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3anpononosano Gaxcany nepexiony Qynxuiro
cucmemu aMOMAMUMHOZ0 KePYEaAHHS NPedcmas-
aamu y euenndi Habopy KeaHmMoeamux 3nauens
peeyavoeanoi xoopounamu. Ilpodemoncmposano
MONCIUBICMD 3ACMOCYBAHHS KEAHMOBAHUX Nepe-
XiOHux Qynxuii, npedcmasienux y euznndi cymu
scynymux y uaci Qpynxuiu Iesicaiioa, ons cunmesy
pezyasmopie y po3iMKHEHUX CUCMeMAX KepYyea-
na. Pospoéneno mamemamuunuii anapam ons ana-
JIMUUH020 6USHAMEHHA ONEPaAMoOpHUX 306pasiceisv
oaxcanux Keanmoeanux nepexionux Qymuxuii xin-
ueeoi mpusanocmi

Kmouosi caosa: xeanmoeana nepexiona gymx-
uin, pynxuis Iesicaiioa, nepexiona Qpynxuis Kinue-
801 mpusanocmi
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IIpeonosceno scenaemyro nepexoonyro Qyuk-
YU cucmemvl ABMOMAMUUECKO20 YnpasJe-
HUs npedcmagaamo 6 eude HAGOPA KEAHMOBAH-
HbIX 3HAYMEeHUl pezyaupyemol KOOpOuHaAmMbL.
IIpodemoncmpuposana 603MONHCHOCMb nNpuUMe-
HeHUsT KBAHMOBAHHLIX NEPEeXOOHLIX QYHKUUL,
npeocmasieHHbIX 6 BU0E CYMMbL CMEUEHHBIX 60
epemenu Qynxuuii Xeeucaiioa, 0 cunmesa pezy-
JAMOPO8 8 PAZOMKHYMBIX CUCEMAX YNPABTEHUSL.
Paspaboman mamemamuueckuii annapam o0as
aHaIUMU1eCcK020 OnpedesieHus ONepamopHbIX U30-
Opascenuii Jcenaemvix KeAHMOBAHHBIX NePexoo-
HbIX QYHKUWIE KOHEMHOU 0aUumeIbHOCmU

Knouesvie cnosa: xeanmosanuas nepexoo-
Haa Qynxuusa, Pynxuyus Xeeucaiioa, nepexoonas
Qynxuus xoneunoi onumenvHocmu
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1. Introduction

An important part of modern methods for automated
control systems synthesis is selection of the desired char-
acteristic polynomial. The desired polynomial is usually
selected from a known standard set. There are standard
Butterworth polynomials [1], polynomials with binomial co-
efficients [2], Bessel polynomials [3], Graham and Lathrop
polynomials [4], and so on.

In most cases, the roots locations of characteristic equa-
tions for closed-loop systems by standard polynomials have
semi-empirical nature: they cannot be considered optimal
according to some optimization criterion.

For example, when using the binomial characteristic
polynomial, all roots of a characteristic equation are selected
as identical, negative and real with a value of the module ®,,
which determines the processing rate of the synthesized
system. The Butterworth polynomial puts the roots on
the half-circle with a radius ®, at equal angular distances
(Fig. 1). The coefficients of Graham and Lathrop polynomi-
als are defined by mathematical modelling.

In this way, standard polynomials allow us to specify the
necessary dynamic properties of the system only roughly. In
doing so, almost identical transient processes with various
ways of the pole locations can be obtained.
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Fig. 1. Roots location by the Butterworth polynomial for a
third-order system

The existing problematic issues in using standard
characteristic polynomials for the regulators’ synthesis
require finding innovative approaches to solving the
problem of assigning desired dynamics to the automatic
control systems. A mathematical apparatus should be
suggested and be devoid of the disadvantages of standard
characteristic polynomials. This determines the direction
and relevance of the research that is presented in the
study.




2. Analysis of published data and statement of the
problem

So far there have been no general guidelines developed
for selecting a trajectory at which the poles should be placed
for any automated control system.

The study [5] suggests carrying out the synthesis of
characteristic polynomials according to certain quality prin-
ciples (for example, by an overshoot given with a uniform
poles distribution on the circle). However, desirable polyno-
mials are considered to be known in advance.

In general, during the automated control system synthe-
sis by a standard characteristic polynomial, dynamic prop-
erties of the system are determined by its coefficients that
remain unchanged in operating activities. Standard poly-
nomials cannot reflect dynamic features of real automated
control systems because their behaviour is predetermined by
poles distribution — that is, polynomial coefficients.

In some cases, the problem of control system synthesis is
solved locally, only for specific equipment. Thus, the roots of
the characteristic equation are located, taking into account
the features and indeterminacies of a separate technical
object [6, 7].

An expansion opportunity that is offered by the standard
theory of characteristic polynomials is a generalized char-
acteristic polynomial method [8, 9]. This method allows an
integrated approach to the location of zeros and poles of the
transfer functions for automated electromechanical systems
and provides an implementation of transition functions in a
standard form.

In particular, synthesis of subordinated regulation sys-
tems by using a generalized characteristic polynomial can
extend their dynamic properties because regulators in loops
can be configured to perform not only a modular or symmet-
ric optimum but other standard forms of transition functions
that are defined by standard characteristic polynomials.

However, the generalized characteristic polynomial
method is still used as a reference to standard characteristic
polynomials and, in this sense, does not bring any innova-
tion. Consequently, no matter how progressive a synthesis
method is when it is based on standard polynomials, the
possibility of the automated control system will be limited
by a selected standard polynomial.

It is not necessary that the trajectories of roots move-
ment should be continuous functions. They can be piece-
wise monotonic functions or discrete argument functions
(lattice functions). For example, the study [10] demon-
strates a system with a toggle property between two possi-
ble positions of poles, one of which is required in the accel-
eration mode, and the other — in operation. Discontinuous
control in systems with a variable structure is connected
with a similar approach. These systems have multiple regu-
lators implementations that can change during the control
process [11, 12]. The structure, moments and durations of
regulators switching are selected so as to provide the de-
sired control quality [13]. The resulting variation in output
coordinates will be some time-expanded superposition of
individual components influencing the regulator with a
variable structure.

A convenient and clear alternative for imparting the
desirable properties to systems in static and dynamic modes
(without using standard characteristic polynomials) is not
the desired trajectory of roots movement definition but the
desired transition function determination. This function is

not selected by the designer from some list of standard forms
during regulators synthesis but is given solely on the basis
of technological requirements and possibilities of technical
implementation for a defined type of equipment. Such a tran-
sition function can be changed in the operation time of the
machine, mechanism or process complex, providing quanti-
tatively and qualitatively new properties for an automated
electromechanical system [14].

To improve opportunities for software implementation of
the regulator, which allows to control the electromechanical
system in that way, it is advisable for the desired transition
function to be represented in a numerical form, i. e. as a set
of operated coordinate values that change with a period T,
which is relatively small with regard to the duration of the
transition process (Fig. 2).
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Fig. 2. An example of the desired transition function
presentation

Thus, avoiding the use of standard characteristic polyno-
mials in the synthesis of automated control systems requires
their replacement by another mathematical apparatus, which
would be the basis for creating regulators with desired qual-
ity ratings in static and dynamic modes. The desired transi-
tion function in a numerical (discrete) form can be consid-
ered as such basis. This approach requires development of an
appropriate method for performing synthesis of automated
electromechanical systems.

3. The purpose and objectives of the study

The purpose of the study is to prove the possibility of
analytical synthesis of regulators for a quantized form of
desired transition functions and develop a mathematical
apparatus for composing quantized transition functions of
finite duration as entities that can replace standard charac-
teristic polynomials.

The objectives of the study are as follows:

— to analyse the possibility of using quantized transition
functions of finite duration for discrete regulators synthesis;

— to suggest an analytical method for regulators synthe-
sis in open-loop automated control systems by representing
the desired quantized transition functions as the amount of
time for shifted Heaviside functions;

—to develop a mathematical apparatus for analytical
determination of operator images for desired quantized tran-
sition functions of finite duration, relying only on the values
of the signal levels at quantization points and a quantization
period value.



4. The features of discrete control systems

Control systems with signals discretization in some form
are called discrete. The realization of the idea of splitting
the desired transition function into parts should be solved
directly by its application not to analogue systems with con-
tinuous signals but to discrete systems that have at one or
more points a sequence of impulses or a digital code.

It should be noted that in addition to the term “discrete
system” the other terms used are “digital system” and “im-
pulse system”. Digital systems are mostly known as systems
in which the coded control signals are generated by comput-
er equipment. Impulse systems provide using impulse-ampli-
tude modulation and signal quantization by time. The term
“discrete systems” is the most integrant; it describes systems
that can have impulse signals as well as digital codes.

In research literature, the term “discrete signal” means a
signal sampled in time (Fig. 3, @), whereas the term “digital
signal” refers to a signal that is sampled both in time and

level (Fig. 3, b).
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Fig. 3. Comparison of discrete and digital signals:
a — discrete signal; b — digital signal

Let us consider the concept of “discrete” and “digital”
signal capabilities within the context of modern micropro-
cessor technology and software. It can be noted that the
quantization signal level almost loses its meaning because of
significant bit width for the data types that are implemented
programmatically. For example, the data type double, which
is used in the programming language C++, allows recording
the minimal positive value of 1.7-10% and the maximum
positive value of 1.7-103%8 with 15 significant digits after
the decimal point [15]. Such capabilities are enough to solve
most technical problems without taking into account quan-
tization by its level.

Specialized computer engineering and general-purpose
computer equipment become more used to control technical
objects. Such equipment is used at low levels (for local proj-

ects) as well as at higher levels (to control the technological
lines or workshops) [16]. Microprocessor engineering is of-
ten used in control systems as discrete regulators or devices
that perform direct digital control of power converters.

One of the most significant advantages of digital regu-
lators is their much greater flexibility in comparison with
analogue regulators. The program of a digital regulator that
is implemented by using a microcontroller can be changed
according to new technological requirements or parameters
of a control object at any time, without changing the hard-
ware of the control system.

It can be concluded that discrete regulators provide sig-
nificantly more opportunities regarding synthesis of control
systems for technical objects. Thus, standard polynomials
can be abandoned, and it requires searching for new ap-
proaches in sampling the desired transition functions and
performing synthesis problem solving in a digital form.

5. Analytical regulators synthesis by a quantized form of
the desired transition function

Output transition functions of technical systems, at
changing the input actions or external disturbances, should
satisfy certain requirements that are presented as factors
of quality. These factors are determined by the shape of the
transition function. In most methods of synthesis, regulators
are selected so as to provide the desired level of two or three
quality factors. The whole transition function is not covered.

The regulator transfer function can be obtained for the
desired transition function by doing the reverse dynamic
conversion; however, if the system is nonlinear, or if the tran-
sition function has no expression in elementary functions,
direct inverse mathematical transformation is impossible.
In this case, one can perform quantization, i. e. separation of
the desired transition function on a set of Heaviside functi-
ons [17] with a rising time shift.

The study [14] is devoted to proving a possibility of an-
alytical regulators synthesis by the desired transition func-
tion represented as a set of time-shifted Heaviside functions.

Let us consider the output coordinate y(t) of the auto-
matic control system as a set of discrete values each of which
exists during some time T,. The quantized transition func-
tion y" (t) can be represented as a step function, which is the
sum of Heaviside functions o(t) that are delayed relative to
the zero point by the whole number of periods T,
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The inverse Laplace transform of the expression (1) gives
the image Y*(p) for the signal y*(t) :

—1

Y*<p>=L1{ hi(o<t—m>—o(t—(i+1>n>)+hn°<t—“'f0)}=

i=1

El

= 1(n21‘ h, (e*iToP — e (#)Top ) 4 hnefn'l‘op )
pP\ia



We represent an open-loop system as a constant part
(p) and a regulator Wr(p) that should provide chang-
ing of the output coordinates by the desired quantized
transition function y’ (t), t>0 with the input action u(t)

W,

p

(Fig. 4).
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Fig. 4. The open-loop system consisting of a constant part
and a regulator

The transfer function of this system:

(p) W, (p).

It is possible to attain the necessary dynamics in the
open-loop system (Fig. 4). For this purpose, the transfer
function ch(p) and the image Y*(p) should have the
following connection:

W

Y'(p)=W.(p)- W, (p)- U(p).

Thus, the transfer function W, (p) is considered as con-
stant in the dynamic mode, and the image U(p) corresponds
to one of the typical input actions, which are used in study-
ing automatic control systems (including the step function
and the ramp function).

Based on the formula (3), the regulator can build as
follows:
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function for the regulator is converted to the form
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Exponential functions from the formula (5) can be repre-
sented as expansion in a Maclaurin series:
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should be disregarded. With these expressions, the formula
(5) takes the following form:
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In this way, the regulator synthesis is performed by the
formula (7). The levels h, and h, are defined by the desired
transition function, but W, (p) is defined by the constant
part of the system. The parameter T, is selected from the
technical characteristics of the control object, and it affects
the locations of regulator poles in the complex plane.

Thus, for the considered open-loop system, the desired
quantized transition function can be used in the regulators
synthesis instead of the standard characteristic polynomial.
A similar synthesis for a closed-loop system can be per-
formed by setting only levels h; and quantization time T,

However, the scope of the proposed method is limited by
Heaviside transformation capabilities, i.e. transfer functions
should be presented in a balanced ratio of two polynomials
that have simple (aliquant) roots [18].

The theory of transient processes of finite duration can
provide one of the possible approaches to forming quantized
transition functions that has no faults of the Heaviside
transformation.

6. Quantized transition functions with finite duration

In analogue systems, transition functions are theoreti-
cally completed when time t— oo, so in practice some trust
zones are added. The transition functions
are considered as finished when entering
into such zones.

Transition functions of finite duration
can be achieved in closed-loop discrete
systems, unlike in analogue systems. Such
processes are completed during the final

0 (6)

number of quantization periods.
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where k is an integer number that reflects the order of the
Maclaurin series component.

The sampling period T, is a very small value, so to sim-
plify the calculations by the formula (6), the components,
including the second and higher powers of T, i. e.

If the transfer function of a discrete
system is in Z-form — W(z) and the input
signal is a unit step action, the image of the
output signal is represented by the follow-
ing formula:

—1 ®)

where z is the operator of Z-transform associated with the
Laplace operator p by the equation (9):
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where T, is the quantization period in a discrete system.
The transitional function for a closed-loop system in a
general case will be a ratio of polynomials:

k k-1 k-2
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z'+b 27 +b 2 +..+bz+b,

W(2) (10)

where a,, a, .., a,, a, are numerator coefficients of the
transfer function; b, ,, b, , .., b,, b, are denominator co-
efficients of the transfer function; k is the order of the char-
acteristic polynomial.

It should be noted that a system can be realized physi-
cally when the order of the transfer function numerator does
not exceed the order of the denominator. For most orders, the
difference between the denominator and the numerator is
1 or 2. Therefore, some of the coefficients at the high powers
of z in the formula (10) may be equal to zero. For example,
when the orders’ difference between the denominator and
the numerator is 2, then a, =0 and a, , =0.

The coefficient at z in the highest power in the transfer
function (10) denominator should be reduced to one so that
the component z* is part of the polynomial. The image of
output signal (8), taking into account the transfer function
(10), is represented as follows:

ket k k-t 2
az +a z ta ,z +..+az +agz

a " +a 7z +a,_ 7+ +az’ vaz
Y(z) = .

p (15)
Plane «Z»
Fig. 5. The stability circle with roots z,=2,=..=z, =0

The power series is formed by dividing the numerator
of (15) by its denominator. In this series, the coefficients at

z~' change only to the cycle number i=k; after that, they
remain unchanged for the next cycles:

Y(z)=cy+cz ' ezt + o

k-t -
+cz” +-~-+:ZC12_1 +ck22“. (16)
i=0 i=k

The series (16) gives the values of the
lattice transition function at quantization

Y(z)z

An infinite power series can be obtained by dividing the
numerator of (11) by its denominator:

Y(z)=co+ez ezt tez =Y ez (12)
i=0

where ¢,, ¢, ¢,, .., ¢; are constant coefficients, whereas i

is the number of the cycle.

With the determination of Z-transform, it follows that
the coefficients of the series (12) are the values of the tran-
sitional lattice function y(iT,) in the moments of quantiza-
tion, i.e. ¢, = y(O), ¢ = y(TO), C, =y(2T0), ey €= y(iTo).

In order to provide a finite duration of the transition
function, a series (12) at i=k should reach the value that
remains unchanged for the next cycles. This condition can
be accomplished when all of the characteristic polynomial
coefficients, i.e.the denominator of the transfer function
(10), reach point zero.

(13)

When fulfilling the condition (13), the transfer function
(8) takes the following form:

k k-1 k-2
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z

(14)

The characteristic polynomial z* =0 of the transfer func-
tion (14) has k roots z, =z, =...=z, =0, which are located in
the middle of the stability circle with a unit radius (Fig. 5).

The image of the output signal in the system with a
transfer function (14) in response to the unit step input ac-
tion is represented as follows:

2 +(by, —1)7" +(b,_, = b, )2 +..+(b, = b,)z” +(b, = b,) 2= b,

(D points. Let us define the connection be-
tween coefficients a,, a, ,, ..., a,, a, and
C» Cs - » Cp €, by dividing polynomi-
als according to the formula (15) — Fig. 6.
It is possible to set the following formal relations based

on Fig. 6:

Cy =4y,
C,=a,_*+a,
Cy=ay_,+a, T3,

Cy=a; 3+, ,ta_+aq,

= (17)

k
Ck+1 = Cl<+2 = Ck-¢-3 == zai’
i=0

The equation (17) can be written in a generalized form
to establish a mathematical interpretation of the transition
function of finite duration:

k
2 a; wheni<k,
s

K

: (18)
a. wheni>k.

C;
Ci = i
1

The advantage of the formulas (18) consists in a possibil-
ity of an immediate determination of the values of transition



functions of finite duration by transfer functions in the form
(14). Each of the values c; is one level of the transition func-
tion of finite duration (Fig. 7).

The value ¢, is not equal to zero only
the desired transfer function (14) numerator coincides with

the order of the denominator, that is, when

when the order of

a, #0. If the order

of the numerator is smaller than the denominator order by

In the case under consideration, the greatest degree of
the denominator is k=4 because the transition function is
completed in 4 cycles, i. e. the time length is equal to 4T .
Numerator coefficients have the following values:

a,=0,05, a,=01, a,

=0,3, 3,=0,5, a,=1.

value 2, the coefficients ¢; and ¢ are equal to zero (¢, = ¢, =0). Let us calculate the transition function of the system in

The duration of the transition functions shown in response to the input unit step action by the formulas (18).
Fig. 7 is defined as kT,, where k is the order of the The results are listed in Table 1.
desired transfer function denominator (14). The lev-
els of discretized transition functions are changing at Table 1
sampling moments and run up to the time quantization The values of the transition function of finite duration
value of t=KkT,. All levels of extra t>kT, amount to C

ycle .

the value of c,. number 0 1 2 3 4 i

Let us consider an example. Suppose the desired
transfer function of the system W(z) is configured for | Value |¢,=0,05|c, =0,15|c,=0,45|c,=0,95|c, =1,95| .. |c,;=1,95
transient processes of finite duration:

0,05z" +0,12° + 0,322 + 0,5z +1

Z4

W(z)z

The transition function of finite duration (Fig. 8) is
based on data from Table 1.
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Fig. 6. The division of polynomials according to the formula (15)
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Fig. 7. The transition function of finite duration (built on values c;)



— the quantization moments divide the

time range into equal segments each of
which can be set the required value of the

desired transition function;

—the relationship between the coeffi-

cients of the polynomial transfer function
of a system that is configured for transient

processes of finite duration and the level

values that correspond to the quantized

transition function are determined simply
and clearly by equations (18);

— all direct and inverse transformations

that are associated with the passage from

0 T, 21, 3T, 41, 5T,

Fig. 8. The transition function of finite duration (data from Table 1)

Thus, the theory of transition functions of finite duration
gives a quite simple and obvious mathematical apparatus to
set the desired quantized transition functions that are based
only on the step sizes at quantization moments and a quan-
tization period.

7. Discussion of the research results of quantized
transition functions of finite duration

Standard polynomials allow only rough setting of the
required dynamic properties of automatic control systems.
It is necessary to perform a mathematical modelling for
determining the coefficients of some polynomials. The ad-
vantages of the desired dynamics assignment for automatic
control systems by using quantized transition functions
are the following: visibility of the analytical synthesis
process and ease of subsequent technical implementation
of discrete regulators programmatically. The use of the
desired transition functions of finite duration provides the
following benefits:

— the time range of levels variation for desired transition
functions is known in advance, so there is no need for any
trust zones or calculations of the estimated time of the tran-
sition function duration with accuracy;

the transfer function of the system to the
desired transition function are rather easy
to represent in the program code; they will
be used in further research to perform syn-
thesis of a discrete time equalizer [19].

6T, t=il,

8. Conclusion

1. Analysis has enabled us to find a possible use of desired
quantized transition functions for regulators synthesis: real-
ization of the idea of splitting the desired transition function
into parts should be solved naturally in its application not
to analogue systems with continuous signals but to discrete
systems that have, at one or more points, a sequence of im-
pulses or a digital code.

2. An analytical method was suggested for regulators syn-
thesis in open-loop automated control systems. This method
allows representing the desired quantized transition functions
as the number of time-shifted Heaviside functions, but its use
is limited by features of the Heaviside transformation.

3. The theory of transient processes of finite duration
can provide one of the possible approaches to forming quan-
tized transition functions that has no faults of the Heaviside
transformation. The developed mathematical apparatus can
perform an analytical determination of operator images for
desired quantized transition functions of finite duration,
relying only on the values of signal levels at quantization
points and a quantization period value.

References

Bianchi, G. Electronic filter simulation and design [Text] / G. Bianchi, R. Sorrentino. — McGraw-Hill Professional, 2007. — 606 p.
2. Kuzovkov, N. T. Modalnoe upravlenie i nablyudayuschie ustroystva [Text] / N. T. Kuzovkov. — Moscow: Mashinostroenie, 1976. —

184 p.

3. Burchnall, J. L. The Bessel polynomials [Text] / J. L. Burchnall // Canadian Journal of Mathematics. — 1951. — Vol. 3. — P. 62-68.

doi: 10.4153 /cjm-1951-009-3

4. Graham, D. The synthesis of optimum transient response: criteria and standard forms [Text] / D. Graham, R. C. Lathrop // AIEE

Transactions. — 1953. — Vol. 72, Issue II. — P. 1365-1391.

5. Tolochko, O. I. Analiz ta sintez elektromehanichnih sistem zi sposterigachami stanu: navchalniy posibnik dlya studentiv vischih
navchalnih zakladiv [Text] / O. I. Tolochko. — Donetsk: Nord-Pres, 2004. — 298 p.

6. Horla, D. Pole-placement controller with full adaptation for plant with unknown structure in application to servo control
[Text] / D. Horla // 2011 International Conference on Communications, Computing and Control Applications (CCCA), 2011. —

P. 1—4. doi: 10.1109/ccca.2011.6031468

7. Wu, E Dynamic dimensional synthesis of a precision 6-DOF parallel manipulator [Text] / F. Wu, L. Wang, W. Rong, L. Sun //
2012 TEEE International Conference on Mechatronics and Automation, 2012. — P. 831-836. doi: 10.1109/icma.2012.6283250
8. Maruschak, Ya. Yu. Sintez astatichnoyi pozitsiynoyi SPR metodom uzagalnenogo harakteristichnogo polinoma [Text] / Ya. Yu. Ma-

ruschak, A.P.Kushnir // Resp. mizhvidomchiy nauk.-tehn. zb. Elektromashinobuduvannya ta elektroobladnannya. — 2000. —

Issue 55. — P. 3-10.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Maruschak, Ya. Yu. Metod uzagalnenogo harakteristichnogo polinoma dlya sintezu sistem avtomatichnogo regulyuvannya [Text] /
Ya. Yu. Maruschak // Pratsi Mizhnar. konf. z avtomatichnogo keruvannya. Avtomatika 2000. — 2000. — Vol. 4. — P. 32-37.
Sadovoy, O. V. Sintez sistem avtomatichnogo keruvannya zi zminnim harakteristichnim polinomom [Text] / O. V. Sadovoy,
O. 1. Sheremet // Visnik Kremenchutskogo derzhavnogo politehnichnogo universitetu imeni Mihayla Ostrogradskogo. — 2009. —
Vol. 4/2009 (57), Issue 1. — P. 32-35.

Madani-Esfahani, S. M. Variable Structure Control of Dynamical Systems with Bounded Controllers [Text] / S. M. Madani-Esfah-
ani, S. H. Zak // American Control Conference, 1987. — P. 90-95.

Ikbal, M. M. Variable structure control of a magnetic levitation system [Text] / M. M. Ikbal, M. Abdelfatah // Proceedings of the
2001 American Control Conference, 2001. — P. 3725-3730. doi: 10.1109/acc.2001.946215

Bartolini, G. Chattering avoidance by second-order sliding mode control [Text] / G. Bartolini, A. Ferrara, E. Usai // IEEE Trans-
actions on Automatic Control. — 1998. — Vol. 43, Issue 2. — P. 241-246. doi: 10.1109/9.661074

Sadovoy, O. V. Analitichniy sintez regulyatoriv za kvantovanoyu formoyu bazhanoyi perehidnoyi funktsiyi [Text] / O. V. Sadovoy,
O. I. Sheremet // Zbirnik naukovih prats Dniprodzerzhinskogo derzhavnogo tehnichnogo universitetu: (tehnichni nauki). —
2010. — Vol. 1 (14). — P. 258-264.

Stroustrup, B. The C++ programming language. Fourth edition [Text] / B. Stroustrup. — Addison-Wesley, 2013. — 1347 p.
Computer Engineering Curricula 2016 [ Electronic resource]. — Available at: https://www.computer.org/cms/Computer.org/profes-
sional-education/curricula/ComputerEngineeringCurricula2016.pdf (Last accessed: 19.03.2016). — Title from the screen.
Isermann, R. Identification of dynamic systems [Text] / R. Isermann, M. M nchhof. — Springer-Verlag Berlin Heidelberg, 2011. —
705 p. doi: 10.1007/978-3-540-78879-9

Sheremet, O. I. Vikoristannya rozkladannya Hevisayda dlya sintezu regulyatoriv sistem avtomatichnogo keruvannya [Text] /
O. I. Sheremet // Visnik Donbaskoyi derzhavnoyi mashinobudivnoyi akademiyi: Zbirnik naukovih prats. — 2009. — Vol. 1 (4E). —
P 189-193.

Sheremet, O. I. Ponyattya diskretnogo chasovogo ekvalayzera [Text] / O. L. Sheremet, O. V. Sadovoy, Yu. V. SohIna // Zbirnik
naukovih prats Donbaskogo derzhavnogo tehnichnogo universitetu. — 2014. — Vol. 1. — P. 147—-151.



