
16

Восточно-Европейский журнал передовых технологий ISSN 1729-3774 6/12 ( 60 ) 2012

© O. Bogdan, A. Orlov, O. Petrischev, V. Ulianova, 2012

Zn O NANOSTRUCTURES 
AS SENSING ELEMENT 

OF ACOUSTIC WAVE 
SENSOR

O .  B o g d a n
Deputy director of Scientific and Research Institute of 

Applied Electronics**
Contact tel.: (044) 236-96-76

E-mail: bogdan@ee.ntu-kpi.kiev.ua
A .  O r l o v

PhD, Associate Professor*
Contact tel.: (044) 599-18-12

E-mail: a.orlov@kpi.ua
O .  P e t r i s c h e v

DPhil, Associate Professor
Department of Acoustics and Acoustoelectronics**

Contact tel.: (039) 493-66-11
E-mail: om.petrischev@aae.kpi.ua

V .  U l i a n o v a
Postgraduate student*

Contact tel.: 093-764-95-73
E-mail: v.ulianova@gmail.com

*Department of Microelectronics**
**National Technical University of Ukraine “Kyiv 

Polytechnic Institute”
37, Prospect Peremogy, Kiev, Ukraine,03056 

Показано можливість створення сенсора 
на акустичних хвилях із застосуванням нано-
стрижнів ZnO. Отримано частотне рівняння, 
що дозволить визначати швидкість поширен-
ня поверхневої хвилі при заданих геометрич-
них параметрах стрижневих наноструктур, 
відомій густині їх розміщення на поверхні, а 
також керувати цією швидкістю, змінюючи 
указані параметри. Побудована модель спро-
щує процес розробки сенсорів та аналіз отри-
маних за допомогою сенсорів на акустичних 
хвилях результатів

Ключові слова: сенсор, акустична хвиля, 
нанострижні ZnO, гідротермальний метод, 
пружний півпростір

Показана возможность создания сенсо-
ра на акустических волнах с использовани-
ем наностержней ZnO. Получено частот-
ное уравнение, которое позволит определять 
скорость распространения поверхностной 
волны при заданных геометрических параме-
трах стержневых наноструктур, известной 
плотности их размещения на поверхности, а 
также управлять этой скоростью, изменяя 
указанные параметры. Построенная модель 
упрощает процесс разработки сенсоров и ана-
лиз полученных с помощью сенсоров на аку-
стических волнах результатов

Ключевые слова: сенсор, акустическая 
волна, наностержни ZnO, гидротермальный 
метод, упругое полупространство

УДК 53.082.4; 534.222.1

1. Introduction

Nowadays acoustic wave devices are widely applied in 
many industrial and scientific fields ranging from mobile 
devices and wireless communication, pressure and viscosity 
sensors to novel biosensors for DNA detection. Major adva-
ntages of acoustic wave sensors include: single sided planar 
structure, the ability to interact directly with the sensing 
medium, high sensitivity, low hysteresis, small size, direct 
frequency output signal and low power consumption. Acou-
stic wave sensors have great potential for further application 
in the systems of analysis and quality control of chemical 
and biological agents. The investigation of novel sensitive 
materials, their synthesis methods is an actual problem and 
continuously carried out. For further quality and accuracy 
enhancement, simplification of manufacturing and impro-
vement of applying the simulation of novel acoustic wave 
sensors operation should be performed.

At the same time ZnO became a promising component 
in a wide range of nanoscale devices for future application. 
It is an attractive material for electronics, photonics and se-
nsing due to having exotic and versatile properties such as 
mechanical, piezoelectric, optical and electrical properties, 
biocompatibility, nontoxicity, chemical and photochemical 
stability, high specific surface area, optical transparency, 
electrochemical activities and so on [1]. On other hand, 

ZnO is attracting considerable attention due to its un-
ique ability to form a variety of nanostructures such as 
nanowires, nanoribbons/nanobels, nanocombs, nanorings, 
nanocages, nanocastle, nanofibers etc. ZnO nanorods/nan-
owires have been employed as bio- or gas sensitive element 
of acoustic wave sensors [2]. ZnO nanorods provide giant 
effective surface area and strong bonding sites and this 
way allow more precision managing of their properties and 
characteristics.

It is known [3] that a propagation velocity of ultrasonic 
waves in solids is determined by the shape of the surface al-
ong which the elastic disturbances propagate, by resiliency 
and inertia (density) of the continuum. Rayleigh surface 
waves or, generally speaking, surface acoustic waves obtain 
in a narrow not more than two wavelengths near-surface 
layer of a solid. It is suggested that the propagation velocity 
of Rayleigh (surface) waves can be controlled by changing of 
inertial properties of the material particles, which are locat-
ed near the surface of an elastic half-space.

In this paper we suggest the simulation of the plane 
harmonic surface wave propagation process in an isotropic 
elastic half-space with rod nanostructures on surface for 
determining of the propagation velocity of surface waves 
at given geometric parameters of the rod nanostructures, 
at certain density of their placement on the surface of the 
half-space and attached masses. This model will simplify the 
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development of ZnO nanorods SAW sensors and analysis of 
the results.

2. SAW sensors with ZnO nanorods and their simulation.

Problem definition
To obtain nanorods on surfaces of different materials 

such methods as vapor phase synthesis, laser ablation, elect-
rochemical method, biotemplating method, chemical method 
are applied [4]. In particular, hydrothermal method allows 
synthesis of ordered rod structures which satisfy the requ-
irements for acoustic wave sensors design at the same time 
being a rather simple and inexpensive.

Fig. 1 shows schematically the structure of the acoustic 
wave sensor using ZnO nanorods. Thus, two interdigitated 
transducers are formed on the piezoelectric substrate by ph-
otolithography, between them ZnO nanorods are grown by 
hydrothermal method.

Fig. 1. The structure of the acoustic wave sensor:
1, 2 – interdigitated transducers, 3 - piezoelectric substrate, 

4- array of ZnO nanostructures

Due to the fact that propagation velocity of ultrasonic 
waves in solids is determined by the shape of the surface 
along which the elastic disturbances propagate, by resiliency 
and inertia (density) of the continuum, propagation velocity 
of Rayleigh (surface) waves can be controlled by changing 
of inertial properties of the material particles, which are lo-
cated near the surface of an elastic half-space. Thus, for the 
application of shown sensor design it is necessary to carry 
out preliminary consideration of harmonic surface waves 
propagation in an elastic half-space on which surface rod 
nanostructures are located. It is necessary to build a model 
by which the assessment of propagation velocity of surface 
waves at given geometric parameters of the rod-shaped nan-
ostructures, at certain density values of their placement on 
the surface of half-space and attached masses will be feasible. 
Based on this model it will be possible to control propagation 
velocity of surface waves by changing these parameters.

The elastic half-space (Fig. 2) is considered. Rod nanos-
tructures are located on its surface. Rod nanostructures are 
absolutely rigidly connected to the surface of the half-space 
at the base, i. e. in the plane x3 0= . The rods are arranged 
equidistantly along the axes Ox1  and Ox2  with the step ∆ , 
so that the areal density on the surface of the half-space is 
N = 1 2∆ . The point masses M0  are located at the free ends 
of the rod nanostructures. To fix the idea, we assume that all 
the nanostructures have the same geometric parameters, i. e. 
length L  and unvarying along the length of the rod cross-

section, which has the shape of a ring with the radii R1  and R2  
( )R R2 1> , (Fig. 2) or a circle with the radius R2 . The rod 
nanostructures don’t interact with each other, i. e. an energy 
transfer over the surface of the half- space is absent.

Suppose, a plane harmonic wave exists in the volume of 
the elastic half-space x3 0≤( ) , its kinematic characterist-
ics are determined by the displacement vector of material 
particles 



u x x ei t
2 3,( ) ω , here 



u x x2 3,( )  is the spatially dev-
eloped amplitude of the displacement vector of material 
particles; i = −1 – the imaginary unit; ω  – is known an-
gular frequency of the sign change of displacement; t  – is 
time. We assume that the elastic wave propagates from left 
to right along axis Ox2 (Fig. 2). In this case the compone-
nts of the vector 



u x x2 3,( )  must be determined as follows:

u x x1 2 3 0,( ) = , u x x u x e i x
2 2 3 2 3

2,( ) = ( ) − γ , 

u x x u x e i x
3 2 3 3 3

2,( ) = ( ) − γ , (1)

here γ  is the wave number of the plane surface wave - the 
value to be determined in the course of the problem solving.

Fig. 2. The analytical model of the problem

Propagating surface wave imparts following motion to 
ends x3 0= of rod nanostructures:

- vertical displacement u e i x
3 0 2( ) − γ ;

- horizontal displacement u e i x
2 0 2( ) − γ ;

- rotations in x Ox3 2  plane by ψ ε= ( )23 2 0x , ,

where ε23 2 3 2 3 3 2 2x x u x u x,( ) = ∂ ∂ + ∂ ∂( )  is the elastic 
strain tensor components.

Obviously, that ψ ε γ= ( ) −
23 0 2e i x ,

where ε γ23 3 2 3 3 0
0 0 2

3
( ) = − ( ) + ∂ ( ) ∂( )=

i u u x x
x

.

It is clear that the above written expressions for the disp-
lacements of the ends of the rod nanostructures are accurate 
only in the case when the strong inequality 2 2R R<< λ  holds, 
i. e. when the maximum size of the cross-sectional diameter 
of the nanotube or nanorod substantially smaller than the 
Rayleigh wave λR . Otherwise, it’s needed to use averaged 
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over the cross sectional area of the rod nanostructures kine-
matic characteristics. In the following exposition we assume 
that the inequality 2 2R R<< λ  holds.

In this case, the vertical movements u e i x
3 0 2( ) − γ  initiate 

longitudinal oscillations in the nanorod, which, as a first 
approximation, can be considered as one-dimensional. In 
this case the vertical displacements w x ei t

3 3( ) ω  of material 
particles of the rod satisfy Newton’s second law in different-
ial form, which is written in the form:

∂ ( )
∂

+ ( ) = ∀ ∈[ ]
2

3 3

3
2

2
3 3 30 0

w x

x
k w x x L, , (2)

where k vст= ω is the wave number of longitudinal wa-
ves in a rod; v Eст = ρ0 is the rod velocity; E and ρ0  are 
Young’s modulus and the density of the rod material, resp-
ectively.

Horizontal displacements and rotations in the cross sect-
ion x3 0=  cause harmonic oscillations of the lateral bending 
in the rod nanostructure. At the same time the longitudinal 
displacements w x ei t

2 3( ) ω of material particles of the rod 
satisfy the standard equation of the lateral bending, which 
is written in the form

∂ ( )
∂

− ( ) = ∀ ∈[ ]
4

2 3

3
4

4
2 3 30 0

w x

x
w x x Lλ , , (3)

where λ  is the wave number of the harmonic os-
cillations of the lateral bending, and λ ω ρ4 2

0 1= ( )S EJ ; 
S R R= −( )π 2

2
1
2  is the cross-sectional area of the rod; J1  is 

the moment of inertia of the cross-section of the rod about 
Ox1 axis. The geometric characteristic J1  of the rod cross-
section is calculated as follows [5]:

J x dS d d R R
R

R

S
1 2

2 3 2
2
4

1
4

0

2

1

2

= = = −( )∫∫∫ ρ φ φ ρ π
π

sin . (4)

From (4) it follows that for the solid rod R1 0=( )  geom-
etric characteristic is J R1 2

4= π .
Normal stresses σ33 0∗ ( ) or normal forces N S3 330 0∗ ∗( ) = ( )σ

appear as a result of compression - tension oscillations of a 
nanorod in its cross section x3 0= . The surface density of 
the normal forces is n N N SN3 3 330 0∗ ∗ ∗= ( ) = ( )σ .

Oscillations of the lateral bending form the moment of 
flection M8 and the lateral force Q 0( )  in the cross-section 
x3 0=  of the fixed nanorod. The surface density of lateral 
forces is n Q N2 0∗ = ( ) .

Thus, at the propagation of a plane surface wave in the 
half-space, on which surface x3 0= nanostructured elements 
are located, the kinematic characteristics of elastic waves 
must satisfy the following boundary conditions:

c
u x x

x
nkl

k x

33
2 3

0

3

3

∂ ( )
∂

=
=

∗,
, k l, ,= 2 3 , (5)

2 32
2 3

0

2

3

c
u x x

x
nkl

k x

∂ ( )
∂

=
=

∗,
, k l, ,= 2 3 , (6)

where c kl33 and c kl32 are the matrix elements of coefficie-
nts of elasticity of the half-space material; in (1.5) and (1.6) 
summation over repeated indices k  and l  is implied.

The last relations completely determine the sequence 
of steps for solving the problem of controlling the speed of 
propagation of surface acoustic waves. First, the density n2

∗  
and n3

∗  of tangential and normal loads is evaluated, and then 
the components of the displacement vector u x e i x

2 3
2( ) − γ and 

u x e i x
3 3

2( ) − γ which satisfy the boundary conditions (5) and 
(6) are determined. Desired wave number γ and phase vel-
ocity vf = ω γ of surface waves are determined when these 
conditions are completed.

3. The response simulation of the nanostructured 
elements

We first define the response n3
∗ of the array of nanostr-

uctures.
The solution of equation (2) is obvious:

w x A kx B kx3 3 3 3( ) = +cos sin , (7)

where A  and B  are constants to be determined.
On the surface x3 0=  the displacement of the end x3 0=

of the rod w A3 0( ) =  have to be equal to the displacement u e i x
3 0 2( ) − γ  

of element of the half-space. So A u e i x= ( ) −
3 0 2γ . According 

to Newton’s third law x L3 = :

ES
w x

x
M w x

x L
x L

∂ ( )
∂

= − ( )
=

=

3 3

3

2
0 3 3

3

3

ω . (8)

Substituting in (8) the expression (7) after obvious tra-
nsformations, we obtain the following result:

B A
kL kL kL

kL kL kL
u e F kLi x= −

−( )
+( ) = − ( ) ( )−ξ

ξ
γcos sin

sin cos 3 30 2 , (9)

where ξ ρ= ( )M LS0 0  - is the relative mass of a point on 
the end of the rod x L3 =  (Fig. 2); F kL3 ( )  - is a frequency-
dependent function.

A normal stress σ33 3
∗ ( )x  in a random cross-section of the 

rod is defined as follows:

σ

γ

33 3
3 3

3

3 3 3 30 2

∗

−

( ) =
∂ ( )

∂
=

= ( ) − − ( ) 

x E
w x

x

kEu e kx F kL kxi x sin cos  .

 (10)

From (10) σ γ
33 3 30 0 2∗ −( ) = − ( ) ( )kEF kL u e i x .

n N
ES
L

F kL u e i x
3 3 3 0 2∗ ∗ −= − ( ) ( ) γ , (11)

where F kL kLF kL3 3
∗ ( ) = ( ) .

Fig. 3 shows graphs of the frequency dependence of the 
functions F kL3

∗ ( ) that were calculated for different values of
ξ  and the fixed quality factor Q ст = 100  of material of the 
nanorod.

Fig. 3, b shows shifts large-scaled resonance frequencies 
of longitudinal oscillations of rods at small values of the rel-
ative mass of a point on the end of the rod x L3 = . The incr-
ease in the mass M0 of a point is accompanied by an increase 
in the resonant frequency of the oscillating system.
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Fig. 3. Graphs of the frequency dependence of the functions
F kL3

∗ ( )
The solution of the differential equation (3) has the 

form:

w x C x D x C sh x D ch x2 3 1 3 1 3 2 3 2 3( ) = + + +sin cosλ λ λ λ , (12)

where C1 , D1 , C2  and D2  - are constants to be deter-
mined.

The solution of (12) should implement the following 
conditions.

First of all, the conditions of the kinematic coupling of 
the rod cross-section x3 0= with an element of the surface 
of the elastic half-space must be performed. The longitudinal 
displacement and rotation angles must be equal. The dynam-
ic conditions at the end x L3 = must be performed too. There 
are vanishing of moment of flection and equation of the la-
teral force to the force of inertia of a point mass (Newton’s 
third law). These speculations lead to the following system 
of equations for desired constants C1 , D1 , C2  and D2 .

D D u e i x
1 2 2 0 2+ = ( ) − γ , (13)

C C e i x
1 2 23

1
0 2+ = ( ) −

λ
ε γ , (14)

− − + + =C L D L C sh L D ch L1 1 2 2 0sin cosλ λ λ λ , (15)

C L L L D L L L

C ch L L sh L D

1 1

2

− +( ) + +( ) +

+ +( ) +

cos sin sin cosλ λ ξ λ λ λ ξ λ

λ λ ξ λ 22 0sh L L ch Lλ λ ξ λ+( ) =
, (16)

where ξ ρ= ( )M LS0 0  - is the relative mass of a point on 
the end of the rod x L3 = .

The equation determinant D L0 λ ξ,( )  of system (13) 
– (16) is written as follows:

D L

Lch L L sh L L ch L L

0

2 1

λ ξ

λ λ λ ξ λ λ λ λ

,

cos cos sin .

( ) =

= + + −( ) 

 (17)

It is obvious that the equation

D L0 0λ ξ,( ) = , (18)

has infinite set of roots λnL  ( n = 1 2, ,...  - number of the 
root), which correspond to an infinite set of resonant frequ-
encies ωp

n( )  of oscillating system.
Because λL g kL=  is the dimensionless wave-

number, where g  - dimensionless geometric parameter 

g SL J= 2
1

4  (for a given cross-sectional shape of the nanot-

ube g L R R= +( )2
2
2

1
24 ), obviously λn nL g k L= .

For nanotubes with dimensions L m= −10 6 , R nm2 50= , 
R nm1 25=  ( g = 4 2295, ) dimensionless frequency k L1  de-
pend on parameter ξ  like that:

ξ = 0 , k L1 1 231766= , ; ξ = 0 0001, , k L1 1 231519= , ; 
ξ = 0 001, , k L1 1 229317= , ; ξ = 0 01, , k L1 1 208592= , ; ξ = 0 1, , 
k L1 1 082022= , .

It is clearly seen that the increase in mass M0 of a point is 
accompanied by a decrease of the first resonance frequency 
of lateral oscillations of a nanorod. It can be noted that the 
value of the first resonance frequency of lateral oscillations 
are more sensitive to changes in parameter ξ  than the value 
of the first resonance frequency of longitudinal oscillations 
of a rod.

The lateral force Q x EJ w x x3 1
3

2 3 3
3( ) = ∂ ( ) ∂ at x3 0= , i.e., 

in the plane of the fixing of the nanotube on the surface of 
the elastic half-space defined by the following equation:

Q x EJ C C
x3 0 1

3
1 2

3
( ) = − +( )

=
λ , (19)

Where constants C1  and C2 , defined from (13) – (16) 
are:

C
e

D L
u Lsh L L Lch L

i x

1
0

2

2

0 2= ( ) ( ) + +(
− γ

λ ξ
λ λ λ ξ λ λ

,
cos cos

+ ) +
( )

+ +( )

sin cos sinλ λ

ε
λ

λ λ λ ξ λ λLch L Lch L L Lsh L23 0
1 2 ,

C
e

D L

u Lsh L L Lch L Lch L

i x

2
0

2

2

0 2

= ( ) ×

× − ( ) + +

− γ

λ ξ

λ λ λ ξ λ λ λ λ

,

cos cos sin(( ) +

+
( )

×

× − − +( )

ε
λ

λ λ λ ξ λ λ λ λ

23 0

1 2sin sin cos .Lsh L L Lsh L Lch L

 (20)

Substituting (20) in the definition (16) of the lateral 
force we define:

Q x m e u f L L f L
x ст

i x
3 0

2
2 1 23 2

3

22 0 0( ) = − ( ) ( )+ ( ) ( ) =

−ω λ ε λγ , (21)

where m LSст = ρ0  - is a mass of a nanorod;

f L
LD L

Lsh L L Lch L

Lch L

1
0

1
2λ

λ λ ξ
λ λ λ ξ λ λ

λ λ

( ) = ( ) +( +

+ )
,

cos cos

sin ,

f L
L D L

Lsh L L Lch L2 2

0

1
2λ

λ λ ξ
λ λ λ ξ λ λ( ) =

( ) ( )
+( )

,
sin sin . (22)
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The tangential load or density n2
∗  of lateral forces on 

the density of the surface of an elastic half-space x3 0= is 
proportional to the surface density N of sources of lateral 
forces, i.e.:

n NQ x

Nm e u f L L f L

x

ст
i x

2 3 0

2
2 1 23 2

3

22 0 0

∗
=

−

= ( ) =

= − ( ) ( ) + ( ) ( ) ω λ ε λγ
 .

 (23)

Thus, the reactions n2
∗ and n3

∗  of nanostructured eleme-
nts on the surface of an elastic half-space are defined. Now 
we need to determine the wave number γ of surface waves, 
which create and balance these reactions.

4. The evaluation of kinematic characteristics of Relay 
waves in the half-space with nanostructures elements on 

its surface

Amplitude values u x kk k( ) =( )1 2 3, ,  of the components 
of the displacement vector 



u x ek
i t( ) ω  are determined by Ne-

wton’s second law in differential form, which for an isotropic 
to elastic properties of solid in the absence of bulk forces is 
written as follows:

µ

ρ ω

+( ) ( ) − ( ) +

+ ( ) = ∀ ∈

2

00
2

G graddiv u x G rotrot u x

u x x V

k k

k k

 



,
 (24)

where µ  and G  - are Lame elastic constants of an isotr-
opic solid; ρ0  - is a density of a material; V  - is a half-space 
volume.

The displacement vector 


u xk( ) of material particles, as, 
indeed, the vector of any physical nature, can be written in 
the form of Helmholtz representation [3], i.e.:





u x grad x rot xk k k( ) = ( ) + ( )Φ Ψ , (25)

where Φ xk( )  and 


Ψ xk( )  - are scalar and vector pote-
ntials of the wave field of elastic displacements of material 
particles of solid.

If div xk



Ψ( ) = 0  in any point of solid, then, substituting 
the Helmholtz representation (25) into the steady harmonic 
oscillations equation (24), we can get two of the Laplace 
equation of the form:

∇ ( ) =2
1 0Ξ k



, (26)

∇ ( ) =2
1 0Ξ ks , (27)

Where Ξ Φ Φ1
2 2k x k xk k 

( ) = ∇ ( ) + ( ) ,

Ξ Ψ Ψ2
2k rotrot x k xk s k

 ( ) = − ( ) + ( )

are functions; k


 and ks  - are wave numbers of longitudinal 
(index  ) and shift (index s ) of noninteracting harmonic 
waves, and k v

 

= ω  and k vs s= ω , where v


 and vs  - are 
velocities of longitudinal and shift waves, respectively, with 
values v G



= +( )µ ρ2 0
 and v Gs = ρ0 .

Since the solutions of the Laplace equation (3.3) and 
(3.4) are harmonic functions [7] certainly bounded above, 

the harmonic functions Ξ1 k


( )  and Ξ2 ks( )  are constants, 
and are not equal. If the domain of existence of solutions 
of the Laplace equation is unbounded (space, half-space, 
infinite layer, and infinite rod), these constants are zero 
(otherwise it violates the principle of physical feasibility of 
the process) and the potentials Φ xk( )  and 



Ψ xk( ) satisfy the 
Helmholtz equation, i. e.:

∇ ( ) + ( ) =2 2 0Φ Φx k xk k

, (28)

− ( ) + ( ) =rotrot x k xk s k

 

Ψ Ψ2 0 . (29)

It is easy to show that the displacement field of the ma-
terial particles of an elastic half-space, where components 
of the displacement vector are given by (1), is completely 
determined by the following potentials:

Φ Φx x x e i x
2 3 3

2,( ) = ( ) − γ , Ψ Ψ1 2 3 1 3
2x x x e i x,( ) = ( ) − γ , (30)

where the components of the vector potential Ψ2 2 3x x,( )
and Ψ3 2 3x x,( )  are equal to zero. Substituting the assumed 
solutions (3.7) in the Helmholtz equation (28) and (29), we 
obtain:

∂ ( )
∂

− ( ) =
2

3

3
2

2
3 0

Φ
Φ

x

x
xα , 

∂ ( )
∂

− ( ) =
2

1 3

3
2

2
1 3 0

Ψ
Ψ

x

x
xβ , (31)

where α γ= −2 2k


 and β γ= −2 2ks  - are lagging in 
phase by the angle π 2  components Ox3  of the wave vector 




k and


ks .

The solutions of equation (3.8), which do not contradict 
the physical sense of the problem, are as follows:

Φ x Ae x
3

3( ) = α , Ψ1 3
3x Be x( ) = β , (32)

where A  and B  - are constants, which are determined 
from the conditions of implementation of Newton’s third law 
to the x3 0= surface of an elastic half-space, i.e., from the 
boundary conditions (1.5) and (1.6). In respect to an isotro-
pic solid, moduli of elasticity are determined by the Lame co-
nstants µ  and G  moreover c Gijkl ij kl ik jl il jk= + +( )µδ δ δ δ δ δ , 
where δ δij jk,..,,  are Kronecker symbols, the left part of these 
conditions are written as follows:

σ ε µ

ε

33 2 3 33 2 3 2 3

33 2 3
2

2

2

2

x x G x x div u x x

G x x k x

, , ,

,

( ) = ( ) + ( ) =

= ( ) −





Φ ,, ,x3( )
 (33)

σ ε32 2 3 32 2 32x x G x x, ,( ) = ( ) , (34)

where ε
33 2 3 3 2 3 3x x u x x x, ,( ) = ∂ ( ) ∂  - is compression-st-

retching deformation along the axis Ox3 ;

ε
32 2 3 2 2 3 3 3 2 3 2 2x x u x x x u x x x, , ,( ) = ∂ ( ) ∂ + ∂ ( ) ∂   - is 

shearing strain in the plane x Ox3 2 .

Substituting the Helmholtz representation (25) solu-
tions (32), we obtain u x x1 2 3 0,( ) = the other two compo-
nents of the amplitude values of the displacement vector 
of the material particles are defined by the following ex-
pressions:

u x x i Ae Be ex x i x
2 2 3

3 3 2,( ) = − +( ) −γ βα β γ , (35)
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u x x Ae i Be ex x i x
3 2 3

3 3 2,( ) = +( ) −α γα β γ . (36)

Defined by (3.12) and (3.13) displacement vector comp-
onents correspond to the following values of the amplitudes 
of spatially developed the strain tensor components:

ε α γβα β γ
33 2 3

2 3 3 2x x Ae i Be ex x i x,( ) = +( ) − , (37)

ε γα γ βα β γ
32 2 3

2 21
2

2 3 3 2x x i Ae Be ex x i x,( ) = − + +( ) 
− . (38)

Substituting (3.14) and (3.15) in the determination of 
mechanical stresses (3.10) and (3.11), we obtain:

σ γ β γβα β γ
33 2 3

2 2 3 3 22x x G Ae i Be ex x i x,( ) = +( ) + 
− , (39)

σ γα γ βα β γ
32 2 3

2 22 3 3 2x x G i Ae Be ex x i x,( ) = − + +( ) 
− . (40)

From (3.13) и (3.15) u x i A B e i x
2 2 0 2,( ) = − +( ) −γ β γ ,

u x A i B e i x
3 2 0 2,( ) = +( ) −α β γ

and ε γ γ β32
2 20 2 2( ) = − + +( ) i A B .

Substituting these values into the definition of reactio-
ns n2

∗  and n3
∗ , and substituting results into the boundary 

conditions (1.5) and (1.6), in the left sides of which values 
of σ32 2 0x ,( )  and σ33 2 0x ,( )  are written, after obvious trans-
formations we obtain:

α ω α ω11 12 0( ) + ( ) =A i B , (41)

− ( ) + ( ) =i A Bα ω α ω21 22 0 , (42)

where:

α ω γ β α11
2 2

3( ) = + + ( )∗NS
E

GL
F kL ;

α ω γβ γ12 32( ) = + ( )∗NS
E

GL
F kL ;

α ω γα γ λ γα λ21
2

1

2

22 2( ) = + ( ) + ( ) ( )



NS k Lf L k L f Ls s ,

α ω γ β

β λ γ β λ

22
2 2

2
1

2 2 2

22

( ) = + +

+ ( ) + +( )( ) ( )



NS k Lf L k L f Ls s .

In writing the expressions for calculating the coefficients 
α ω21 ( )

and α ω22 ( )

it was taken into account that m G LS G LS vст s= =ρ0
2 , 

where v Gs = ρ0  - is shear wave velocity.

The homogeneous system of algebraic equations (41) and 
(42) has nontrivial (non-zero) solutions for the coefficients 
A  and B  only if the determinant ∆R  of this system is equal 
to zero, i. e.:

∆R = ( ) ( ) − ( ) ( ) =α ω α ω α ω α ω11 22 12 21 0 . (43)

The relation (43) has a sense of the condition of ex-
istence of Rayleigh surface wave at a given frequency 
ω and can be read as follows: constants A  and B  are 
not equal to zero, i. e. in the elastic half-space with a 
nanostructured surface Rayleigh wave propagates, only 
in the case when the wave numbers α and γ  satisfy the 
equation (43).

It is easy to see that at zero surface density ( N = 0 ) of 
nanostructures, condition (43) becomes to the standard 
[3] condition for the existence of classical Rayleigh wave, 
i. e.

∆R N =
= +( ) − =

0

2 2 2 24 0γ β γ αβ .

If N ≠ 0 , as it follows from (43), the wave number γ
becomes non-linear dependence on frequency, i. e., there 
is frequency dispersion of the velocity propagation and, 
consequently, there are differences between the phase 
and group velocities of propagation of individual spectral 
components in the case of existence of pulse ultrasonic sig-
nals in a half-space. The frequency dispersion particularly 
appears at the resonant frequencies of nanostructural ele-
ments. Because on the resonance frequency the oscillating 
system (nanostructure element) consumes from the source 
of oscillations, i. e., from the surface wave, the maximum 
amount of energy, it can be argued that the velocity of 
propagation of surface waves at these frequencies will de-
crease sharply.

The most significant difference from the classical Ra-
yleigh wave is in the fact that due to the energy transfers 
between the material particles of the elastic half-space and 
nanostructured elements, in which energy is dissipated, 
the wave number γ  in equation (43) should be considered 
as a complex number where imaginary part is dramatica-
lly increased at resonance frequencies of nanostructural 
elements.

5. Conclusion

In this paper the feasibility of the development of su-
rface acoustic wave sensors with ZnO nanostructures as 
sensing element is shown.

The process of propagation of a plane harmonic sur-
face wave in an isotropic elastic half-space with the rod 
nanostructures on surface is observed. The frequency 
equation from which we can determine the velocity of 
propagation of a surface wave for a given geometrical pa-
rameters of the rod nanostructures, the values of the de-
nsity of their distribution on the surface of the half-space 
and added masses is obtained. It is clear that variation of 
these parameters can change (control) the speed of prop-
agation of a surface wave.

Performed simulation extends the range of tools for fu-
rther development of nanorods-based SAW sensors due to 
comprehensive math-based explanation of their operating 
principles.

Further continuation of the simulation and adjustment 
of hydrothermal method of ZnO nanorods growing will 
simplify the creation of reliable and sensitive sensors on 
surface acoustic waves.
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Abstract
In spite of the wide application of SAW devices the investigation of novel sensitive materials, their synthesis 

methods is continuously carried out. For further quality and accuracy enhancement, simplification of manufact-
uring and improvement of applying the simulation of novel acoustic wave sensors operation should be performed. 
In ZnO nanorods-based sensors propagating surface wave imparts following motion to the ends of hydrothermally 
grown between two interdigitated transducers rod nanostructures: vertical displacement, horizontal displacement 
and rotations in plane. Thus, response of nanostructured elements to that displacements and kinematic charact-
eristics of Relay waves are evaluated. During the simulation the frequency equation from which we can determ-
ine the velocity of propagation of a surface wave for a given geometrical parameters of the rod nanostructures, 
the values of the density of their distribution on the surface of the half-space and added masses is obtained. This 
model simplifies the development and analysis of the results from ZnO nanorods-based SAW sensors for biologic-
al and chemical agents, including molecules, cells and tissues. Performed simulation extends the range of tools for 
further development of nanorods-based SAW sensors due to comprehensive math-based explanation of their ope-
rating principles

Keywords: sensor, acoustic wave, ZnO nanorods, hydrothermal method, elastic half-space


