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Hokxaszano moscausicmo cmeopenns cencopa
HA AKYCMUMHUX X6UISAX 13 3ACMOCYBAHHAM HAHO-
cmpuicnie ZnO. Ompumano wacmomne pieHAHHA,
wWo 003601UMb BUIHAMAMU WEUOKICMb NOWUPEH -
HA NOBepxXHesoi X6uai npu 3a0aHux 2eomempu-
HUX napamempax CMpPUNCHeBUX HAHOCMPYKMYP,
8i0omill eycmuni ix po3miwenHs HA NOGepxXHi, a
maxoxc Kepyeamu uicio weuoKicmio, 3MiHI00UU
yxazani napamempu. Ilodyodoeana moodenv cnpo-
wye npoyec po3podKu cencopie ma ananiz ompu-
MAHUX 3a 00NOMO2010 CEHCOPI6 HA AKYCMUUHUX
XGUAX pe3yiomamis

Kmouosi cnoea: cencop, axycmuuna xeuns,
nanocmpucni ZnQ, ziopomepmanvnuii memoo,
npydxcHUl nienpocmip

= yu

Hokazana 603mocHOCMb CO30AHUSL CEHCO-
pa Ha aKycmuueckux 60JIHAX C UCNOJb30GAHU-
em nanocmepcneu Zn0. Iloayueno wacmom-
Hoe ypasHnenue, KOMoOpoe NO3GOAUM Onpedensimo
CKOpOCmMb pacnpocmpanenuss noGepxHoCmHou
6OJIHbL NPU 3A0AHHBIX 2€0MEMPUHECKUX napame-
mpax cmepiHcHe8vIX HAHOCMPYKMYP, U3BECMHOU
NIIOMHOCIMU UX PA3MeuleHUst HA NOGEPXHOCMU, a
maksice Ynpasasamo amoi CKOPpoCmvlo, U3MeHss
yxazannvie napamempot. Ilocmpoennas moodenw
ynpowaem npouecc papadomxu ceHcopos u ana-
JU3 NOTYUEHHBIX C NOMOULBIO CEHCOPO8 HA aKY-
CMU1ecKuUx 60JHAX Pe3YIbmamos

Knwoueevie cnosa: cencop, axycmuuecxkas
eonna, nawocmepycnu Zn0, zudpomepmanvholil
Memoo, ynpyzoe noaYynpocmpancmeo

| u!

1. Introduction

Nowadays acoustic wave devices are widely applied in
many industrial and scientific fields ranging from mobile
devices and wireless communication, pressure and viscosity
sensors to novel biosensors for DNA detection. Major adva-
ntages of acoustic wave sensors include: single sided planar
structure, the ability to interact directly with the sensing
medium, high sensitivity, low hysteresis, small size, direct
frequency output signal and low power consumption. Acou-
stic wave sensors have great potential for further application
in the systems of analysis and quality control of chemical
and biological agents. The investigation of novel sensitive
materials, their synthesis methods is an actual problem and
continuously carried out. For further quality and accuracy
enhancement, simplification of manufacturing and impro-
vement of applying the simulation of novel acoustic wave
sensors operation should be performed.

At the same time ZnO became a promising component
in a wide range of nanoscale devices for future application.
It is an attractive material for electronics, photonics and se-
nsing due to having exotic and versatile properties such as
mechanical, piezoelectric, optical and electrical properties,
biocompatibility, nontoxicity, chemical and photochemical
stability, high specific surface area, optical transparency,
electrochemical activities and so on [1]. On other hand,
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ZnO is attracting considerable attention due to its un-
ique ability to form a variety of nanostructures such as
nanowires, nanoribbons/nanobels, nanocombs, nanorings,
nanocages, nanocastle, nanofibers etc. ZnO nanorods/nan-
owires have been employed as bio- or gas sensitive element
of acoustic wave sensors [2]. ZnO nanorods provide giant
effective surface area and strong bonding sites and this
way allow more precision managing of their properties and
characteristics.

It is known [3] that a propagation velocity of ultrasonic
waves in solids is determined by the shape of the surface al-
ong which the elastic disturbances propagate, by resiliency
and inertia (density) of the continuum. Rayleigh surface
waves or, generally speaking, surface acoustic waves obtain
in a narrow not more than two wavelengths near-surface
layer of a solid. It is suggested that the propagation velocity
of Rayleigh (surface) waves can be controlled by changing of
inertial properties of the material particles, which are locat-
ed near the surface of an elastic half-space.

In this paper we suggest the simulation of the plane
harmonic surface wave propagation process in an isotropic
elastic half-space with rod nanostructures on surface for
determining of the propagation velocity of surface waves
at given geometric parameters of the rod nanostructures,
at certain density of their placement on the surface of the
half-space and attached masses. This model will simplify the




development of ZnO nanorods SAW sensors and analysis of
the results.

2. SAW sensors with ZnO nanorods and their simulation.

Problem definition

To obtain nanorods on surfaces of different materials
such methods as vapor phase synthesis, laser ablation, elect-
rochemical method, biotemplating method, chemical method
are applied [4]. In particular, hydrothermal method allows
synthesis of ordered rod structures which satisfy the requ-
irements for acoustic wave sensors design at the same time
being a rather simple and inexpensive.

Fig. 1 shows schematically the structure of the acoustic
wave sensor using ZnO nanorods. Thus, two interdigitated
transducers are formed on the piezoelectric substrate by ph-
otolithography, between them ZnO nanorods are grown by
hydrothermal method.
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Fig. 1. The structure of the acoustic wave sensor:
1, 2 — interdigitated transducers, 3 - piezoelectric substrate,
4- array of ZnO nanostructures

Due to the fact that propagation velocity of ultrasonic
waves in solids is determined by the shape of the surface
along which the elastic disturbances propagate, by resiliency
and inertia (density) of the continuum, propagation velocity
of Rayleigh (surface) waves can be controlled by changing
of inertial properties of the material particles, which are lo-
cated near the surface of an elastic half-space. Thus, for the
application of shown sensor design it is necessary to carry
out preliminary consideration of harmonic surface waves
propagation in an elastic half-space on which surface rod
nanostructures are located. It is necessary to build a model
by which the assessment of propagation velocity of surface
waves at given geometric parameters of the rod-shaped nan-
ostructures, at certain density values of their placement on
the surface of half-space and attached masses will be feasible.
Based on this model it will be possible to control propagation
velocity of surface waves by changing these parameters.

The elastic half-space (Fig. 2) is considered. Rod nanos-
tructures are located on its surface. Rod nanostructures are
absolutely rigidly connected to the surface of the half-space
at the base, i. e. in the plane x, = 0. The rods are arranged
equidistantly along the axes Ox, and Ox, with the step A,
so that the areal density on the surface of the half-space is
N =1/A? . The point masses M, are located at the free ends
of the rod nanostructures. To fix the idea, we assume that all
the nanostructures have the same geometric parameters, i. e.
length L and unvarying along the length of the rod cross-

section, which hasthe shape ofaring with theradii R, and R,
(R, >R)), (Fig. 2) or a circle with the radius R,. The rod
nanostructures don’t interact with each other, i. e. an energy
transfer over the surface of the half- space is absent.
Suppose, a plane harmonic wave exists in the volume of
the elastic half-space (x, <0), its kinematic characterist-
ics are determined by the displacement vector of material
particles ii(x,,x,)e, here ii(x,,x,) is the spatially dev-
eloped amplitude of the displacement vector of material
particles; i = v—1 — the imaginary unit; ® — is known an-
gular frequency of the sign change of displacement; t — is
time. We assume that the elastic wave propagates from left
to right along axis Ox, (Fig. 2). In this case the compone-
nts of the vector i(x,,x,) must be determined as follows:

u1(X27X3) =0, u, (XQ,X3) =u, (xs)e‘iv"2 ,

U, (Xz ’Xii) =y (Xs)eimz ) @)

here y is the wave number of the plane surface wave - the
value to be determined in the course of the problem solving.
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Fig. 2. The analytical model of the problem

Propagating surface wave imparts following motion to
ends x, = 0 of rod nanostructures:

- vertical displacement u3(0)e'”“? ;

- horizontal displacement u, (0)e ™ ;

- rotations in x,0x, plane by y =¢,(x,,0),

where €,,(x,,x,) = (du,/dx, + du,/0x,)/2 is the elastic
strain tensor components.

Obviously, that y =¢,,(0)e™,

where g,,(0) = (—iyu3 (0) + u, (xs)/E)XSLd =0)/2 .

It is clear that the above written expressions for the disp-
lacements of the ends of the rod nanostructures are accurate
only in the case when the strong inequality 2R, << A, holds,
i. e. when the maximum size of the cross-sectional diameter
of the nanotube or nanorod substantially smaller than the
Rayleigh wave L. Otherwise, it's needed to use averaged



over the cross sectional area of the rod nanostructures kine-
matic characteristics. In the following exposition we assume
that the inequality 2R, << A, holds.

In this case, the vertical movements u,(0)e™ initiate
longitudinal oscillations in the nanorod, which, as a first
approximation, can be considered as one-dimensional. In
this case the vertical displacements w,(x,)e’ of material
particles of the rod satisfy Newton’s second law in different-
ial form, which is written in the form:

2’ w, (Xs)

2
0X;

+k’w,(x,)=0Vx,€[0,L], 2)

where k = o/v_, is the wave number of longitudinal wa-
ves in a rod; v, = /E/p, is the rod velocity; E and p, are
Young’s modulus and the density of the rod material, resp-
ectively.

Horizontal displacements and rotations in the cross sect-
ionx, =0 cause harmonic oscillations of the lateral bending
in the rod nanostructure. At the same time the longitudinal
displacements w,(x,)e* of material particles of the rod
satisfy the standard equation of the lateral bending, which
is written in the form

a/l

—%%gQ—X%Q@Q=OV§GmLL 3)
3

where A is the wave number of the harmonic os-

cillations of the lateral bending, and A= prOS/(EL);
S= n(Ri - Rf) is the cross-sectional area of the rod; J, is
the moment of inertia of the cross-section of the rod about
Ox, axis. The geometric characteristic J, of the rod cross-
section is calculated as follows [5]:

2nR,

Ji=[xids= [ [p’sin?ododp = m(R} - R}). (4)

S 0 R,

From (4) it follows that for the solid rod (R, = 0) geom-
etric characteristic is J, = nR}.

Normal stresses 67, (0) or normal forces N3 (0) = o3, (0)S
appear as a result of compression - tension oscillations of a
nanorod in its cross section x, = 0. The surface density of
the normal forces is n; = N; (0)N = o7, (0)SN .

Oscillations of the lateral bending form the moment of
flection M and the lateral force Q(0) in the cross-section
x, =0 of the fixed nanorod. The surface density of lateral
forcesisn, =Q(0)N.

Thus, at the propagation of a plane surface wave in the
half-space, on which surface x, = 0 nanostructured elements
are located, the kinematic characteristics of elastic waves
must satisfy the following boundary conditions:

Jdu(x,,X. .
C33k1% =n;, k1 =23, (5)
k x3=0
a ’
2Cﬂm414;53§) =n,, k,1 =2,3, (6)
Xk X3 =0

where ¢, and c,,,, are the matrix elements of coefficie-
nts of elasticity of the half-space material; in (1.5) and (1.6)
summation over repeated indices k and | is implied.

The last relations completely determine the sequence
of steps for solving the problem of controlling the speed of
propagation of surface acoustic waves. First, the density n;
and n; of tangential and normal loads is evaluated, and then
the components of the displacement vector u,(x,)e™™ and
u,(x,)e”™ which satisfy the boundary conditions (5) and
(6) are determined. Desired wave number v and phase vel-
ocity v, = ®/y of surface waves are determined when these
conditions are completed.

3. The response simulation of the nanostructured
elements

We first define the response n;of the array of nanostr-
uctures.
The solution of equation (2) is obvious:

w,(x,) = Acoskx, + Bsinkx, (7

where A and B are constants to be determined.

On the surface x, = 0 the displacement of the end x, =0
oftherod w, (0) = A havetobeequaltothedisplacement u, (0)e ™"
of element of the half-space. So A =u,(0)e™. According
to Newton’s third law x, =L:

ow,(x ?
ES;X(33) = —0’Mw, (x,)

(8)

x3=L )
xz=L

Substituting in (8) the expression (7) after obvious tra-
nsformations, we obtain the following result:

B _A(kLﬁcoskL —sinkL)

(kL§ sinkL + cos kL) U (O)GWXZFB (kL) N E))

where &=M,/(p,LS) - is the relative mass of a point on
the end of the rod x, =L (Fig. 2); F,(kL) - is a frequency-
dependent function.
A normal stress 63,(x,) in arandom cross-section of the
rod is defined as follows:
aws (x;) _
0x; (10)

= kEu, (0)e ™ [ -sinkx, — F, (kL)coskx, ].

Oy (XS) =E

From (10) 3,(0) = KEF, (L), (0)c ™

ES

n = —NTF;(kL)ug(O)e'W"2 , (11)

where F; (kL) =kLF,(kL).

Fig. 3 shows graphs of the frequency dependence of the
functions F; (kL) that were calculated for different values of
€ and the fixed quality factor Q_ =100 of material of the
nanorod.

Fig. 3, b shows shifts large-scaled resonance frequencies
of longitudinal oscillations of rods at small values of the rel-
ative mass of a point on the end of the rod x, = L. The incr-
ease in the mass M, of a point is accompanied by an increase
in the resonant frequency of the oscillating system.
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Fig. 3. Graphs of the frequency dependence of the functions
F; (kL)
The solution of the differential equation (3) has the
form:

w,(x,) = C,sinAx, + D, cosAx, + C,shAx, + D,chhx,, (12)

where C,, D,, C, and D, - are constants to be deter-
mined.

The solution of (12) should implement the following
conditions.

First of all, the conditions of the kinematic coupling of
the rod cross-section x, = 0 with an element of the surface
of the elastic half-space must be performed. The longitudinal
displacement and rotation angles must be equal. The dynam-
ic conditions at the end x, = L must be performed too. There
are vanishing of moment of flection and equation of the la-
teral force to the force of inertia of a point mass (Newton’s
third law). These speculations lead to the following system
of equations for desired constants C,, D,, C, and D, .

D, + D, = u,(0)e ™ , (13)
C,+C,= %823(0)6”"2 , (14)
—C,sinAL — D, cosAL + C,shAL + D,chAL =0, (15)
C,(-cosAL + ALEsinAL) + D, (sinAL + ALEcosAL) + 6

+ C,(chAL + ALEShAL) + D, (shAL + ALEchAL) =0

where &=M,/(p,LS) - is the relative mass of a point on
the end of the rod x, =L .

The equation determinant Dy (AL,E) of system (13)
— (16) is written as follows:

D, (ML) = 17)

=2[ 1+ cosALchAL +ALE (shALcosAL —chALsinAL)].

It is obvious that the equation

D,(AL,E)=0, (18)
has infinite set of roots A, L (n=1,2,... - number of the
root), which correspond to an infinite set of resonant frequ-
encies 0)5)“) of oscillating system.
Because AL =gvkL is the dimensionless wave-
number, where g - dimensionless geometric parameter

g =14/SI?/], (for a given cross-sectional shape of the nanot-

ube g = HLZ/(Rﬁ + Rf) ), obviously A, L = g\fk,L .

For nanotubes with dimensions L = 10° m, R, = 50 nm,
R, =25nm (g=4,2295) dimensionless frequency k,L de-
pend on parameter & like that:

£=0, kL=1,231766; &=0,0001, k,L=1,231519;
€=0,001, k,L.=1,229317; £ = 0,01, k,L =1,208592; £ = 0,1,
kL =1,082022.

It is clearly seen that the increase in mass M, of a point is
accompanied by a decrease of the first resonance frequency
of lateral oscillations of a nanorod. It can be noted that the
value of the first resonance frequency of lateral oscillations
are more sensitive to changes in parameter & than the value
of the first resonance frequency of longitudinal oscillations
of arod.

The lateral force Q(x,)=EJ, 0w, (x,)/0x; atx, =0, i.e.,
in the plane of the fixing of the nanotube on the surface of
the elastic half-space defined by the following equation:

Q(xy). _, =EIN(-C, +C,),

X3

(19)

Where constants C, and C,, defined from (13) — (16)
are:

—iys
e Xy

C = m[uz (0)(

cos ALShAL + 2LLE cos ALchAL +

+sinALchAL)+ 823}50) (1+ cosALchAL+2ALEsin ALshAL) |

C e—i‘{xz
, = ———X
* D, (ALE)

X [—u2 (0)(cosALshAL + 2ALE cos ALchAL +sin ALchAL) +

£,4(0)
M (20)

x(1 - sin ALshAL — 2ALEsin ALshAL + cosALchAL)].

Substituting (20) in the definition (16) of the lateral
force we define:

Q(x,)

where m_, = p,LS - is a mass of a nanorod;

=-20"m_e ™ [u,(0)f,(AL)+Le,, (0)f,(AL)], (21)

x3=0

f,(AL)= m(cos ALShAL + 2ALE cosALchAL +
+ sin kLchkL),
1
f,(AL)= ——————(sin ALshAL + 2ALE sin ALchAL). (22



The tangential load or density n; of lateral forces on
the density of the surface of an elastic half-space x, =01is
proportional to the surface density N of sources of lateral
forces, i.e.:

n, = NQ-(X?,)‘

=—20"Nm_ e ™ [ u,(0)f,(AL) + Le,, (0)f,(AL)].

x3=0

(23)

Thus, the reactions n; and n; of nanostructured eleme-
nts on the surface of an elastic half-space are defined. Now
we need to determine the wave number 7y of surface waves,
which create and balance these reactions.

4. The evaluation of kinematic characteristics of Relay
waves in the half-space with nanostructures elements on
its surface

Amplitude values u, (Xk) (k = 1,2,3) of the components
of the displacement vector ii(x, )e™ are determined by Ne-
wton’s second law in differential form, which for an isotropic
to elastic properties of solid in the absence of bulk forces is
written as follows:

(u+ 2G)graddivii(x,) - Grotrotii(x, ) +
(24)
+p,07t(x,)=0Vx, €V,

where pu and G - are Lame elastic constants of an isotr-
opic solid; p, - is a density of a material; V - is a half-space
volume.

The displacement vector ﬁ(xk) of material particles, as,
indeed, the vector of any physical nature, can be written in
the form of Helmholtz representation [3], i.e.:

ii(x,) = grad®(x, ) + rot ¥(x, ), (25)

where ®(x,) and ¥(x,) - are scalar and vector pote-
ntials of the wave field of elastic displacements of material
particles of solid.

If div‘i’(xk) =0 in any point of solid, then, substituting
the Helmholtz representation (25) into the steady harmonic
oscillations equation (24), we can get two of the Laplace
equation of the form:

(26)

V’E (k,)=0,

27

Where E,(k,) = V’®(x,) + ki®(x,),
Z,(k,)=-rotrot ¥(x,) + k¥(x,)

are functions; k, and k_ - are wave numbers of longitudinal
(index ¢) and shift (index s) of noninteracting harmonic
waves, and k, = /v, and k, = ®/v_, where v, and v, - are
velocities of longitudinal and shift waves, respectively, with

values v, = 1l(p. + 2G)/p0 and v, =/G/p, .

Since the solutions of the Laplace equation (3.3) and
(3.4) are harmonic functions [7] certainly bounded above,

the harmonic functions Z,(k,) and Z,(k,) are constants,
and are not equal. If the domain of existence of solutions
of the Laplace equation is unbounded (space, half-space,
infinite layer, and infinite rod), these constants are zero
(otherwise it violates the principle of physical feasibility of
the process) and the potentials ®(x,) and ¥(x, ) satisfy the
Helmholtz equation, i. e.:

Vo (x,) + ki®(x,)=0, (28)

—totrot P(x,) + k¥(x,)=0. (29)

It is easy to show that the displacement field of the ma-
terial particles of an elastic half-space, where components
of the displacement vector are given by (1), is completely
determined by the following potentials:

D(x,,%;) = D(x;)e™™ , W (x,,%,) = W, (x;)e ™, (30)

where the components of the vector potential ¥, (x,,x;)
and W,(x,,x,) are equal to zero. Substituting the assumed

solutions (3.7) in the Helmholtz equation (28) and (29), we
obtain:

ach(XS) 82‘1"1(x3)
ox; ox;

where a=.y* -k and B=./y* -k’ - are lagging in

phase by the angle ©/2 components Ox, of the wave vector

k,andk,.

- o’®(x,)=0, - B, (x,)=0, (31)

The solutions of equation (3.8), which do not contradict
the physical sense of the problem, are as follows:

D(x,) = Ae™, ¥, (x,) = Be™, (32)

where A and B - are constants, which are determined
from the conditions of implementation of Newton’s third law
to the x, = Osurface of an elastic half-space, i.e., from the
boundary conditions (1.5) and (1.6). In respect to an isotro-
pic solid, moduli of elasticity are determined by the Lame co-
nstants u and G moreover ¢, = u8,;8, + G(3,5; + Sﬂﬁjk),
where Sij ,..,,B.ik are Kronecker symbols, the left part of these
conditions are written as follows:

045 (X,,%,) = 2Ge (X%, ) + udivii(x,,x,) = 33)
=2Ge 33 (Xz ’XS) - k?q)(xz ’XB)’

(9 (xz,x3)= 2Ge " (XZ,XS), (34)

where 833(X2 ,X3) =du 3(X2 ,)(3)/29543 - is compression-st-

retching deformation along the axis Ox,;

832()(2,)43):[auQ(Xz,xs)/éx3 + auS(XQ,XB)/sz]/2 - is

shearing strain in the plane x,0x, .

Substituting the Helmholtz representation (25) solu-
tions (32), we obtain u,(x,,x,)= 0 the other two compo-
nents of the amplitude values of the displacement vector
of the material particles are defined by the following ex-
pressions:

1, (x,,%,) = (—iyAe®™ + BBe e ™ (35)



Uy (%,,%,) = (0Ae™ + iyBe? Je ™ (36)

Defined by (3.12) and (3.13) displacement vector comp-

onents correspond to the following values of the amplitudes
of spatially developed the strain tensor components:

€(x,,%,) = (OLQAe‘“f* +iyBBeP )e—iyxz , 37)

£5,(%,, %) :%[—2iy(er‘“f‘ +(v?+ BB Je™ . (38)

Substituting (3.14) and (3.15) in the determination of
mechanical stresses (3.10) and (3.11), we obtain:

O (X, %;) = G (v* + B?) Ae™ + 2iBBe™ |e™™, (39
03 (X,,%;) = G -2iyoAe™ +(v* +B?)Be™ |e™™ . (40)

From (3.13) u (3.15) u,(x,,0)=(=iyA + pB)e ™,

u,(x,,0) = (A + iBB)e ™™

and &, (0) =[-2iyA + (v* + B)B] 2.

Substituting these values into the definition of reactio-
ns n, and n;, and substituting results into the boundary
conditions (1.5) and (1.6), in the left sides of which values
of 6,(x,,0) and 6,(x,,0) are written, after obvious trans-
formations we obtain:

o, (0)A +io, (w)B=0, (41)

—io,, (0)A + o, (0)B=0, (42)

where:
o, (w)=y"+p*+ Nsich.*(kL);
11 GL 3
0,y (0) = 2B + NS yE; (kL)
12 GL 3
01y, (@) = 2700 + ONS[ WKZLE (ML) + you(k L)', (AL) |
Oy ((D) =7 +p +
+ NS[ 2BICLE (AL) + (v +B7) (kL) £, (ML) |
In writing the expressions for calculating the coefficients
a21 ((D)
and o, (®)
it was taken into account that m_, /G = p,LS/G = LS/v? |
where v =/G/p, - is shear wave velocity.
The homogeneous system of algebraic equations (41) and
(42) has nontrivial (non-zero) solutions for the coefficients

A and B only if the determinant Ay of this system is equal
to zero, i. e.:

A =0, (@) oy, (o) — oy, (o)o,, (0)=0. (43)

The relation (43) has a sense of the condition of ex-
istence of Rayleigh surface wave at a given frequency
o and can be read as follows: constants A and B are
not equal to zero, i. e. in the elastic half-space with a
nanostructured surface Rayleigh wave propagates, only
in the case when the wave numbers o and y satisfy the
equation (43).

It is easy to see that at zero surface density (N =0 ) of
nanostructures, condition (43) becomes to the standard
[3] condition for the existence of classical Rayleigh wave,
ie.

AR\NZO = (yz + 32)2 —47%0B=0.

If N#0, as it follows from (43), the wave number y
becomes non-linear dependence on frequency, i. e., there
is frequency dispersion of the velocity propagation and,
consequently, there are differences between the phase
and group velocities of propagation of individual spectral
components in the case of existence of pulse ultrasonic sig-
nals in a half-space. The frequency dispersion particularly
appears at the resonant frequencies of nanostructural ele-
ments. Because on the resonance frequency the oscillating
system (nanostructure element) consumes from the source
of oscillations, i. e., from the surface wave, the maximum
amount of energy, it can be argued that the velocity of
propagation of surface waves at these frequencies will de-
crease sharply.

The most significant difference from the classical Ra-
yleigh wave is in the fact that due to the energy transfers
between the material particles of the elastic half-space and
nanostructured elements, in which energy is dissipated,
the wave number y in equation (43) should be considered
as a complex number where imaginary part is dramatica-
Ily increased at resonance frequencies of nanostructural
elements.

5. Conclusion

In this paper the feasibility of the development of su-
rface acoustic wave sensors with ZnO nanostructures as
sensing element is shown.

The process of propagation of a plane harmonic sur-
face wave in an isotropic elastic half-space with the rod
nanostructures on surface is observed. The frequency
equation from which we can determine the velocity of
propagation of a surface wave for a given geometrical pa-
rameters of the rod nanostructures, the values of the de-
nsity of their distribution on the surface of the half-space
and added masses is obtained. It is clear that variation of
these parameters can change (control) the speed of prop-
agation of a surface wave.

Performed simulation extends the range of tools for fu-
rther development of nanorods-based SAW sensors due to
comprehensive math-based explanation of their operating
principles.

Further continuation of the simulation and adjustment
of hydrothermal method of ZnO nanorods growing will
simplify the creation of reliable and sensitive sensors on
surface acoustic waves.
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Abstract

In spite of the wide application of SAW devices the investigation of novel sensitive materials, their synthesis
methods is continuously carried out. For further quality and accuracy enhancement, simplification of manufact-
uring and improvement of applying the simulation of novel acoustic wave sensors operation should be performed.
In ZnO nanorods-based sensors propagating surface wave imparts following motion to the ends of hydrothermally
grown between two interdigitated transducers rod nanostructures: vertical displacement, horizontal displacement
and rotations in plane. Thus, response of nanostructured elements to that displacements and kinematic charact-
eristics of Relay waves are evaluated. During the simulation the frequency equation from which we can determ-
ine the velocity of propagation of a surface wave for a given geometrical parameters of the rod nanostructures,
the values of the density of their distribution on the surface of the half-space and added masses is obtained. This
model simplifies the development and analysis of the results from ZnO nanorods-based SAW sensors for biologic-
al and chemical agents, including molecules, cells and tissues. Performed simulation extends the range of tools for
Surther development of nanorods-based SAW sensors due to comprehensive math-based explanation of their ope-
rating principles

Keywords: sensor, acoustic wave, ZnO nanorods, hydrothermal method, elastic half-space



