ ( )XXR 0 , YD ≈ ( )YYR 0  – where ( )XXR m , ( )XYR m  
are the estimates of the auto- and cross-correlation func- 
tions of the signals ( )X t , ( )Y t  at 0m = , tm = ∆ , 2 tm = ∆ , 

3 tm = ∆ , … . 
In this case, the normalized correlation matrices of the 

useful signals are as follows:

( ) ( )
( )

( )
( )

( )
( )

T

XYXY XY
XY

X Y X Y X Y

R N 1 tR 0 R t
r

D D D D D D

  − ∆∆   m ≈  
  



 . (9)

Naturally, matrix equation (1) for this case can be repre-
sented in the following form:

( ) ( ) ( )XY XXr r Wm ≈ m m


 

, 0m = , t∆ , 2 t∆ ,  , ( )N 1 t− ∆ ,

where ( )XXr m


 is the square symmetric matrix of the normal-
ized autocorrelation functions with dimension N N×  of the 
centered input signal ( )X t ; ( )XYr m



 is the column vector of 

the normalized cross-correlation functions between the in-
put ( )X t  and the output ( )Y t , ( )W m



 is the column vector 
of the impulsive admittance functions.

It is known that the normalized auto- and cross-correla-
tion functions ( )ggr m , ( )gr η m  of the noisy signals consisting 
of the sum of the random useful signals ( )X t , ( )Y t  and 
the corresponding noises ( )tε , ( )tφ  are calculated from the 
following formulas:

( ) ( )
( ) ( )

gg gg g

g g g

r R / D ,

r R / D D .η η η

m ≈ m 


m ≈ m 
   (10)

The corresponding normalized correlation matrices of the 
noisy signals ( )g t , ( )tη  are represented in the following form:

( )gr φ m ≈


( )
( )

( )
( )

( )
( )

T

gg g

g g g

R N 1 tR 0 R t

D D D D D D

φφ φ

η η η

  − ∆∆   
 
  

 .(12)

Comparing matrices (8) and (11), substantial difference 
between their respective elements are obvious, i. e.

( ) ( )
( ) ( )

gg XX

g XY

r r ,

r r ,η

m ¹ m 


m ¹ m 
     

therefore, the following inequalities take place.

( ) ( )
( ) ( )

gg XX

g XY

r r ,

r r .η

m ¹ m 


m ¹ m 









  (13)

From inequalities (7) and (13), it follows that 
correlation matrices (4), (5) and (11), (12) differ 
from original matrices (2), (3) and (8), (9). There-
fore, in many cases, ensuring adequacy of identifi-
cation of the dynamic model of an object by means 
of these matrices in actual practice is impossible 
[11]. Accordingly, to ensure adequate identifica-
tion of matrix models of the dynamics of industrial 
objects, it is necessary to develop technologies for 
forming the robust correlation matrices ( )R

ggR m


, 
( )R

gR η m


, ( )R
ggr ,m


( )R
gr η m


, ensuring that the following 
equalities hold: 

              

( ) ( )
( ) ( )

( ) ( )
( ) ( )

R
gg XX

R
g XY

R
gg XX

R
g XY

R R ,

R R ,

r r ,

r r .

η

η

m ≈ m

m ≈ m 


m ≈ m 

m ≈ m 

















    (14)

3. Purpose and objectives of the study

The key purpose of this paper is to develop algorithms 
that allow for correcting the elements of the correlation 

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

XXXX XX

X X X

XXXX XX

X X X
XX

XX XX XX

X X X

R N 1 tR 0 R t
...

D D D

R N 2 tR t R 0
...

D D Dr , (8)
...

R N 1 t R N 2 t R 0

D D D

 − ∆∆  

 − ∆∆  

m ≈

   − ∆ − ∆   



  



( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

gggg gg

g g g

gggg gg

gg g g g

gg gg gg

g g g

R N 1 tR 0 R t

D D D

R N 2 tR t R 0
r , (11)D D D

R N 1 t R N 2 t R 0

D D D

 − ∆∆  

 − ∆∆  
m ≈

   − ∆ − ∆   
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matrices of technological processes with the purpose of re-
ducing them to the matrices of useful signals.

In accordance 
with the set goal the 
following research 
objectives are iden-
tified:

1. To avoid errors in the elements of correlation matrices, 
which emerge during the application of traditional methods 
of their formation due to the effects of the noise of techno-
logical parameters, and to ensure the robustness of the esti-
mates of the elements of the correlation matrices.

2. To create technologies of noise analysis, with regard 
to the effects of the noise on the estimates of elements of the 
correlation matrices as a consequence of the noise emerging in 
real-life objects at the onset of various faults during operation.

3. To avoid the effects of the additional errors emerging 
during the normalization of the elements of correlation 
matrices of dynamics models, because the input and output 
technological parameters in many real-life industrial objects 
are physical quantities, such as consumption, pressure, tem-
perature, speed, etc.

4. To create generalized robust technologies that enable 
one, with regard to all of the above, to reduce the correlation 
matrices of noise technological processes to the matrices of 
their useful signal, both in the absence of a correlation between 
the useful signal and the noise and in the presence of such.

4. Technologies for forming the robust correlation matrices 
in the absence of a correlation between X(t) and ε(t)

The research in [11] has demonstrated that the condi-
tions of stationarity and normalcy of distribution law hold 
for technological parameters of many industrial objects.

When the correlation between the useful signals ( )X t , 
( )Y t  and the noise ( )tε  is zero, i. e.

( ) ( )( )

( ) ( )( )

N

i 1

N

i 1

1
X i t i t 0,

N

1
Y i t i t 0,

N

=

=


∆ ε + µ ∆ ≈ 


∆ ε + µ ∆ ≈ 

∑

∑
   (15)

expression (6) for calculating the estimates of the auto- and 
cross-correlation functions can be represented as follows:

( )ggR µ ≈ ( ) ( )( )
N

k 1

1
g i t g i t

N =

∆ + µ ∆ ≈∑
( )
( )

XX

XX

R 0 D at 0

R at 0

ε + µ =


µ µ ≠

,
 (16)

                    ,

Taking into account expression (16), the correlation ma-
trix of the noisy signals ( )g t , ( )

g g
R µ

 



 from formula (4) can 
be transformed as follows:

Based on expressions (17), correlation matrix (5) can 
also be represented as follows:

Experimental research has demonstrated that for 
those industrial objects, for which conditions (15) are 
met by determining the estimates of the elements of 

( )gR η µ from expression (17), it is possible to form the 
robust matrices 

( )R
gR η µ


 

from formula (19), which would match the correlation 
matrix ( )XYR µ



 of the useful signals ( )X t , ( )Y t . At the 
same time, it follows from expression (18) that the cor-
relation matrix ( )ggR

→
µ  of the noisy input signal ( )g t  

differs from the correlation matrix 

( )XXR µ


 

(2) of the useful signal ( )X t  in the diagonal elements 
that represent the sum of estimates of the correlation 
function of the useful signals ( )XXR 0  and the noise vari-
ance Dε . 

It is obvious that by eliminating the errors of noise from 
the diagonal elements of matrix (18), it can be reduced to 
the form similar to matrix (2), whose elements contain no 
noise-induced error. Therefore, to form such matrices for 
real-life objects, it is necessary to determine the estimates of 
the noise variance Dε  of the noisy technological parameters 
[16]. In this case it is possible to form a matrix, for which 
equalities (13), (14) will hold, i. e.

( ) ( )
( ) ( )

R
gg XX

R
g XY

R R ,

R R .η

µ ≈ µ 


µ ≈ µ 








   

However, as discussed, solving identification problems for 
real-life objects often requires normalizing the estimates of 
correlation functions. It is clear that given expressions (16), 
formula (10) for determining the normalized estimate of the 
autocorrelation function can be transformed as follows:

( )ggr 0µ ≠ ≈
( )gg

g

R 0

D Dε

µ ≠
−

.    (20)

Naturally, the formula for calculating the estimates of 
normalized cross-correlation functions can also be repre-
sented as follows:

( )gr η µ ≈
( )

( )( )
g

g

R

D D D D

η

εε η φφ

µ

− −
.     (21)

( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

gg XX gg XX gg XX

gg XX gg XX gg XX
R
gg

gg XX gg XX gg XX

R 0 D R (0) R t R ( t) R N 1 t R N 1 t

R t R ( t) R 0 D R (0) R N 2 t R N 2 t

R . (18)

R N 1 t R N 1 t R N 2 t R N 2 t R 0 D R (0)

ε

ε

ε

   − ≈ ∆ ≈ ∆ − ∆ ≈ − ∆   
   ∆ ≈ ∆ − ≈ − ∆ ≈ − ∆   

µ ≈

       − ∆ ≈ − ∆ − ∆ ≈ − ∆ − ≈       







   



( ) ( ) ( ) ( ) ( ) ( ) ( )
T

R
g g XY g XY g XY XYR R 0 R (0) R t R t R N 1 t R N 1 t R . (19)η η η η

    µ ≈ ≈ ∆ ≈ ∆ − ∆ ≈ − ∆ ≈ µ    






( ) ( ) ( )( ) ( ) ( )

( )( ) ( )( ) ( )

N N

g
k 1 k 1

XY

1 1
R g i t i t X i t k t

N N

Y i t i t R . (17)

η
= =

 µ ≈ ∆ η + µ ∆ ≈ ∆ + ε ∆ ×  

 × + µ ∆ + φ + µ ∆ ≈ µ  

∑ ∑
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Therefore, normalized correlation matrix (11) of the noisy signals ( )g i t∆  can be represented as follows:

The matrix of normalized cross-correlation function can be formed in a similar manner:

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

gg

gg XXgg XX

g g

gg XXgg XX

g g

gg XX gg XX

g g

r

R N 1 t R N 1 tR t R ( t)
1 ...

D D D D

R N 2 t R N 2 tR t R ( t)
1 ... . (22)

D D D D

R N 1 t R N 1 t R N 2 t R N 2 t
1

D D D D

ε ε

ε ε

ε ε

µ ≈

   − ∆ ≈ − ∆∆ ≈ ∆    
− −

   − ∆ ≈ − ∆∆ ≈ ∆    ≈
− −

       − ∆ ≈ − ∆ − ∆ ≈ − ∆       
− −



   



( )

( )
( )( )

( )
( )( )

( ) ( )
( )( )

g

T

g XYg XY g XY

g g g

r

R N 1 t R N 1 tR (0) R 0 R ( t) R t
. (23)

D D D D D D D D D D D D

η

ηη η

ε η φ ε η φ ε η φ

µ ≈

    − ∆ ≈ − ∆≈ ∆ ≈ ∆    ≈  
− − − − − −  





( ) ( ) ( )
( )( )

( ) ( )
( )( )

( ) ( )
( )( )

T

g XYg XY g XYR
g

g g g

R N 1 t R N 1 tR 0 R 0 R t R t
r (27)

D D D D D D D D D D D D

ηη η
η

ε η ϕ ε η ϕ ε η ϕ

    − ∆ ≈ − ∆≈ ∆ ≈ ∆    µ ≈  
− − − − − −  





( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

gg XXgg XX

g g

gg XXgg XX

gg g g

gg XX gg XX

g g

R N 1 t R N 1 tR ( t) R t
1

D D D D

R N 2 t R N 2 tR ( t) R t
1

r , (26)D D D D

.... ...

R N 1 t R N 1 t R N 2 t R N 2 t
1

D D D D

ε ε

ε ε

ε ε

   − ∆ ≈ − ∆∆ ≈ ∆    
− −

   − ∆ ≈ − ∆∆ ≈ ∆    
µ ≈ − −

       − ∆ ≈ − ∆ − ∆ ≈ − ∆       
− −







 



can be formed.

Thus, after the correction of errors of the noise, the diago-
nal elements of the normalized correlation matrix ( )ggr µ



 of the 
noisy signals ( )g t  match the diagonal elements of the normal-
ized correlation matrix ( )XXr µ



 of the useful signals 
( )X t  and are equal to one. However, the other ele-

ments of the normalized correlation matrix ( )ggr µ


 
of the input signal, as well as all elements of the 
normalized cross-correlation matrix ( )gr η µ



 of the 
noisy input and output signals contain in the radical 
expression of the denominator the values of varianc-
es XD , YD  of the useful signals ( )X t , ( )Y t  and the 
values of variances Dε , Dφ  of the noises ( )tε , ( )tφ .  
It follows that normalization leads to additional errors in the 
elements of correlation matrices. It is obvious that by elim-
inating said errors with the use of formulas (20), (21), nor-
malized correlation matrices (22), (23) equivalent to matrices 
(8), (9) of the useful signals [15] can be formed. However, 
that requires determining the estimates of the noise variances 

Dε  and Dφ of the technological parameters ( )g t , ( )tη . The 
research has demonstrated that it is appropriate to use expres-
sions [11, 12] for that purpose

which allow for calculating the estimates Dε, Dφ  of the vari-
ances of the noises ( )tε , ( )tφ  of the noisy input ( )g t  and output 

( )tη  signals [11, 12, 16]. At that, taking into account formula 
(16) and using the obtained estimates ( ) ( )gg XXR t R t ,∆ ≈ ∆  

( ) ( )gg XXR 2 t R 2 t∆ ≈ ∆ ,…, ( ) ( )gg XXR [ N 1 t] R [ N 1 t]− ∆ ≈ − ∆  robust 
normalized correlation matrices:

( ) ( ) ( ) ( )( ) ( ) ( )( )
N

i 1

1
D g i t g i t 2g i t g i 1 t g i t g i 2 t , (24)

Nε
=

 ≈ ∆ ∆ − ∆ + ∆ + ∆ + ∆  
∑

( ) ( ) ( ) ( ) ( ) ( )( )
N

i 1

1
D i t i t 2 i t (i 1) t i t i 2 t , (25)

Nφ
=

 ≈ η ∆ η ∆ − η ∆ η + ∆ + η ∆ η + ∆  
∑
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Comparing matrices (26), (27) with matrices (8), (9), 
one can see that the effects of the noise-induced errors on the 
elements have been eliminated and matrices (26), (27) can 
be regarded as equivalent to matrices (8), (9) of the useful 
signals. Therefore, in the absence of a correlation between 

( )X t  and ( )tε , ( )Y t  and ( )tφ  one can assume that the fol-
lowing equalities take place between those matrices:

( ) ( )
( ) ( )

R
gg XX

R
g XY

r r ,

r r .η

m ≈ m 


m ≈ m 









5. Technology for forming the correlation matrix in the 
presence of a correlation between the useful signal and 

the noise

It should be noted that it is characteristic of real-life 
industrial objects to go into the latent period of origin of var-
ious defects, such as wear, microcracks, carbon deposition, 
fatigue strain, etc. [12, 15–18]. It usually affects the signals 
received from the corresponding sensors as noise, which in 
most cases correlates with the useful signal ( )X t [15–19]. 
For this reason, the sum noise in such cases forms from the 
noise ( )1 tε , which is caused by the external factors and the 
noise ( )2 tε  that emerge as a result of origin of various de-
fects. The variance of the noisy signal in that case takes the 
following form [12, 16, 19]:

( ) ( )
N

2
gg

i 1

N N
2

i 1 i 1

N
2

XX X
i 1

1
R 0 g i t

N

1 1
X (i t) 2 X(i t) (i t)

N N

1
(i t) R (0) 2R (0) D .

N

=

= =

ε εε
=

≈ ∆ ≈

≈ ∆ + ∆ ε ∆ +

+ ε ∆ ≈ + +

∑

∑ ∑

∑
The sum noise 

(1 2(i t) i t) (i t)ε ∆ = ε ∆ + ε ∆   

has a correlation with the useful signal X(t)  and its vari-
ance Dε  is determined from the expression

XD 2R (0) Dε ε εε= + ,    

where XR (0)ε  is the cross-correlation function between the 
useful signal X(t)  and the noise (i t)ε ∆ , Dεε  is the estimate 
of the variance of the noise ( )1 i tε ∆ .

Therefore, in that case, the variance of the sum noise Dε  
represents the sum of the variance Dεε  of the noise ( )1 i tε ∆ , 
which is caused by external factors and the cross-correlation 
function XR (0)ε  between the useful signal X(t)  and the 
noise 2(i t)ε ∆ , which is caused by various processes originat-
ing in the object itself [12, 16, 19].

In view of the above, the formula for determining the 
estimate ggR ( )m  can be represented as follows

( ) ( ) ( )
N

gg
i 1

XX

XX X

1
R g i t g (i ) t

N

R (0) D at 0,

R ( ) R ( ) at 0.

=

ε

ε

m ≈ ∆ + m ∆ ≈

+ m =≈  m + m m ¹

∑

It is essential to account for the correlation between 
X(t)  and (t)ε  when forming the correlation matrices, be-
cause in real-life industrial objects a correlation between 
X(t)  and (i t)ε ∆  often takes place even during several sam-
pling intervals, i. e. at tm = ∆ , 2 tm = ∆ , 3 tm = ∆ , … [16, 17].

Therefore, it is necessary to develop technologies for 
determining the estimates of the cross-correlation functions

XR (0)ε , XR ( t)ε ∆ , XR (2 t)ε ∆ , XR (3 t)ε ∆ …. During forming 
the correlation matrices, this will allow for ensuring that 
they are equivalent to the matrix of the useful signals by 
compensating for the errors of the elements ggR (0), ggR ( t)∆ ,  

ggR (2 t)∆ , ggR (3 t)∆ ,… in the corresponding lines and columns 
of the correlation matrices (18), (22). Thus, to ensure that the 
correlation matrices are equivalent to the matrices of the useful 
signals, it is necessary to subtract the value of Dε  from the es-
timates of ( )ggR 0 , and the value of XR ( )ε m  from the values of 
the estimates of ggR ( )m , i. e.

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

R R
gg XX

gg gg X gg X

gg X gg gg X

gg X gg X gg

R R

R 0 D R t R t R N 1 t R N 1 t

R t R t R 0 D R N 2 t R N 2 t

,

R N 1 t R N 1 t R N 2 t R N 2 t R 0 D

ε ε ε

ε ε ε

ε ε ε

m ≈ m ≈

   − ∆ − ∆ − ∆ − − ∆   
   ∆ − ∆ − − ∆ − − ∆   

≈

       − ∆ − − ∆ − ∆ − − ∆ −       

 





   



( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

gg XX

gg Xgg X

g g

gg Xgg X

g g

gg X gg X

g g

r r

R N 1 t R N 1 tR t R t
1

D D D D

R N 2 t R N 2 tR t R t
1 .

D D D D

R N 1 t R N 1 t R N 2 t R N 2 t
1

D D D D

εε

ε ε

εε

ε ε

ε ε

ε ε

m ≈ m ≈

   − ∆ − − ∆∆ − ∆    
− −

   − ∆ − − ∆∆ − ∆    ≈
− −

       − ∆ − − ∆ − ∆ − − ∆       
− −
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In view of the above, alongside with determining the 
estimate Dε , it is also necessary to develop technologies 
for determining the estimate XR ( 0)ε m ¹ . To that end, let 
us first consider one of the possible ways to determine the 
estimate XR ( )ε m  at 0m = , tm = ∆ , 2 t, ...m = ∆  by means of 
the estimates of the relay correlation functions ( )*

ggR 0  of 
the technological parameter g(i t)∆ . With this in mind, 
assuming the following notation

( ) ( )
( )
( )
( )

1 at g i t 0

sgn g i t sgnX i t 0 at g i t 0

1 at g i t 0

 + ∆ >
  ∆ = ∆ = ∆ = 
 − ∆ <  

, 

the formula for determining the estimates of the relay cor-
relation function ( )*

ggR 0  of the noisy signal g(i t)∆  is rep-
resented as follows:

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

N
*
gg

i 1

N

i 1

N

i 1

N N

i 1 i 1

N

i 1

N
* *
XX X

i 1

1
R 0 sgn g i t g i t

N

1
sgn g i t X i t i t

N

1
sgn g i t X i t sgn g i t i t

N

1 1
sgn g i t X i t sgn g i t i t

N N

1
sgnX i t X i t

N

1
sgnX i t i t R 0 R 0 ,

N

=

=

=

= =

=

ε
=

≈ ∆ ∆ ≈

 ≈ ∆ ⋅ ∆ + ε ∆ ≈ 

    ≈ ∆ ⋅ ∆ + ∆ ⋅ε ∆ ≈    

≈ ∆ ∆ + ∆ ε ∆ ≈

≈ ∆ ∆ +

+ ∆ ε ∆ ≈ +

∑

∑

∑

∑ ∑

∑

∑

( ) ( ) ( )* * *
gg XX XR 0 R 0 R 0ε≈ + .  (28)

It is known from [16–19] that the estimate of ( )*
XR 0ε  can 

be determined from the expression

( ) ( ) ( )

( ) ( )( ) ( ) ( )( )

N
*
X

i 1

1
R 0 sgn g i t g i t

N

2sgn g i t g i 1 t sgn g i t g i 2 t .

ε
=

≈ ∆ ∆ −

− ∆ + ∆ + ∆ + ∆ 

∑
  (29)

Expanding the right-hand side of the formula with an 
allowance for expression (28), one can get

( ) ( ) ( ) ( )( )

( ) ( )( )
( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

N N

i 1 i 1

N

i 1

* * *
gg gg gg

* * * * *
X XX XX XX X

1 1
sgn g i t g i t 2sgn g i t g i 1 t

N N

1
sgn g i t g i 2 t

N

R 0 2R t R 2 t

R 0 R 0 2R t R 2 t R 0 .

= =

=

ε ε

∆ ∆ − ∆ + ∆ +   

+ ∆ + ∆ ≈ 

≈ − ∆ + ∆ =

= + − ∆ + ∆ ≈

∑ ∑

∑

Considering that the following equality holds for sta-
tionary technological parameters with the normal distribu-
tion law 

( ) ( ) ( )* * *
XX XX XXR 0 R 2 t 2R t 0+ ∆ − ∆ ≈ ,

it can be assumed that the result of the calculations in formu-
la (29) can be regarded as the estimate ( )*

XR 0ε  [19].

An analysis of expression (29) has demonstrated that 
considering the specifics of determining the estimate *

XR ( )ε m  
of the cross-correlation function between ( )X t  and ( )tε  can 
also be represented as follows: 

( ) ( ) ( )( )

( ) ( )( )

( ) ( )( )

( ) ( ) ( )( ) ( )( )

( ) ( ) ( )( ) ( )( )

( ) ( ) ( )( )

N

X
i 1

N

i 1

N

i 1

N

i 1

N

i 1

1
R t sgn g i t g i 1 t

N

1
2sgn g i t g i 2 t

N

1
sgn g i t g i 3 t

N

1
sgn X i t i t X i 1 t i 1 t

N

1
2sgn X i t i t X i 2 t i 2 t

N

1
X i t i t X i 3 t i

N

ε
=

=

=

=

=

∆ ≈ ∆ + ∆ −′  

 − ∆ + ∆ + 

 + ∆ + ∆ ≈ 

   ≈ ∆ + ε ∆ + ∆ + ε + ∆ −   

 − ∆ + ε ∆ + ∆ + ε + ∆ +   

 + ∆ + ε ∆ + ∆ + ε 

∑

∑

∑

∑

∑

( )( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

N

i 1

* * * * *
XX X X XX

* * * *
X X XX

* * *
X X

3 t

R t R t R t R t 2R 2 t

2R 2 t 2R 2 t 2R 2 t R 3 t

R 3 t R 3 t R 3 t

=

ε ε εε

ε ε εε

ε ε εε

 + ∆ ≈ 
≈ ∆ + ∆ + ∆ + ∆ − ∆ −

− ∆ − ∆ − ∆ + ∆ +

+ ∆ + ∆ + ∆

∑

                                                      
.

Considering that when 

( ) ( )* *
X XR t 0,R 2 t 0ε ε∆ > ∆ ≈ , ( )XR 3 t 0ε ∆ ≈  

and the conditions of stationarity and normalcy of distri-
bution law hold, the following equalities can be regarded as 
true:

( ) ( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( )

* * *
XX XX XX

* * *

* *
X X

* *
X X

R t R 3 t 2R 2 t 0,

R t R 3 t 2R 3 t 0,

R 2 t 0, R 3 t 0,

R 2 t 0, R 3 t 0,

εε εε εε

ε ε

ε ε

∆ + ∆ − ∆ ≈

∆ + ∆ − ∆ ≈

∆ ≈ ∆ ≈

∆ ≈ ∆ ≈

in the right-hand side there is 

( ) ( )
X

*
XR t R t

εε ∆ ≈ ∆ +′ ( ) ( )* *
X XR t 2R tε ε∆ ≈ ∆ ,  

( ) ( )*
X X

1
R t R t

2ε ε∆ ≈ ∆′ .  (30)

It can be shown that the formula for determining the esti-
mate ( )

X

*R 2 t
ε

∆  can also be represented in a similar form, i. e. 

( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

N

X
i 1

1
R 2 t sgn g i t g i 1 t

N

2sgn g i t g i 2 t sgn g i t g i 3 t

ε
=

∆ ≈ ∆ + ∆ −′ 

− ∆ + ∆ + ∆ + ∆ 

∑
 

and the estimate ( )*
XR 2 tε ∆  in that case will equal 

( ) ( )*
X X

1
R 2 t R 2 t

2ε ε∆ = ∆′ .    (31)

Our analysis of literatures [15–19] and research have 
demonstrated that the following equalities take place between 

( )XR 0ε , ( )ggR 0∆  and ( )*
XR 0ε , ( )*

ggR 0∆ ; ( )XR tε ∆ , ( )ggR t∆ ∆  
and ( )*

XR tε ∆ , ( )*
ggR t∆ ∆ ; ( )XR 2 tε ∆ , ( )ggR 2 t∆ ∆  and ( )*

XR 2 tε ∆ , 
( )*

ggR 2 t∆ ∆ , respectively:
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( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

gg

*
X X

*
gg gg

*
X X

*
gg

*
X X

*
gg gg

R 0 R 0
,

R 0 R 0

R t R t
,

R t R t

R 2 t R 2 t
,

R 2 t R 2 t

ε ε

ε ε

ε ε


≈

∆ ∆ 


∆ ∆ ≈ ∆ ∆ ∆ ∆ 
∆ ∆ ≈ ∆ ∆ ∆ ∆ 

 

from which, using the formulas

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( ) ( )
( )

gg

*
gg X

X *

*
gg X

X *
gg

*
gg X

X *
gg

R 0 R 0
R 0 ,

R 0

R t R t
R t ,

R t

R 2 t R 2 t
R 2 t ,

R 2 t

ε
ε

ε
ε

ε
ε

∆
≈ 

∆ 


∆ ∆ ∆ ∆ ≈ ∆ ∆ 
∆ ∆ ∆ ∆ ≈ ∆ ∆ 

 (32)

the estimates XR (0)ε , XR ( t)ε ∆ , XR (2 t)ε ∆ , … are determined.
Thus, as determining the estimates Dε  and ( )XR 0ε ,  
( )XR tε ∆ , ( )XR 2 tε ∆ ,..., ( )*

XR 0ε , ( )*
XR tε ∆ , ( )*

XR 2 t ,...ε ∆ , it be-
comes possible to analyze the errors of the estimates of the 
correlation functions and the results of formation of the 
robust correlation matrices. It also becomes possible, de-
pending on the presence or absence of a correlation between 
X(t)  and (i t)ε ∆ , to make a decision on the appropriate 
choice of a technology for identifying the models of control 
objects [12, 25, 28]. It should be noted that when ( )XR 0 0ε > ,  

( )XR t 0ε ∆ ≈ , ( )XR 2 t 0ε ∆ ≈  take place, the correlation matrix is 
formed in a similar way as in the absence of a correlation between 
X(t) and (i t)ε ∆ . At the same time, if a correlation is detected 
between X(t)  and (i t)ε ∆  at time shifts t tm∆ = ∆ , 2 tm = ∆ ,…,  
the estimates ( )XR tε ∆ , ( )XR 2 tε ∆  are determined, using ex-
pressions (32), and they are subtracted from the estimates of 
the elements in the respective lines and columns of correla-
tion matrices (18), (22). 

Since it is essential to ensure the robustness of the 
correlation matrices and adequacy of identification of the 
dynamics model, an alternative way to correct the errors 
of the corresponding elements of the correlation matrices is 
proposed below [19]. In this way, the estimates ( )XD , R 0ε ε , 

( )XR tε ∆ , ( )XR 2 tε ∆ , etc. of the technological parameters
( )g i t∆  are determined by means of the expressions devel-

oped on the basis of expressions (24), (25).
To that end, the results of decomposing the right-hand 

side of expression (24) in the presence of a correlation be-
tween ( )X t  and ( )tε  can be considered.

Considering that when 

( ) ( )X X XR (0) 0,R t 0,R 2 t 0ε ε ε> ∆ ≈ ∆ ≈  

and the conditions of stationarity and normalcy of distri-
bution of the technological parameters of the objects under 
investigation hold, the following equalities can be regarded 
as true  

( ) ( ) ( )
( ) ( )

XX XX XXR 0 R 2 t 2R t 0

R 2 t 0, R t 0εε εε

+ ∆ − ∆ ≈

∆ ≈ ∆ ≈

( ) ( )X XR t 0, R 2 t 0ε ε∆ ≈ ∆ ≈ , ( ) ( )X XR t 0, R 2 t 0ε ε∆ ≈ ∆ ≈ .

Therefore, in the right-hand side of formula (33) is 

( ) ( ) ( ) ( )X X XR 0 R 0 R 0 2R 0 D Dεε ε ε ε εε ε+ + ≈ + ≈ .

This demonstrates that the estimate obtained from for-
mula (33) actually is the estimate of the variance Dε  of the 
sum noise.

Now the possibility of calculating the estimate ( )XR tε ∆  
in the presence of a correlation between ( )X t  and ( )tε  at 

tm = ∆  can be considered from the following expression:

( ) ( )( )

( ) ( )( )

( ) ( )

( ) ( ) ( )( ) ( )( )

( ) ( ) ( ) ( )

( ) ( ) ( )

N

X
i 1

N

i 1

N

i 1

N

i 1

N

i 1

N

i 1

1
R ( ) g i t g i 1 t

N

1
2 g i t g i 2 t

N

1
g i t g( i 3 t)

N

1
X i t i t X i 1 t i 1 t

N

1
2 X i t i t X (i 2) t (i 2) t

N

1
[X(i t) i t ][X( i 3 t) ( i 3 t)

N

ε
=

=

=

=

=

=

m ≈ ∆ + ∆ −′′ 

 − ∆ + ∆ + 

 + ∆ + ∆ ≈ 

  ≈ ∆ + ε ∆ + ∆ + ε + ∆ −   

   − ∆ + ε ∆ + ∆ + ε + ∆ +   

+ ∆ + ε ∆ + ∆ + ε + ∆

∑

∑

∑

∑

∑

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

XX X X XX

X X

XX X X

]

R t R t R t R t 2R 2 t

2R 2 t 2R 2 t 2R 2 t

R 3 t R 3 t R 3 t R 3 t .

ε ε εε

ε ε εε

ε ε εε

≈

≈ ∆ + ∆ + ∆ + ∆ − ∆ −

− ∆ − ∆ − ∆ +

+ ∆ + ∆ + ∆ + ∆

∑

Considering that when the conditions of stationarity and 
normalcy of distribution law hold at 

( ) ( ) ( )X X XR t 0,R 2 t 0,R 3 t 0ε ε ε∆ > ∆ ≈ ∆ ≈ , 

the following equalities can be regarded as true

( ) ( ) ( )XX XX XXR t R 3 t 2R 2 t 0∆ + ∆ − ∆ ≈ ,

( ) ( ) ( )R t R 3 t 2R 2 t 0εε εε εε∆ + ∆ − ∆ ≈ ,

( ) ( )X XR 2 t 0, R 3 t 0ε ε∆ ≈ ∆ ≈ , ( ) ( )X XR 2 t 0, R 3 t 0ε ε∆ ≈ ∆ ≈ .

So it is obvious that

( )X XR ( ) R tε εm ≈ ∆ +′′ ( ) ( )X XR t 2R tε ε∆ ≈ ∆ .

Therefore, the estimate ( )XR tε ∆  can be determined from 
the expression

( ) ( ) ( ) ( )( )
( ) ( )( )

( ) ( ) ( ) ( )

( ) ( )( ) ( )( )

( ) ( ) ( )( ) ( )( )
( ) ( ) ( ) ( ) ( )
( )

N

i 1

N

i 1

N

i 1

N

i 1

XX X X XX

X

1
D g i t g i t 2g i t g i 1 t

N

g i t g i 2 t

1
X i t i t X i t i t

N

1
2 X(i t) i t X i 1 t i 1 t

N

1
X i t i t X i 2 t i 2 t

N

R 0 R 0 R 0 R 0 2R t

2R t 2R

ε
=

=

=

=

ε ε εε

ε

≈ ∆ ∆ − ∆ + ∆ +

+ ∆ + ∆ ≈

   ≈ ∆ + ε ∆ ∆ + ε ∆ −   

  − ∆ + ε ∆ + ∆ ε + ∆ +   

  + ∆ + ε ∆ + ∆ + ε + ∆ =   

= + + + − ∆ −

− ∆ −

∑

∑

∑

∑

( ) ( )
( ) ( ) ( ) ( )

X

XX X X

t 2R t

R 2 t R 2 t R 2 t R 2 t .

ε εε

ε ε εε

∆ − ∆ +

+ ∆ + ∆ + ∆ + ∆ (33)

,

,
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( )X X

1
R t R ( t)

2ε ε∆ ≈ ∆′′ .	 	 	 	 (34)

It	 is	 possible	 to	 show	 that	 in	 the	 presence	 of	 a	 cor-
relation	 between	 ( )X t 	 and	 ( )tε 	 at	 2 tµ = ∆ ,	 the	 estimate	

( )XR 2 tε ∆ 	 can	 be	 determined	 in	 a	 similar	 way,	 using	 the	
expression

( ) ( )( )
( ) ( )( ) ( ) ( )( )

N

X
i 1

1
R (2 t) g i t g i 2 t

N

2g i t g i 3 t g i t g i 4 t

ε
=

∆ ≈ ∆ + ∆ −′′ 

− ∆ + ∆ + ∆ + ∆ 

∑
,	 (35)

X XR (2 t) 2R (2 t)ε ε∆ ≈ ∆′′ ,	 	 (36)

( )X X

1
R 2 t R (2 t)

2ε ε∆ ≈ ∆′′ .	 	 	 	 (37)

In	the	presence	of	a	correlation	between	 ( )X t 	and	 ( )tε 	at	
3 t, 4 t,µ = ∆ µ = ∆  the	formulas	for	determining	 ( )XR ε µ 	can	

be	similarly	represented	as	follows:

( )X X

1
R 3 t R (3 t)

2ε ε ε∆ ≈ ∆′′ ,	 	 (38)

( )X X

1
R 4 t R (4 t)

2ε ε∆ ≈ ∆′′ ,	etc.	 	 (39)

However,	according	to	the	experimental	research,	in	that	
case	the	accuracy	of	the	estimate	 XR ( )ε µ 	changes	depending	
on	the	duration	of	the	time	shift	 µ 	between	 X(t) 	and	 (t)ε .	
For	instance,	when	 X X XR ( t) 0, R (2 t) 0, R (3 t) 0ε ε ε∆ > ∆ > ∆ ≈ ,		
the	 estimate	 XR (2 t)ε ∆ 	 has	 a	 lesser	 error	 than	 XR ( t)ε ∆ ,	
because	the	error	of	the	estimate	 XR ( t)ε ∆ 	is	affected	by	the	
correlation	between	 X(t) 	and	 (t)ε 	at	 2 tµ = ∆ .	

To	 eliminate	 this	 shortcoming,	 generalized	 expressions	
eliminating	the	 impact	of	 length	of	the	distance	of	correla-
tion	between	 X(t) 	and	 (t)ε 	on	the	errors	of	the	sought-for	
estimates	 XR ( )ε µ 	are	proposed	below.

																																																																	
,

( ) ( ) ( )
( )
( ) ( )

N

X
i 1

1
R ( ) g i t [g (i 1) t g (i ) t

N

3g (i 1) t

2g (i ) t g (i 2) t ]

ε
=

µ ≈ ∆ + µ + ∆ − + µ ∆ −′′

− + µ + λ + ∆ +

+ + µ + λ ∆ + + µ + λ + ∆

∑

	(40)

where	 λ 	is	the	length	of	the	distance	of	correlation	between	
X(t) 	and	 (t)ε .

In	that	case,	after	the	estimate	 XR ( )ε µ′′ 	has	been	deter-
mined,	using	the	formula

( )X X

1
R R ( )

2ε εµ ≈ µ′′ 	 	 	 	 (41)

it	is	possible	to	determine	the	sought-for	estimate	similar	to	
expressions	(34)–(39).	

For	instance,	when	

( ) ( ) ( ) ( )X X X XR t 0,R 2 t 0,R 3 t 0,R 4 t 0ε ε ε ε∆ > ∆ > ∆ > ∆ ≈ ,	

in	determining	the	estimate	 ( )XR tε µ∆ ,	it	can	be	considered	
that	 3λ = .

In	 that	 case,	 the	 expressions	 for	 determining	 XR ( t)ε ∆′′ 	
and	 ( )XR tε ∆ 	will	have	the	following	form:

( )X X

1
R t R ( t).

2ε ε∆ ≈ ∆′′

It	 is	natural	 that	 in	determining	the	estimates	of	 the	relay	
cross-correlation	 functions ( ) ( )* *

X XR 0 ,R t ,ε ε ∆ 	 *
XR (2 t),...ε ∆ ,	 er-

rors	 related	 to	 the	 length	of	 the	correlation	between	 X(t) 	
and	 (t)ε 	 also	 emerge.	 To	 eliminate	 them,	 it	 is	 also	 appro-
priate	 to	 use	 similar	 generalized	 expressions	 that	 can	 be	
represented	as	follows:

( ) ( ) ( )
( )
( ) ( )

N

X
i 1

1
R ( ) sgn g i t [g (i 1) t g (i ) t

N

3g (i 1) t

2g (i ) t g (i 2) t ].

ε
=

µ ≈ ∆ + µ + ∆ − + µ ∆ −′

− + µ + λ + ∆ +

+ + µ + λ ∆ + + µ + λ + ∆

∑

	 (42)

Taking	into	account	formulas	(30),	(31),	one	can	get:

( )*
X X

1
R R ( )

2ε εµ ≈ µ′ .	 	 	 	 (43)

Therefore,	 expression	 (32)	 can	 also	 be	 represented	 as	
follows:

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( ) ( )
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*
gg X

X *

*
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*
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*
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gg

R 0 R 0
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R t R t
R t ,

R t

R 2 t R 2 t
R 2 t ,

R 2 t

.................................................

R R
R .

R

ε
ε

ε
ε

ε
ε

ε
ε

∆
≈ 

∆ 


∆ ∆ ∆ ∆ ≈ ∆ ∆ 
∆ ∆ ∆ ∆ ≈ ∆ ∆ 


∆ µ µ

µ ≈ 
∆ µ 




		 	 (44)

It	should	be	noted	that	the	value	 λ 	is	determined	on	the	
basis	of	the	estimate XR ( )ε µ′ ,	at	which	 XR ( ) 0ε µ ≈′ .	It	 is	easy	
to	 implement	 by	 alternatively	 determining	 the	 estimates	

( )XR ε µ′ 	by	means	of	expression	(42)	at	 0,1,2,3,4,...λ = .	For	
instance,	if	 XR (3 t) 0ε ∆ ≈′ ,	then	 3.λ =

The	 use	 of	 generalized	 expressions	 (40)–(44)	 makes	 it	
possible	to	correct	the	corresponding	elements	of	the	correla-
tion	matrices	by	determining	the	estimates	 ( )XR 0ε , ( )XR tε ∆ ,		

( )XR 2 tε ∆ ,	 ( )XR 3 tε ∆ ,	etc.	To	that	end,	first	of	all	determina-
tion	of	the	presence	or	absence	of	a	correlation	between	X(t)	
and	 (t)ε 	in	the	elements	of	the	matrix	from	expression	(42)	
using	 the	 estimate	 XR ( )ε µ′ 	 take	 place.	 After	 that,	 for	 the	
elements	with	a	correlation,	the	estimates	 ( )XR ε µ 	are	deter-
mined	 from	 expressions	 (40)–(44)	 and	 they	 are	 corrected.	
For	instance,	in	the	presence	of	a	correlation	between	 ( )X t 	
and	 ( )tε 	 in	 the	 elements ( ) ( ) ( )gg gg ggR t ,R 2 t , R 3 t ,∆ ∆ ∆  ,	
they	are	corrected	by	subtracting	from	them	the	correspond-
ing	 estimates ( ) ( ) ( )X X XR t ,R 2 t , R 3 t ,ε ε ε∆ ∆ ∆  	 and	 the	 value	
Dε 	 in	the	columns	and	lines	of	the	correlation	matrices,	 in	
which	they	are	located.	For	clarity	the	correction	procedure	
at	 ( )XR t 0ε ∆ > , ( )XR 2 t 0ε ∆ ≈ ,	 ( )XR 3 t 0,....ε ∆ ≈ ,	is	demonstrat-
ed	below.	Here	 the	estimate	 ( )XR t 0ε ∆ > 	 is	used	to	correct	
the	second	column	of	the	first	line	and	the	second	line	of	the	
first	column	of	matrices	(18)	and	(26)	

( ) ( ) ( )
( )
( ) ( )

N

X
i 1

1
R ( t) g i t [g (i 1 1) t g (i 1) t

N

3g (i 1 3 1) t

2g (i 1 3) t g (i 1 3 2) t ],

ε
=

∆ ≈ ∆ + + ∆ − + ∆ −′′

− + + + ∆ +

+ + + ∆ + + + + ∆
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In this case, the result of formation of correlation matri-
ces is regarded as valid only when the estimates ( )XR ε m  at 

0, t, 2 t, 3 tm = m = ∆ m = ∆ m = ∆   obtained from expressions 
(40)–(44) match, i.e. adequacy of the obtained results is 
achieved by their duplication. Therefore, after such correc-
tion, the obtained matrix can be considered equivalent to the 
matrix of the useful signals.

6. The robust technology for eliminating the errors of 
calculation of the estimates of correlation functions

An analysis of the specifics of forming correlation ma-
trices shows that during determining the estimates ( )ggR m ,  

( )gR η m , errors emerge in the calculations, which affect valid-
ity of the robustness conditions [11, 12]. For instance, during 
calculating the estimate ( )ggR 0 , all paired products ( )g i t∆  
and ( )( )g i t+ m ∆  have the positive sign. Therefore, the errors 
of these products are combined and the error of the calcula-
tion turns out to be maximum. However, as the time shift m  
between ( )g i t∆  and ( )( )g i t+ m ∆ , as well as between ( )g i tη ∆  
and ( )( )g i tη + m ∆  increases, the obtained estimates turn out 
to be equal to zero at some point. In this case, the sums of 
errors of the products ( ) ( )( )g i t g i t∆ + m ∆  with the positive 
and negative signs in the amount of N+ , N− , from which 
the sum error ( )ggR m  forms, turn out equal and the equality 
N N+ −=  takes place. As a result, the positive and negative 
errors of the products practically balance each other. There-
fore, in determining the estimates ggR ( )m , the calculation 
errors depend on the difference in the number of the paired 
products N N+ −−  with the positive and negative signs. That 
difference changes depending on the change of the time shift 
m  between them. Therefore, to ensure equalities (38), there 
is a need to eliminate the errors of calculating the estimates 

of elements of matrices (27), (28) and (36), (37). This issue 
is considered in detail in [11], and the following expressions 
are recommended to compensate the error from the differ-
ence of the positive and negative products of the estimates of 
the auto- and cross-correlation functions:

N
R
gg

i 1

1
R ( ) g(i t)g((i ) t)

N

[N ( ) N ( )] (0) ;
=

+ −

m ≈ ∆ + m ∆ −

− m − m ∆ψ

∑
  (45)

N
R
g

i 1

1
R ( ) g(i t) ((i ) t)

N

[N ( ) N ( )] ( t) .

η
=

+ −

m ≈ ∆ η + m ∆ −

− m − m ∆ψ ∆

∑
  (46)

In that case, the error from the difference of the product 
( t)ψ ∆  is determined from the expressions

*
gg gg

*
g g

R ( t) R ( t) ( t),

R ( t) R ( t) ( t),η η

∆ − ∆ ≈ ψ ∆ 


∆ − ∆ ≈ ψ ∆ 
 (47)

where

( t) [1 n ( t)] ( t)−∆ψ ∆ = ∆ ψ ∆ . (48)

Here ( )ggR t∆ , ( )*
ggR t∆ , ( )gR tη ∆ , ( )*

gR tη ∆  are the esti-
mates of the auto- and cross-correlation functions of the cen-
tered and non-centered signals ( ) ( )g i t , i t∆ η ∆ , respectively; 
n− is the number of negative products that emerges from the 
difference of the number of the products ( ) ( )g i t g i t∆ + m ∆  or 

( ) ( )g i t i t∆ η ∆  with the positive and negative signs, respec-
tively, N N+ −− . It is obvious from expressions (41), (42) that 
when expressions (39), (40) are applied, the errors that arise 
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due to the difference of the number of the paired products 
( ) ( )( )g i t g i t∆ + m ∆  with the positive N+  and negative N−  

signs compensate one another. Therefore, when expressions 
(39), (40) are applied, the condition of robustness of the ele-
ments of correlation matrices [11] is ensured by eliminating 
the effects of the error on the calculations. 

To sum up, the procedure for eliminating the error of 
calculation of the estimates ( )ggR m  is presented below

1. The estimate ( )ggR t∆  is determined from the expression

( ) )(
N

gg
i 1

1
R g(i t)g (i ) t

N =

m = ∆ + m ∆∑ .

2. The error of the estimate at the unit time shift 
t 1 tm∆ = ∆  is determined:

*
gg gg( t) R ( t) R ( t)ψ ∆ = ∆ − ∆ ,

( t) [1 n ( t)] ( t)−∆ψ ∆ = ∆ ψ ∆ ,

where n− is the number of the negative products at t 1 tm∆ = ∆  
due to the difference of N N+ −− .

3. The error is determined:

( ) ( ) ( ) ( )R
XX n n t+ − ψ m ≈ m − m ∆ψ ∆  .

4. The variance is determined:

(

( ) ( ))

N

i 1

1
D g(i t)g(i t) g(i t)

N

g(i 2) t 2g(i t) g(i 1) t .

ε
=

= ∆ ∆ + ∆ ×

× + ∆ − ∆ + ∆

∑

5. Finally, the robust estimates are determined:

( ) ( ) ( )
( ) ( )

R
gg XXR

gg R
gg XX

R D at 0,
R

R at 0.

ε
  m − ψ m + m =  m = 

m − ψ m m ¹
 (49)

Thus the formula (49) can be used to eliminate the errors 
occurring in the process of calculating and ensure fulfilment 
of the condition of robustness.

6. Conclusion

The paper considers the problems related to identi-
fication of the model of dynamics of real-life industrial 
objects. When traditional methods of formation of the 
correlation matrix are used, because of substantial er-
rors of the estimates of its elements, the conditions of 
robustness are violated from the effects of the noise in 
the technological parameters; therefore, adequacy of the 
obtained results is not achieved in most cases. It is well 
known there are many filtration methods that eliminate 
various errors caused by effects of the noise. However, 
in real-life objects, noises of technological processes are 
caused by various faults during operation and affect the 
signals in the form of noise. The range of their spectrum 
often overlaps the spectrum of the useful signal. More-
over, their spectra are not strictly stable. For these rea-
sons, filtration does not always yield the desired result. 
Filtration even causes distortion of the spectrum of the 
useful signal sometimes. 

Besides in many real-life industrial objects, the input 
and output technological parameters are usually represent-
ed by such physical quantities as consumption, pressure, 
temperature, velocity, etc. Therefore, in identifying math-
ematical models of dynamics, in forming the correlation 
matrices, it is necessary to apply the procedure of nor-
malization of their elements. This leads to an additional 
error, which also leads to the disruption of adequacy of the 
results. That is why methods and technologies for elimi-
nating that error, which can also be widely used in systems 
of control and management of technological processes in 
various industries are proposed. 

Taking into account above-mentioned problems two 
alternative robust generalized technologies that enable 
one to reduce the correlation matrices of noisy technolog-
ical processes to the matrices of their useful signals both 
in the absence of a correlation between the useful signal 
and the noise and in the presence of such are proposed. 
The validity of the result is achieved through duplication 
of the obtained estimates of the elements of matrices by 
both methods.
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