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1. Introduction

An important part of modern methods for automated 
control systems synthesis is selection of the desired char-
acteristic polynomial. The desired polynomial is usually 
selected from a known standard set. There are standard 
Butterworth polynomials [1], polynomials with binomial co-
efficients [2], Bessel polynomials [3], Graham and Lathrop 
polynomials [4], and so on.

In most cases, the roots locations of characteristic equa-
tions for closed-loop systems by standard polynomials have 
semi-empirical nature: they cannot be considered optimal 
according to some optimization criterion.

For example, when using the binomial characteristic 
polynomial, all roots of a characteristic equation are selected 
as identical, negative and real with a value of the module 0ω ,  
which determines the processing rate of the synthesized 
system. The Butterworth polynomial puts the roots on 
the half-circle with a radius 0ω  at equal angular distances  
(Fig. 1). The coefficients of Graham and Lathrop polynomi-
als are defined by mathematical modelling.

In this way, standard polynomials allow us to specify the 
necessary dynamic properties of the system only roughly. In 
doing so, almost identical transient processes with various 
ways of the pole locations can be obtained.

Fig. 1. Roots location by the Butterworth polynomial for a 
third-order system

The existing problematic issues in using standard 
characteristic polynomials for the regulators’ synthesis 
require finding innovative approaches to solving the 
problem of assigning desired dynamics to the automatic 
control systems. A mathematical apparatus should be 
suggested and be devoid of the disadvantages of standard 
characteristic polynomials. This determines the direction 
and relevance of the research that is presented in the 
study.
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2. Analysis of published data and statement of the 
problem

So far there have been no general guidelines developed 
for selecting a trajectory at which the poles should be placed 
for any automated control system.

The study [5] suggests carrying out the synthesis of 
characteristic polynomials according to certain quality prin-
ciples (for example, by an overshoot given with a uniform 
poles distribution on the circle). However, desirable polyno-
mials are considered to be known in advance.

In general, during the automated control system synthe-
sis by a standard characteristic polynomial, dynamic prop-
erties of the system are determined by its coefficients that 
remain unchanged in operating activities. Standard poly-
nomials cannot reflect dynamic features of real automated 
control systems because their behaviour is predetermined by 
poles distribution – that is, polynomial coefficients.

In some cases, the problem of control system synthesis is 
solved locally, only for specific equipment. Thus, the roots of 
the characteristic equation are located, taking into account 
the features and indeterminacies of a separate technical 
object [6, 7].

An expansion opportunity that is offered by the standard 
theory of characteristic polynomials is a generalized char-
acteristic polynomial method [8, 9]. This method allows an 
integrated approach to the location of zeros and poles of the 
transfer functions for automated electromechanical systems 
and provides an implementation of transition functions in a 
standard form.

In particular, synthesis of subordinated regulation sys-
tems by using a generalized characteristic polynomial can 
extend their dynamic properties because regulators in loops 
can be configured to perform not only a modular or symmet-
ric optimum but other standard forms of transition functions 
that are defined by standard characteristic polynomials.

However, the generalized characteristic polynomial 
method is still used as a reference to standard characteristic 
polynomials and, in this sense, does not bring any innova-
tion. Consequently, no matter how progressive a synthesis 
method is when it is based on standard polynomials, the 
possibility of the automated control system will be limited 
by a selected standard polynomial.

It is not necessary that the trajectories of roots move-
ment should be continuous functions. They can be piece-
wise monotonic functions or discrete argument functions 
(lattice functions). For example, the study [10] demon-
strates a system with a toggle property between two possi-
ble positions of poles, one of which is required in the accel-
eration mode, and the other – in operation. Discontinuous 
control in systems with a variable structure is connected 
with a similar approach. These systems have multiple regu-
lators implementations that can change during the control 
process [11, 12]. The structure, moments and durations of 
regulators switching are selected so as to provide the de-
sired control quality [13]. The resulting variation in output 
coordinates will be some time-expanded superposition of 
individual components influencing the regulator with a 
variable structure.

A convenient and clear alternative for imparting the 
desirable properties to systems in static and dynamic modes 
(without using standard characteristic polynomials) is not 
the desired trajectory of roots movement definition but the 
desired transition function determination. This function is 

not selected by the designer from some list of standard forms 
during regulators synthesis but is given solely on the basis 
of technological requirements and possibilities of technical 
implementation for a defined type of equipment. Such a tran-
sition function can be changed in the operation time of the 
machine, mechanism or process complex, providing quanti-
tatively and qualitatively new properties for an automated 
electromechanical system [14].

To improve opportunities for software implementation of 
the regulator, which allows to control the electromechanical 
system in that way, it is advisable for the desired transition 
function to be represented in a numerical form, i. e. as a set 
of operated coordinate values that change with a period T, 
which is relatively small with regard to the duration of the 
transition process (Fig. 2).

Fig. 2. An example of the desired transition function 
presentation

Thus, avoiding the use of standard characteristic polyno-
mials in the synthesis of automated control systems requires 
their replacement by another mathematical apparatus, which 
would be the basis for creating regulators with desired qual-
ity ratings in static and dynamic modes. The desired transi-
tion function in a numerical (discrete) form can be consid-
ered as such basis. This approach requires development of an 
appropriate method for performing synthesis of automated 
electromechanical systems.

3. The purpose and objectives of the study

The purpose of the study is to prove the possibility of 
analytical synthesis of regulators for a quantized form of 
desired transition functions and develop a mathematical 
apparatus for composing quantized transition functions of 
finite duration as entities that can replace standard charac-
teristic polynomials.

The objectives of the study are as follows:
– to analyse the possibility of using quantized transition 

functions of finite duration for discrete regulators synthesis;
– to suggest an analytical method for regulators synthe-

sis in open-loop automated control systems by representing 
the desired quantized transition functions as the amount of 
time for shifted Heaviside functions;

– to develop a mathematical apparatus for analytical 
determination of operator images for desired quantized tran-
sition functions of finite duration, relying only on the values 
of the signal levels at quantization points and a quantization 
period value.
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4. The features of discrete control systems

Control systems with signals discretization in some form 
are called discrete. The realization of the idea of splitting 
the desired transition function into parts should be solved 
directly by its application not to analogue systems with con-
tinuous signals but to discrete systems that have at one or 
more points a sequence of impulses or a digital code.

It should be noted that in addition to the term “discrete 
system” the other terms used are “digital system” and “im-
pulse system”. Digital systems are mostly known as systems 
in which the coded control signals are generated by comput-
er equipment. Impulse systems provide using impulse-ampli-
tude modulation and signal quantization by time. The term 
“discrete systems” is the most integrant; it describes systems 
that can have impulse signals as well as digital codes.

In research literature, the term “discrete signal” means a 
signal sampled in time (Fig. 3, a), whereas the term “digital 
signal” refers to a signal that is sampled both in time and 
level (Fig. 3, b).

a 

b 

Fig. 3. Comparison of discrete and digital signals:  
a – discrete signal; b – digital signal

Let us consider the concept of “discrete” and “digital” 
signal capabilities within the context of modern micropro-
cessor technology and software. It can be noted that the 
quantization signal level almost loses its meaning because of 
significant bit width for the data types that are implemented 
programmatically. For example, the data type double, which 
is used in the programming language C++, allows recording 
the minimal positive value of 1.7∙10-308 and the maximum 
positive value of 1.7∙10-308 with 15 significant digits after 
the decimal point [15]. Such capabilities are enough to solve 
most technical problems without taking into account quan-
tization by its level.

Specialized computer engineering and general-purpose 
computer equipment become more used to control technical 
objects. Such equipment is used at low levels (for local proj-

ects) as well as at higher levels (to control the technological 
lines or workshops) [16]. Microprocessor engineering is of-
ten used in control systems as discrete regulators or devices 
that perform direct digital control of power converters.

One of the most significant advantages of digital regu-
lators is their much greater flexibility in comparison with 
analogue regulators. The program of a digital regulator that 
is implemented by using a microcontroller can be changed 
according to new technological requirements or parameters 
of a control object at any time, without changing the hard-
ware of the control system.

It can be concluded that discrete regulators provide sig-
nificantly more opportunities regarding synthesis of control 
systems for technical objects. Thus, standard polynomials 
can be abandoned, and it requires searching for new ap-
proaches in sampling the desired transition functions and 
performing synthesis problem solving in a digital form.

5. Analytical regulators synthesis by a quantized form of 
the desired transition function

Output transition functions of technical systems, at 
changing the input actions or external disturbances, should 
satisfy certain requirements that are presented as factors 
of quality. These factors are determined by the shape of the 
transition function. In most methods of synthesis, regulators 
are selected so as to provide the desired level of two or three 
quality factors. The whole transition function is not covered.

The regulator transfer function can be obtained for the 
desired transition function by doing the reverse dynamic 
conversion; however, if the system is nonlinear, or if the tran-
sition function has no expression in elementary functions, 
direct inverse mathematical transformation is impossible. 
In this case, one can perform quantization, i. e. separation of 
the desired transition function on a set of Heaviside functi- 
ons [17] with a rising time shift.

The study [14] is devoted to proving a possibility of an-
alytical regulators synthesis by the desired transition func-
tion represented as a set of time-shifted Heaviside functions.

Let us consider the output coordinate ( )y t  of the auto-
matic control system as a set of discrete values each of which 
exists during some time 0T . The quantized transition func-
tion ( )*y t  can be represented as a step function, which is the 
sum of Heaviside functions ( )tσ  that are delayed relative to 
the zero point by the whole number of periods 0T .

( ) ( ) ( )( )
( ) ( )( )

*
1 0 0

2 0 0

y t h t T t 2T

h t 2T t 3T ...

= σ − − σ − +

+ σ − − σ − + →

( ) ( )( ) ( )n 1 0 0 n 0... h t (n 1)T t nT h t nT−→ + σ − − − σ − + σ − =

( ) ( )( )( ) ( )
n 1

i 0 0 n 0
i 1

h t iT t i 1 T h t nT .
−

=

= σ − − σ − + + σ −∑ 	  (1)

The inverse Laplace transform of the expression (1) gives 
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We represent an open-loop system as a constant part 
( )cpW p  and a regulator ( )rW p  that should provide chang-

ing of the output coordinates by the desired quantized 
transition function ( )*y t , t 0≥  with the input action ( )u t  
(Fig. 4).

Fig. 4. The open-loop system consisting of a constant part 
and a regulator

The transfer function of this system:

( ) ( ) ( )r cpW p W p W p= ⋅ .			    (2)

It is possible to attain the necessary dynamics in the 
open-loop system (Fig. 4). For this purpose, the transfer 
function ( )cpW p  and the image ( )*Y p  should have the 
following connection:

( ) ( ) ( ) ( )*
r cpY p W p W p U p= ⋅ ⋅ .		   (3)

Thus, the transfer function ( )cpW p  is considered as con-
stant in the dynamic mode, and the image ( )U p  corresponds 
to one of the typical input actions, which are used in study-
ing automatic control systems (including the step function 
and the ramp function).

Based on the formula (3), the regulator can build as 
follows:

( ) ( )
( ) ( )

*

r
cp

Y p
W p

W p U p
=

⋅
.				     (4)

With the unit step action and the input of the automatic  
 control system that have an image ( ) 1

U p
p

= , the transfer 

function for the regulator is converted to the form
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Exponential functions from the formula (5) can be repre-
sented as expansion in a Maclaurin series:

where k  is an integer number that reflects the order of the 
Maclaurin series component.

The sampling period 0T  is a very small value, so to sim-
plify the calculations by the formula (6), the components, 
including the second and higher powers of 0T , i. e. 
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should be disregarded. With these expressions, the formula 
(5) takes the following form: 

In this way, the regulator synthesis is performed by the 
formula (7). The levels ih  and nh  are defined by the desired 
transition function, but ( )cpW p  is defined by the constant 
part of the system. The parameter 0T  is selected from the 
technical characteristics of the control object, and it affects 
the locations of regulator poles in the complex plane.

Thus, for the considered open-loop system, the desired 
quantized transition function can be used in the regulators 
synthesis instead of the standard characteristic polynomial. 
A similar synthesis for a closed-loop system can be per-
formed by setting only levels ih  and quantization time 0T .

However, the scope of the proposed method is limited by 
Heaviside transformation capabilities, i.e. transfer functions 
should be presented in a balanced ratio of two polynomials 
that have simple (aliquant) roots [18].

The theory of transient processes of finite duration can 
provide one of the possible approaches to forming quantized 
transition functions that has no faults of the Heaviside 
transformation.

6. Quantized transition functions with finite duration

In analogue systems, transition functions are theoreti-
cally completed when time t → ∞, so in practice some trust 

zones are added. The transition functions 
are considered as finished when entering 
into such zones.

Transition functions of finite duration 
can be achieved in closed-loop discrete 
systems, unlike in analogue systems. Such 
processes are completed during the final 
number of quantization periods.

If the transfer function of a discrete 
system is in Z-form – ( )W z  and the input 
signal is a unit step action, the image of the 
output signal is represented by the follow-
ing formula:

( ) ( )z
Y z W z

z 1
=

−
,				     (8)

where z is the operator of Z-transform associated with the 
Laplace operator p by the equation (9):
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0T pz e= ,		   (9)

where 0T  is the quantization period in a discrete system.
The transitional function for a closed-loop system in a 

general case will be a ratio of polynomials:

( )
k k 1 k 2

k k 1 k 2 1 0
k k 1 k 2

k 1 k 2 1 0

a z a z a z ... a z a
W z

z b z b z ... b z b

− −
− −

− −
− −

+ + + + +
=

+ + + + +
,	 (10)

where ka ,  k 1a − ,…,  1a ,  0a  are numerator coefficients of the 
transfer function;  k 1b − ,  k 2b − ,…,  1b ,  0b  are denominator co-
efficients of the transfer function; k  is the order of the char-
acteristic polynomial.

It should be noted that a system can be realized physi-
cally when the order of the transfer function numerator does 
not exceed the order of the denominator. For most orders, the 
difference between the denominator and the numerator is  
1 or 2. Therefore, some of the coefficients at the high powers 
of z in the formula (10) may be equal to zero. For example, 
when the orders’ difference between the denominator and 
the numerator is 2, then ka 0=  and k 1a 0− = .

The coefficient at z in the highest power in the transfer 
function (10) denominator should be reduced to one so that 
the component kz  is part of the polynomial. The image of 
output signal (8), taking into account the transfer function 
(10), is represented as follows:

( ) ( ) ( ) ( ) ( )
k 1 k k 1 2
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An infinite power series can be obtained by dividing the 
numerator of (11) by its denominator:

( ) 1 2 i i
0 1 2 i i

i 0

Y z c c z c z ... c z ... c z
∞

− − − −

=

= + + + + + = ∑ ,	 (12)

where 0c , 1c , 2c , … , ic  are constant coefficients, whereas i 
is the number of the cycle.

With the determination of Z-transform, it follows that 
the coefficients of the series (12) are the values of the tran-
sitional lattice function ( )0y iT  in the moments of quantiza-
tion, i. e. ( )0c y 0= , ( )1 0c y T= , ( )2 0c y 2T= , … , ( )i 0c y iT= .

In order to provide a finite duration of the transition 
function, a series (12) at i k=  should reach the value that 
remains unchanged for the next cycles. This condition can 
be accomplished when all of the characteristic polynomial 
coefficients, i. e. the denominator of the transfer function 
(10), reach point zero.

k 1b − = k 2b − = … = 1b = 0b =0.		   (13)

When fulfilling the condition (13), the transfer function 
(8) takes the following form:

( )
k k 1 k 2
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k

a z a z a z ... a z a
W z

z

− −
− −+ + + + +

= .	 (14)

The characteristic polynomial kz 0=  of the transfer func-
tion (14) has k roots 1 2 kz z ... z 0= = = = , which are located in 
the middle of the stability circle with a unit radius (Fig. 5).

The image of the output signal in the system with a 
transfer function (14) in response to the unit step input ac-
tion is represented as follows:

( )
k 1 k k 1 2

k k 1 k 2 1 0
k 1 k

a z a z a z ... a z a z
Y z

z z
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− −

+

+ + + + +
=

−
.	 (15)

Fig. 5. The stability circle with roots 1 2 kz z ... z 0= = = =

The power series is formed by dividing the numerator 
of (15) by its denominator. In this series, the coefficients at 

iz−  change only to the cycle number i k= ; after that, they 
remain unchanged for the next cycles:

( ) 1 2
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The series (16) gives the values of the 
lattice transition function at quantization 
points. Let us define the connection be-
tween coefficients ka , k 1a − , … , 1a , 0a  and 

kc , k 1c − , … , 1c , 0c  by dividing polynomi- 
als according to the formula (15) – Fig. 6.

It is possible to set the following formal relations based 
on Fig. 6:
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The equation (17) can be written in a generalized form 
to establish a mathematical interpretation of the transition 
function of finite duration:
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i j
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The advantage of the formulas (18) consists in a possibil-
ity of an immediate determination of the values of transition 
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functions of finite duration by transfer functions in the form 
(14). Each of the values ic  is one level of the transition func-
tion of finite duration (Fig. 7).

The value 0c  is not equal to zero only when the order of 
the desired transfer function (14) numerator coincides with 
the order of the denominator, that is, when ka 0≠ . If the order 
of the numerator is smaller than the denominator order by 
value 2, the coefficients c1 and c0 are equal to zero ( 1 0c c 0= = ).

The duration of the transition functions shown in 
Fig. 7 is defined as 0kT , where k is the order of the 
desired transfer function denominator (14). The lev-
els of discretized transition functions are changing at 
sampling moments and run up to the time quantization 
value of 0t kT= . All levels of extra 0t kT>  amount to 
the value of kc .

Let us consider an example. Suppose the desired 
transfer function of the system ( )W z  is configured for 
transient processes of finite duration:

( )
4 3 2

4

0,05z 0,1z 0,3z 0,5z 1
W z

z
+ + + +

= .

In the case under consideration, the greatest degree of 
the denominator is k 4=  because the transition function is 
completed in 4 cycles, i. e. the time length is equal to 04T . 
Numerator coefficients have the following values:

4a 0,05= , 3a 0,1= , 2a 0,3= , 1a 0,5= , 0a 1= .

Let us calculate the transition function of the system in 
response to the input unit step action by the formulas (18). 
The results are listed in Table 1.

The transition function of finite duration (Fig. 8) is 
based on data from Table 1.
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Fig. 6. The division of polynomials according to the formula (15)
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 Fig. 7. The transition function of finite duration (built on values ci)

Table 1

The values of the transition function of finite duration

Cycle 
number

0 1 2 3 4 … i

Value 0c 0,05= 1c 0,15= 2c 0,45= 3c 0,95= 4c 1,95= … ic 1,95=
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Thus, the theory of transition functions of finite duration 
gives a quite simple and obvious mathematical apparatus to 
set the desired quantized transition functions that are based 
only on the step sizes at quantization moments and a quan-
tization period.

7. Discussion of the research results of quantized 
transition functions of finite duration

Standard polynomials allow only rough setting of the 
required dynamic properties of automatic control systems. 
It is necessary to perform a mathematical modelling for 
determining the coefficients of some polynomials. The ad-
vantages of the desired dynamics assignment for automatic 
control systems by using quantized transition functions 
are the following: visibility of the analytical synthesis 
process and ease of subsequent technical implementation 
of discrete regulators programmatically. The use of the 
desired transition functions of finite duration provides the 
following benefits: 

– the time range of levels variation for desired transition 
functions is known in advance, so there is no need for any 
trust zones or calculations of the estimated time of the tran-
sition function duration with accuracy;

– the quantization moments divide the 
time range into equal segments each of 
which can be set the required value of the 
desired transition function;

– the relationship between the coeffi-
cients of the polynomial transfer function 
of a system that is configured for transient 
processes of finite duration and the level 
values that correspond to the quantized 
transition function are determined simply 
and clearly by equations (18);

– all direct and inverse transformations 
that are associated with the passage from 
the transfer function of the system to the 
desired transition function are rather easy 
to represent in the program code; they will 
be used in further research to perform syn-
thesis of a discrete time equalizer [19].

8. Conclusion

1. Analysis has enabled us to find a possible use of desired 
quantized transition functions for regulators synthesis: real-
ization of the idea of splitting the desired transition function 
into parts should be solved naturally in its application not 
to analogue systems with continuous signals but to discrete 
systems that have, at one or more points, a sequence of im-
pulses or a digital code.

2. An analytical method was suggested for regulators syn-
thesis in open-loop automated control systems. This method 
allows representing the desired quantized transition functions 
as the number of time-shifted Heaviside functions, but its use 
is limited by features of the Heaviside transformation.

3. The theory of transient processes of finite duration 
can provide one of the possible approaches to forming quan-
tized transition functions that has no faults of the Heaviside 
transformation. The developed mathematical apparatus can 
perform an analytical determination of operator images for 
desired quantized transition functions of finite duration, 
relying only on the values of signal levels at quantization 
points and a quantization period value.

 
Fig. 8. The transition function of finite duration (data from Table 1)
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