- Трошин, А.Г. О режимах движения жидкой фазы в роторном вихревом массообменном аппарате/Трошин А.Г., Питак И.В//Інтегровані технології та енергозбереження //Щоквартальний науково-практичний журнал. Х.: Національний технічний університет «ХПІ», 2007. №4. С. 31-37.
- Питак, И.В. Аппарат для проведения процессов абсорбции и газоочистки/И.В. Питак, П.П. Хусточкин, В.Ф. Моисеев, В.П. Шапорев //Вісник Національного технічного університету «ХПІ». Збірник наукових праць. Тематичний випуск: Нові рішення в сучасних технологіях. – Х.:НТУ «ХПІ» - 2005. -№9. – С.3-6.
- Карепанов, С.К. Математическая модель течения рабочей жидкости в каналах ротора и статора гидромеханического диспергатора /С.К. Карепанов//Применение роторных гидромеханических диспергаторов в горнодобывающей промышленности : теория и практика : сб. докл. Междунар. науч.-практ. семинара. – Минск : Беларус. АН БЖ, 1998. – С. 57–67.

Дана лінеаризована математична модель дискретного гідроприводу з урахуванням інерційного навантаження, стисливості рідини і витоків, в основі якої лежить заміна нелінійної залежності не дотичними, а раціонально підібраними січними

ET-

-0

Ключові слова: дискретні гідроприводи, лінеаризована математична модель, метод січних

Дана линеаризованная математическая модель дискретного гидропривода с учетом инерционной нагрузки, сжимаемости жидкости и утечек, в основе которой лежит замена нелинейной зависимости не касательными, а рационально подобранными секущими

Ключевые слова: дискретные гидроприводы, линеаризованная математическая модель, метод секущих

A linearize mathematical model of discrete hydraulic taking into account the inertial loads, compressibility and leakage, which is based on replacement of non-linear dependence is not tangent and secant rationally chosen is given in this article

Keywords: pneumatic aggregates discrete, linearize mathematical model, the method of secants

Введение

При решении задач управления дискретным гидроприводом необходимо иметь сравнительно точные аналитические решения уравнений, описывающих функционирование гидропривода, которые невозможно получить на основе нелинейной модели. Предлагаемые в статье пути решения задачи динамического расчёта гидропривода являются компромиссом между численными нелинейными решениями на ЭВМ, что требует больших затрат машинного времени, и общепринятыми линейными решениями, которые пригодны лишь для замкнутых гидроприводов, но дают большую погрешность применительно к разомкнутым (дискретным) приводам.

УДК 621.05

ЛИНЕАРИЗОВАННАЯ МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ДИСКРЕТНОГО ГИДРОПРИВОДА НА ОСНОВЕ МЕТОДА СЕКУЩИХ

Г.А. Крутиков

Доктор технических наук, профессор* Контактный тел.: (057) 707-61-28 E-mail: gkrutikov@gmail.com **М.Г. Стрижак**

Аспірант* Контактный тел.: (057) 707-61-28 E-mail: mp9753@mail.ru *Кафедра «Гидропневмоавтоматика и гидропривод» Национальный технический университет «Харьковский политехнический институт» ул. Фрунзе, 21, г. Харьков, Украина, 61002

Постановка задачи

Решается задача получения достаточно точных аналитических решений для всех переменных состояния гидропривода на основе замены нелинейной расходно-перепадной характеристики золотника рационально подобранной секущей. Исходная нелинейная математическая модель в безразмерной форме для дискретного гидропривода (рис. 1), полученная в работе [1], имеет вид:

$$\begin{split} \frac{\mathrm{d}^{3}\xi}{\mathrm{d}\tau^{3}} + & \left(\frac{\gamma}{\beta} + \varphi\beta\right) \frac{\mathrm{d}^{2}\xi}{\mathrm{d}\tau^{2}} + \left(\varphi\gamma + 1\right) \frac{\mathrm{d}\xi}{\mathrm{d}\tau} + \\ & +\chi\varphi = \overline{f} \sqrt{1 - \left(\beta \frac{\mathrm{d}^{2}\xi}{\mathrm{d}\tau^{2}} + \gamma \frac{\mathrm{d}\xi}{\mathrm{d}\tau} + \chi\right)} \quad , \end{split}$$
(1)

—

где f и ξ – входная и выходная координаты гидропривода; β, γ, χ и φ – критерии динамического подобия гидропривода [1]. Линеаризации подлежит нелинейная зависимость расхода от перепада давления. Для прямоугольных или кольцевых окон золотника:

$$\bar{\mathbf{Q}} = \mathbf{x}^* \sqrt{1 - \bar{\mathbf{p}}} , \qquad (2)$$

где $\mathbf{x}^* = \mathbf{x} / \mathbf{x}_{max}$ – относительное смещение золотника;

 $\overline{\mathbf{Q}} = \mathbf{Q} / \mathbf{Q}_{\mathrm{m}}$ – относительный расход.

Линеаризации подлежит нелинейная расходноперепадная характеристика золотника (2). При срабатывании дискретных (разомкнутых) приводов его параметры (скорость, давление и т.д.) меняются в широких пределах. Поэтому общепринятая линеаризация с помощью касательных (замена первыми членами разложения в ряд Тейлора) непригодна из-за больших ошибок. Для дискретных гидроприводов целесообразным представляется использование метода секущих для замены нелинейных характеристик. При этом в данном случае наиболее рациональной будет такая линеаризация выражения (2), при которой за одну из опорных точек для секущей выбирается точка на расходно-перепадной характеристике, соответствующая установившейся скорости поршня.

$$\mathbf{v}_{y} = \bar{\mathbf{Q}}_{y} = \bar{\mathbf{x}} \sqrt{1 - \gamma \mathbf{v}_{y} - \chi} ; \qquad (3)$$

т.е. координатами опорной точки могут служить:

$$v_{y} = -\frac{\gamma \overline{\chi}^{2}}{2} + \sqrt{\frac{\gamma \overline{\chi}^{2}}{2} + \overline{x}^{2} (1 - \chi)}; \quad \overline{p}_{y} = \chi + \gamma v_{y}, \quad (4)$$

где v_y, p_y – координаты опорной точки на расходно-перепадной характеристике (рис. 2).

За вторую опорную точку можно выбрать точку с координатами $\bar{p}=0$, $\bar{Q}=v=\bar{x}$ (прямая 3 на рис. 2). Такой выбор целесообразен при малой и средней инерционной нагрузке, когда скорость поршня при разгоне носит колебательный характер (рис. 3). При большой инерционной нагрузке, когда разгон начинается при относительном перепаде давлений р, близком к единице и носит характер, близкий к экспоненциальному, в качестве второй опорной точки желательно брать точку с координатами p=1, v=0 (прямая 2 на рис. 2).

Уравнение секущей в общем случае имеет вид:

$$y(\overline{p}) = \frac{y(\overline{p}_{y}) - y(0)}{\overline{p}_{y} - \overline{p}_{0}} (\overline{p} - \overline{p}_{0}) + y(0), \qquad (5)$$

где \overline{p}_{y} , $y(\overline{p}_{y})$ – координаты, соответствующие установившемуся движению поршня; \overline{p}_{0} , y(0) – координаты второй опорной точки.

Таким образом, в результате линеаризации имеем:

$$\overline{x}\sqrt{1-\overline{p}} = L_1 - L_2\overline{p}.$$
(6)

Для прямой 3 (рис. 2) $L_1 = \overline{x}$, $L_2 = \frac{\overline{x} \cdot v_y}{\overline{p}_y}$, для прямой 2 $L_1 = L_2 = \frac{v_y}{1 - \overline{p}_y}$.

Рис. 1. Расчётная схема гидропривода

После линеаризации дифференциальное уравнение гидропривода примет вид:

$$\begin{aligned} \frac{\mathrm{d}^{3}\xi}{\mathrm{d}\tau^{3}} + & \left(\frac{\gamma}{\beta} + \left(\mathrm{L}_{2}\overline{\mathrm{x}} - \varphi\right)\beta\right) \frac{\mathrm{d}^{2}\xi}{\mathrm{d}\tau^{2}} + \\ & + & \left(1 + \left(\varphi + \mathrm{L}_{2}\overline{\mathrm{x}}\right)\right) \frac{\mathrm{d}\xi}{\mathrm{d}\tau} + \chi\left(\varphi + \mathrm{L}_{2}\overline{\mathrm{x}}\right) = \mathrm{L}_{1}\overline{\mathrm{x}} \end{aligned}$$
(7)

Последнее уравнение можно представить в виде неоднородного дифференциального уравнения второго порядка:

$$\frac{\mathrm{d}^2 \mathbf{v}}{\mathrm{d}\tau^2} + \mathbf{k}_1 \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}\tau} + \mathbf{k}_2 = \mathbf{k}_3, \tag{8}$$

где

$$\begin{split} \mathbf{k}_1 = & \left[\frac{\gamma}{\beta} + \left(\mathbf{L}_2 \overline{\mathbf{x}} + \boldsymbol{\phi} \right) \beta \right]; \\ \mathbf{k}_2 = & \left[\mathbf{1} + \left(\mathbf{L}_2 \overline{\mathbf{x}} + \boldsymbol{\phi} \right) \gamma \right]; \\ \mathbf{k}_3 = & \mathbf{L}_1 \overline{\mathbf{x}} - \chi \left(\boldsymbol{\phi} + \mathbf{L}_2 \overline{\mathbf{x}} \right). \end{split}$$

Решение характеристического уравнения:

$$\lambda_{1,2} = -\sigma \pm \sqrt{D} = -\sigma \pm \varphi , \qquad (9)$$

rge $\sigma = \frac{k_1}{2}, D = \frac{k_1^2}{4} - k_2.$

Рис. 3. Результаты расчёта процесса разгона и торможения для гидропривода по линеаризованной модели (1 — $\beta = 0,1$; 2 — $\beta = 0,5$; 3 — $\beta = 1$)

Однако случай, когда D>0 носит гипотетический характер. В реальных гидроприводах, у которых критерий инерционности β лежит в пределах от 0,1 до 1 D<0. Поэтому вместо (9) следует рассматривать решение характеристического уравнения в виде:

$$\lambda_{1,2} = -\sigma \pm i\sqrt{D} = -\sigma \pm i\varphi.$$
⁽¹⁰⁾

Общее решение линейного неоднородного дифференциального уравнения, как известно, складывается из суммы общего решения однородного уравнения U и частного решения неоднородного уравнения U^{*}:

$$\mathbf{v} = \mathbf{U} + \mathbf{U}^* \,. \tag{11}$$

В случае действительных корней (D>0):

$$\mathbf{v} = \frac{\mathbf{k}_3}{\mathbf{k}_2} + \mathrm{e}^{-\sigma t} \left(\mathrm{c}_1 \mathrm{sh} \boldsymbol{\varphi} \boldsymbol{\tau} + \mathrm{c}_2 \mathrm{ch} \boldsymbol{\varphi} \boldsymbol{\tau} \right). \tag{12}$$

Постоянные интегрирования c_1 и c_2 для случая разгона находятся из нулевых начальных условий (при $\tau = 0$, $\nu = 0$, $\omega = 0$):

$$c_1 = -\frac{k_3}{2k_2} \frac{k_1}{\sqrt{|D|}}; \ c_2 = -\frac{k_3}{k_2}.$$

Для случая мнимых корней (D<0) выражение для безразмерной скорости v при разгоне имеет вид:

$$v = \frac{k_3}{k_2} \left[1 - e^{-\sigma t} \left(\frac{\sigma}{\sqrt{-D}} \sin \sqrt{-D} \tau + \cos \sqrt{-D} \tau \right) \right], \quad (13)$$

где **о** и D находятся из (9).

Координата поршня в этом случае находится из выражения:

$$\xi = \int v d\tau = \frac{k_3}{k_2} \left[\tau + \frac{e^{-\sigma t}}{k_2} \left(\sqrt{-D} \sin \sqrt{-D} \tau + k_1 \cos \sqrt{-D} \tau \right) - \frac{k_1}{2} \right]. (14)$$

Как для линейной (7), так и для нелинейной модели (1) разгон моделируется за счёт ступенчатого перехода золотника от состояния полного перекрытия до состояния полного открытия $\bar{x} = 1$ (рис. 3).

Режим торможения создавался при скачкообразном уменьшении открытия золотника от $\bar{x} = 1$ до $\bar{x} = 0,1$. При этом постоянные c_1 и c_2 в уравнении (13) находятся при других (не нулевых) начальных условиях (при $\tau = 0$, $v_0 = v_y$, $\omega_0 = 0$, $\xi = \xi_B$, где $\xi_B -$ координата торможения).

$$c_{1} = -\frac{k_{3}}{k_{2}} \left[\frac{k_{1}}{2} \left(1 - v_{0} \frac{k_{2}}{k_{3}} \right) - \omega_{0} \frac{k_{2}}{k_{3}} \right] / \sqrt{D};$$

$$c_{2} = -\frac{k_{3}}{k_{2}} \left(1 - v_{0} \frac{k_{2}}{k_{3}} \right);$$

Таким образом, для расчётов можно ограничиться формулой (13), придав ей вид:

$$v = \frac{k_3}{k_2} \left\{ 1 - e^{-\sigma t} \sqrt{\frac{\sigma^2}{-D}} \cos\left[\sqrt{-D}\tau + \arctan\left(\frac{-\sigma}{\sqrt{-D}}\right)\right] \right\}.$$
 (15)

При этом уравнение секущей следует представлять в виде прямой 3 (рис. 2):

$$\overline{\mathbf{x}} = \mathbf{L}_1 - \mathbf{L}_2 \overline{\mathbf{p}}$$
, (16)
сде $\mathbf{L}_1 = \overline{\mathbf{x}}$, $\mathbf{L}_2 = \frac{\overline{\mathbf{x}} - \mathbf{v}_y}{\overline{\mathbf{p}}_y}$.
Выводы

Полученные аналитические решения для основных переменных состояния гидропривода имеют достаточно высокую расчётную точность ввиду рациональной формы линеаризации и позволяют без использования численных методов оценить такие параметры переходного процесса, как декремент затухания σ , собственную частоту колебаний, минимально необходимый тормозной путь и т.д.

Учитывая достаточно корректный характер математической модели, где учтены силы инерции, сжимаемость жидкости и утечки, полученные результаты могут быть полезны при проектировании гидроприводов.

Литература

 Крутиков, Г.А. О критериях динамического подобия дискретных гидроприводов [Текст] / Г.А. Крутиков, М.Г. Стрижак. – В сб. Восточно-Европейский журнал передовых технологий, 2012. - №2/7(56). – С. 18-21.

I