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1. Introduction

The technology of computing in the Rademacher num-
ber-theoretic basis (NTB) has existed for a long time, the in-
formation has been accumulated, mathematical and software 
resources have been developed. The binary system is one of 
the simplest positional numeral systems and, consequently, 
electronic equipment, made on its basis is the most reliable 
and versatile.

The unary numeral system, which in the 60s has been 
used for developing the «Promin» computer is a simpler nu-
meral system than binary. But it can hardly be attributed to 
positional numeral systems, and speed is low.

The range of addition of numbers in the Rademacher 
NTB is:

k
D Dx y 2 1,+ =< −  	 (1)

where k is the number of bits. The number of addition 
options for the multi-bit adder with the full adder in the 
first bit is:

k kc 2 2 2 ,= × ×  	 (2)

where k is the number of bits. The number of addition options 
for the half-adder in the first bit of the multi-bit adder is:

2 1

n 0

b 2 n,= −∑  	 (3)

or
k2

n 1

b n,
=

= ∑  	 (4)

where k is the number of bits.
Arithmetic devices with the characteristics (1)–(4) for 

a number of examples do not require additional hardware 
capacity, so the cost of them will be kept low, and this gives 
premise to further developments in this area.

The methods of arithmetic operations are implemented 
by gate circuits of functional elements in the bases consist-
ing of the functions of the algebra of logic. Minimization of 
complexity and depth of logic circuits is one of the major and 
practically important problems in this theory. Currently, 
the circuit optimization is to some extent implemented by 
software (for example, the Logic Friday program performs 
circuit optimization in a set of bases – from a range of avail-
able elements). However, in general, the problem of optimi-
zation of the logic circuit (including adder circuits) today is 
solved empirically. In this regard, the need for mathematical 
research of the outcome formation process in the adder cir-
cuit is urgent, which allows the circuit control in the design.

2. Literature review and problem statement

The binary system has many undeniable advantages, but 
it also has a number of essential drawbacks:
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1. The binary system allows the sign-and-magnitude 
representation only of positive numbers. Representation 
of negative numbers needs the use of special codes – two’s 
complement and one’s complement. This complicates the 
arithmetic structure of computers and reduces their speed.

2. Zero redundancy. All computer circuits and devices 
are exposed to numerous external and internal influences, 
resulting in failures and faults. Such errors in the binary 
system cannot be detected, since all binary code combina-
tions are allowed. The lack of code redundancy, which would 
allow detecting errors directly in the computing process, is 
a principal drawback of the classical binary number system.

3. «Long carry». The maximum time of the addition op-
eration is reached when the carry that occurred in the first 
bit passes all the other bits (e. g., when adding codes 11...11 
and 00...01), which is a principal factor of computer speed 
reduction.

In [1] states that the main advantage of Fibonacci micro-
processors is noise immunity and the possibility to obtain 
reliable data at the microprocessor output.

It should be assumed that the carry in the addition op-
erations in the Rademacher NTB is not related to the main 
problem, as evidenced by, for example, the following publica-
tions: [2] presents the structure of the carry select adder to 
perform parallel computing in the FPGA applications. Op-
timum structures for the FPGA implementation are shown. 
The simulation results are used for verification of the theory; 
[3] presents the 180 nm CMOS technology of the computing 
process in the carry select adder circuit on the basis of the 
parallel ripple carry adder. The proposed approach provides 
a reasonable compromise between the computing cost and 
performance. Note that the CLA adder (carry look ahead ad-
der) occupies a larger area on the chip and needs more power 
for computing; [4] developed the mathematical model to 
estimate the time attributes of the carry self-timing for the 
Carry Select Adder structure, presented pilot projects of the 
given approach; [5] presents the 128-bit Carry Select Adder 
structure for the VLSI system design. The architecture, 
based on the modification of 16, 32 and 64-bit Carry Select 
Adder (CSLA) is designed, which is promising for reducing 
the adder area and carry delay.

Reduction of hardware complexity of the electronic ad-
der by introducing the information redundancy on the basis 
of modeling of the binary-ternary redundant numeral system 
adder is considered in [6].

In [7], efficient use of the cascade computing circuit to 
support dynamic data querying in the cloud is shown and 
experimentally proved.

In [8], it is demonstrated that the operation of vector-ma-
trix multiplication, which is used for solving the problems 
of processing, analysis of signals and images and pattern 
recognition, is implemented by pairwise product formation 
and multi-operand summation.

Modification of the method of computing of the group 
summation operator for real-time neural networks based on 
vertical and multi-operand approaches is considered in [9].

The use of nucleic acids (NA) for logic gates and comput-
ing in biotechnology and biomedicine is examined in [10]. In 
particular, the logic gate that uses the cascade circuit for the 
DNA logic implementation is shown. Nucleic acid-based log-
ic devices were first introduced in 1994. Since then, science 
has seen the emergence of new logic systems for modeling 
mathematical functions, diagnosing diseases and even those 
that simulate biological systems.

Molecular logic circuits with multiple components, 
placed in several layers, can be synthesized using DNA. The 
issue whether the circuit depth, which is a standard measure 
of computing time-complexity in digital electronic circuits is 
an appropriate measure of time-complexity for the chemical 
circuit is considered in [11]. To this end, the quantitative 
analysis of how the computing time is associated with the 
circuit size and cascade architecture is presented. The re-
sults of the work can be used for the synthesis of efficient and 
more reliable molecular circuits.

Unlike [7–11], the present paper deals with the appli-
cation of the cascade circuit for the operation of addition 
of binary numbers using the parallel carry adder in the 
Rademacher NTB. The use of the mathematical model that 
justifies the addition operation in the parallel carry adder 
circuit clarifies the method and allows the complexity for-
mation of the computing algorithm.

3. Research goal and objectives 

The goal of the paper is to find the relationship be-
tween computing steps of the directed acyclic graph and 
the unit carry process in the multi-bit adder circuit using 
the mathematical model of computing circuits, and thus 
determine the optimum number of carries in the multi-
bit parallel carry adder circuit in the Rademacher num-
ber-theoretic basis.

To achieve this goal, it is necessary to solve the following 
problems:

1. To identify the correct accordance in the arrangement 
of the process of adding numbers by the cascade circuit and 
the process of adding bits of similar bits of binary numbers.

2. To determine the adequacy of the mathematical model 
in the form of the directed acyclic graph and the process of 
adding binary numbers in the parallel carry adder, to assign 
the parameters for describing the characteristics of the 
mathematical model.

3. To derive logic equations of the optimized adder, built 
taking into account the number of computing steps of the 
corresponding directed acyclic graph.

4. To determine the complexity of the algorithm for com-
puting the sum and carry signals of the optimized parallel 
carry adder in the Rademacher NTB.

5. To make the computing protocol of the process of 
adding binary numbers and to test the synthesized adder for 
compliance of the results of adding binary numbers and the 
protocol.

4. Carry save

To demonstrate the carry process in arithmetic addition 
of multi-bit numbers, we use a tabular arrangement of the 
summation process (Table 1). In the top rows of Table 1, we 
write two 4-bit numbers – A and B.

The similar number bits are recorded in the common 
column in Table 1. A tabular arrangement of the summation 
process involves computing cycles for each bit of the number. 
The number of cycles is the number of bits of binary num-
bers. Thus, for this example, the number of computing cycles 
equals four. Each cycle in Table 1 is represented by two rows. 
The result of the bitwise addition is recorded in the first row, 
the result of carry – in the second row.
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The arithmetic procedure of addition consists of two 
operations – XOR and AND. Summation of numbers begins 
with LSB. XOR – 0 0 0a b S⊕ =  – of the LSB is recorded 
in the same column in the first row of the first computing 
cycle. Carry of the LSB (AND result – 1

0 0 0a b I∧ = ) is re-
corded in the second row of the first computing cycle in the 
column shifted one bit to the left. Similar actions in the first 
computing cycle are performed with the second bits of num- 
bers – XOR – 1

1 1 0a b S⊕ =  – of second bits is recorded in the 
same column in the first row of the first computing cycle, 
carry of the second bits (AND result – 2

1 1 0a b I∧ = ) is record-
ed in the second row of the first computing cycle in column 
shifted one bit to the left. After finishing the considered 
addition operations for the third and fourth bits, computing 
in the first cycle is completed.

The second cycle repeats computing of the first cycle 
with the difference that the computing is carried out with the 
results obtained in the first cycle. So, XOR – 1 1

0 0 1S I S⊕ =  –  
of the results of the first computing cycle, the second bits is 
recorded in the same column in the first row of the second 
computing cycle. Carry of the computing results in the first 
cycle, the second bits (AND result – 1 1 2

0 0 1S I I∧ = ) is recorded 
in the second row of the second computing cycle, the column 
shifted one bit to the left. Similar actions in the second com-
puting cycle are performed with the third bits of numbers – 
XOR – 2 2 2

0 0 1S I S⊕ =  – of the third bits is recorded in the same 
column in the first row of the second computing cycle, carry 
of the third bits (AND result – 2 2 3

0 0 1S I I∧ = ) is recorded in 
the second row of the second computing cycle in the column 
shifted one bit to the left. After finishing the considered ad-
dition operations for the fourth bits, computing in the second 
cycle is completed.

The third cycle uses the computing results of the second 
cycle, and the fourth cycle uses the computing results of the 
third cycle (Table 1). In the end, the sum will be – S3, S2, S1, 
S0 of the set binary numbers – a4, a3, a2, a1 and b4, b3, b2, b1.

The considered tabular arrangement of the process of 
addition of binary numbers (Table 1) coincides with the car-
ry-save addition method (carry-save adder). For this method 
of addition, the solution to the problem is reduced to the use 
of redundant encoding of the result when the result in each 
position is the value that exceeds the radix.

The record of the sum (5) for the LSB in Table 1 is redun-
dant, since for a0=1 and b0=1, the sum S0 is given as S0=10 

or S0=2. The latter notation of the sum in the binary 
system is unconventional, but the result is still clear.

1 0

1 0

0 0 0
1

0 0 0

a a

b b

2nd bit 1st bit

a b S

a b I

− ⊕ =
∧ = −

	  (5)

A similar redundancy of record is also present 
for the sums of other bits.

In the example in Table 1, the carry from the 
LSB to the MSB is not used. This process is re-
placed with an extension of the set of significant 
figures in each bit of the result. However, this 
procedure cannot be performed indefinitely. Even-
tually, to return to the standard representation of 
numbers, all carries need to be performed as shown 
in Table 1.

The use of carry-save adders can significantly speed up 
the chained addition, which, for example, is necessary for the 
multiplication operation.

Example 1. Using the tabular arrangement of the addi-
tion process, to compute the sum of 4-bit numbers 0001 and 
0111 (Table 2).

Table 2

Addition of binary numbers 0001 and 0111 according to the 
computing circuit, determined by the tabular arrangement of 

the process

Number – A 0 0 0 1
Number – B 0 1 1 1

1
– 0 1 1 0
0 0 0 1 –

2
– 0 1 0 –
0 0 1 – –

3
– 0 0 – –
0 1 – – –

4
– 1 – – –
0 – – – –

– – 1 0 0 0

Example 2. Using the tabular arrangement of the addi-
tion process, to compute the sum of 4-bit numbers 0011 and 
0011 (Table 3):

Table 3

Addition of binary numbers 0011 and 0011 according to the 
computing circuit, determined by the tabular arrangement of 

the process

Number – A 0 0 1 1
Number – B 0 0 1 1

1
– 0 0 0 0
0 0 1 1 –

2
– 0 1 1 –
0 0 0 – –

3
– 0 1 – –
0 0 – – –

4
– 0 – – –
0 – – – –

– – 0 1 1 0

Table 1

The carry save process in the addition of binary numbers

Number – A 3a 2a 1a 0a

Number – B 3b 2b 1b 0b

№ Overflow 4th bit 3rd bit 2nd bit 1st bit

1
1 – 3

3 3 0a b S⊕ = 2
2 2 0a b S⊕ = 1

1 1 0a b S⊕ = 0 0 0a b S⊕ =

2 4
3 3 0a b I∧ = 3

2 2 0a b I∧ = 2
1 1 0a b I∧ = 1

0 0 0a b I∧ = –

2
1 – 3 3 3

0 0 1S I S⊕ = 2 2 2
0 0 1S I S⊕ = 1 1

0 0 1S I S⊕ = –

2 3 3 4
0 0 1S I I∧ = 2 2 3

0 0 1S I I∧ = 1 1 2
0 0 1S I I∧ = – –

3
1 – 3 3 3

1 1 2S I S⊕ = 2 2
1 1 2S I S⊕ = – –

2 3 3 4
1 1 2S I I∧ = 2 2 3

1 1 2S I I∧ = – – –

4
1 – 3 3

2 2 3S I S⊕ = – – –

2 3 3 4
2 2 3S I I∧ = – – – –
4 4 4 4

4 0 1 2 3S I I I I= ∨ ∨ ∨ 3S 2S 1S 0S
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Using Table 1, we write the logic equations of the 4-bit 
adder with the tabular arrangement of the addition of binary 
numbers.

0 0 0S a b ,= ⊕

1 1 1 0 0S (a b ) (a b ),= ⊕ ⊕ ∧

2 2 2 1 1 1 1 0 0S ((a b ) (a b )) ((a b ) (a b )),= ⊕ ⊕ ∧ ⊕ ⊕ ∧ ∧

3 3 3 2 2 2 2 1 1

2 2 1 1 1 1 0 0

S (((a b ) (a b )) ((a b ) (a b )))

(((a b ) (a b )) ((a b ) (a b ))).

= ⊕ ⊕ ∧ ⊕ ⊕ ∧ ∧ ⊕
⊕ ⊕ ⊕ ∧ ∧ ⊕ ∧ ∧

 

In the case where the range of numbers, in which the ad-
der operates is fixed, the possibility of increasing the number 
of bits of the adder circuit is eliminated. Then, the logical OR 
can be used in the last bit of the adder, which will simplify 
the adder structure. The equation for S3 will be of the form:

3 3 3 2 2 2 2 1 1

2 2 1 1 1 1 0 0

S (a b ) (a b ) ((a b ) (a b ))

(((a b ) (a b )) ((a b ) (a b ))).

= ∨ ∨ ∧ ∨ ⊕ ∧ ∧ ∨
∨ ⊕ ⊕ ∧ ∧ ⊕ ∧ ∧  	 (6)

Fig. 1 shows the logical structure of the 4-bit adder, 
which implements the tabular arrangement of the process of 
addition of binary numbers.

 
 
 
 
 
 
 
 
 
 
 
 

a 
 
 
 
 
 
 
 
 
 
 

b
 

 
Fig. 1. The logical structure of the 4-bit adder with the 

tabular arrangement of the process of addition of binary 
numbers: a – the adder circuit with pictorial symbol of the 

logical XOR, b – the adder circuit with one of the options of 
the open structure of the logical XOR 

According to the classification, the adder with the 
tabular arrangement of the addition of binary numbers 
should be attributed to the parallel carry adders. The 
feature of the logical structure of the adder in Fig. 1 is the 
absence of the carry look-ahead circuits, which eliminates 

technical problems when increasing the number of bits of 
the adder.

5. The model of parallel addition of binary numbers of  
the Rademacher NTB

The bitwise addition of binary numbers, with a few dif-
ferences, is similar to the doubling algorithm in the multi-op-
erand summation, when adjacent pairs of terms, and then 
their sums are added (Table 4).

Table 4

Doubling algorithm (n=23=8)

Steps e1 e2 e3 e4 e5 e6 e7 e8

1 e1+e2 e3+e4 e5+e6 e7+e8

2 e1+e2+e3+e4 e5+e6+e7+e8

3 e1+e2+e3+e4+e5+e6+e7+e8

If n=2k, where n is the number of terms, the doubling 
algorithm consists of k steps (cycles), n/2 additions are 
performed in the first step, n/4 – in the second, ..., one ad-
dition – in the last. The number of steps k is determined by 
the formula:

2k log n.= 	  (7) 

This option of the multi-operand addition is implement-
ed according to the cascade circuit («pyramid») [12–15] 
(Fig. 2). There is also a recursive summation algorithm [14].

Fig. 2. The cascade circuit of the multi-operand addition 
algorithm (logarithmic summation)

Using the procedure of the multi-operand addition ac-
cording to the cascade circuit, it is clear that for the process 
of parallel addition of binary numbers, bits of similar bits are 
pairs of data, for each, the sum is computed.

Further, similar to the procedure of the multi-operand 
addition, all sums of pairs of similar bit pairs of binary num-
bers, with their characteristics, are also divided into pairs 
and addition of values of pairs is performed again, and so on.

As a result, the value of the MSB of the sum of binary 
numbers can be compared with the value of the total sum 
in multi-operand addition. Apart from the sum of the MSB, 
intermediate results in the form of the values ​​of sums of 
previous bits of binary numbers are also used in the parallel 
addition of binary numbers.

The computing circuit of parallel addition of binary num-
bers can be determined by the directed acyclic graph (Fig. 3), 
which is a binary tree, which, in particular, adopted the fol-
lowing parameters: k – the number of steps in time; ω – the 
total number of the algorithm operations; τ – the time of one 
step; T=τ·k – the time of the algorithm; L – the number of 
types of operations, and so on.
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Fig. 3. The directed acyclic graph of the computing circuit 
of the parallel carry-save addition of 4-bit numbers of the 

Rademacher NTB

Thus, the computing circuit in Fig. 3 uses two logic op-
erations – AND and XOR, the number of computing steps 
in it equals to the number of bits of binary numbers. For 
example, the parallel addition of 4-bit numbers requires four 
steps (Fig. 3).

The tabular arrangement of the computing circuit in  
Fig. 3 is presented in Table 5. The superscript of the parameter 
in Table 5 indicates the serial number of a computing step.

Example 3. Using the directed acyclic graph (Table 6), to 
compute the sum of 4-bit numbers 0001 and 0111.

In the 4th row of Table 6, the value of the MSB of the 
sum of binary numbers is recorded on the right, the value of 
the overflow is recorded on the left. The process of addition 
uses four computing steps.

The computing circuit of the parallel addition of 4-bit 
numbers with the logical OR in the last bit is shown in Fig. 4.

Table 6

The process of addition of binary numbers 0001 and 0111 
according to the computing circuit, determined by the 

directed acyclic graph

№
0 0 0 1

0 1 1 1

1 0 0 0 1 0 1 1 0

2 0 0 0 1 1 0

3 0 0 1 0

4 0 1

1 0 0 0

Fig. 4. The computing circuit of the parallel carry-save 
addition of 4-bit numbers with the logical OR in the last bit

The tabular arrangement of the computing circuit in  
Fig. 4 is presented in Table 7.

a1

a0

a2

a3

b0

b1

b2

b3

&

&

&

&

&

&

&

&

&

S0

S1

&

S2

S3

The overflow

The overflow

The overflow

The overflow

0 1 2 3 4
Steps

Table 5

The tabular arrangement of addition of 4-bit numbers according to the computing circuit,  
determined by the directed acyclic graph

№
3a 2a 1a 0a

3b 2b 1b 0b

1 1
3 3 3a b I∧ = 1

3 3 3a b S⊕ = 1
2 2 2a b I∧ = 1

2 2 2a b S⊕ = 1
1 1 1a b I∧ = 1

1 1 1a b S⊕ = 1
0 0 0a b I∧ = 0 0 0a b S⊕ =

2 1 1 2
3 2 23S I I∧ = 1 1 2

3 2 23S I S⊕ = 1 1 2
2 1 12S I I∧ = 1 1 2

2 1 12S I S⊕ = 1 1 2
1 0 01S I I∧ = 1 1

1 0 1S I S⊕ =

3 2 2 3
23 12S I I∧ = 2 2 3

23 12S I S⊕ = 2 2 3
12 01S I I∧ = 2 2

12 01 2S I S⊕ =

4 3 3 4S I I∧ = 3 3
3S I S⊕ =

3S 2S 1S 0S

OR

S2

S3

OR

&

S1

OR

&

&

S0

a1

a0

a2

a3

b0

b1

b2

b3

&

OR

&

&

0 1 2 3 4
Steps
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Example 4. Using the directed acyclic graph with the 
logical OR in the last bit (Table 8), to perform the addition 
of 4-bit numbers 0011 and 0011:

Table 8 

The process of addition of binary numbers 0011 and 0011 
according to the computing circuit, determined by the 

directed acyclic graph with the logical OR in the last bit

№
0 0 1 1

0 0 1 1

1 0 0 0 1 0 1 0

2 0 0 1 0 1

3 0 0 1

4 0

0 1 1 0

In the 4th row of Table 8, the value of the MSB of the 
sum of binary numbers is recorded. The process of addition 
uses four computing steps. 

Using Table 7, we write the logic equations of the 4-bit 
adder, the computing circuit of which is determined by the 
directed acyclic graph with the logical OR in the last bit.

0 0 0S a b ,= ⊕

1 1
1 1 0 1 1 0 0S S I (a b ) (a b )= ⊕ = ⊕ ⊕ ∧ ,

2 2 1 1 1 1
2 12 01 2 1 1 0

2 2 1 1 1 1 0 0

S S I (S I ) (S I )

((a b ) (a b )) ((a b ) (a b )),

= ⊕ = ⊕ ⊕ ∧ =
= ⊕ ⊕ ∧ ⊕ ⊕ ∧ ∧

3 3 2 2 2 2
3 23 12 12 01

1 1 1 1 1 1 1 1
3 2 2 1 2 1 1 0

3 3 2 2 2 2 1 1

2 2 1 1 1 1 0 0

S S I (S I ) (S I )

((S I ) (S I )) ((S I ) (S I ))

(((a b ) (a b )) ((a b ) (a b )))

(((a b ) (a b )) ((a b ) (a b ))).

= ∨ = ∨ ∨ ∧ =

= ∨ ∨ ∧ ∨ ⊕ ∧ ∧ =
= ∨ ∨ ∧ ∨ ⊕ ∧ ∧ ∨
∨ ⊕ ⊕ ∧ ∧ ⊕ ∧ ∧

or

0 0 0S a b ,= ⊕

1 1 1 0 0S (a b ) (a b ),= ⊕ ⊕ ∧

2 2 2 1 1 1 1 0 0S ((a b ) (a b )) ((a b ) (a b )),= ⊕ ⊕ ∧ ⊕ ⊕ ∧ ∧

3 3 3 2 2 2 2 1 1

2 2 1 1 1 1 0 0

S (((a b ) (a b )) ((a b ) (a b )))

(((a b ) (a b )) ((a b ) (a b ))).

= ∨ ∨ ∧ ∨ ⊕ ∧ ∧ ∨
∨ ⊕ ⊕ ∧ ∧ ⊕ ∧ ∧  (8)

Since the equations (6) and (8) coincide, the computing 
logic in Table 1 and Table 7 is similar. But the computing 
process in Table 7 uses computing steps instead of the carry 
process.

Statement. The number of computing steps of the direct-
ed acyclic graph, which models the computing process of the 
adder determines the optimum number of carries in the multi-
bit parallel carry adder circuit in the Rademacher NTB.

In the case where the synthesized adder got a larger 
number of carries compared with the number of comput-
ing steps of the corresponding directed acyclic graph, this 
adder will be suboptimal regarding the computing time of 
the addition operation. In particular, according to the cri-
terion of the directed acyclic graph, the 8-bit Brent-Kung 
PPA circuit [16] is suboptimal, yet it can be used in the 
super-adder system.

Thus, the number of computing steps defines a minimum 
sufficient number of carries in the adder circuit, which in 
turn provides the hyper-parameter for the adder structure 
optimization during its synthesis. The logic equations of the 
optimized 4-bit adder with the number of carries of four are, 
for example, the following:

0 0 0S a b ,= ⊕

1 1 1 0 0S (a b ) (a b ),= ⊕ ⊕ ∧

2 2 2 1 1 1 1 0 0S (a b ) ((a b ) ((a b ) (a b ))),= ⊕ ⊕ ∧ ∨ ∨ ∧ ∧

3 3 3 2 2 2 2 1 1

2 2 1 1 0 0

S (a b ) (a b ) ((a b ) (a b ))

((a b ) ((a b ) (a b ))).

= ∨ ∨ ∧ ∨ ∨ ∧ ∧ ∨
∨ ∨ ∧ ∨ ∧ ∧ 	 (9)

The time T of addition of binary numbers of the adder is:

T=τ·k,

where τ is the time of one step (carry), k is the number of 
steps (carries). The optimum adder (9) will run faster be-
cause it contains fewer XOR operations, compared with the 
adder circuit in Fig. 1.

The adder in Fig. 1 performs 48 logical operations, 
among them XOR – 11, AND – 11, OR – 4. The optimum 
adder (9) performs 34 logical operations, among them  
XOR – 5, AND – 10, OR – 9.

Given that the XOR logic uses four logical operations 
(Fig. 1, b), we can estimate the acceleration rate S of the 
optimum adder:

Table 7

The tabular arrangement of addition of 4-bit numbers with the computing circuit, determined by the directed acyclic graph 
with the logical OR in the last bit

№
3a 2a 1a 0a

3b 2b 1b 0b

1 1
3 3 3a b S∨ = 1

2 2 2a b I∧ = 1
2 2 2a b S⊕ = 1

1 1 1a b I∧ = 1
1 1 1a b S⊕ = 1

0 0 0a b I∧ = 0 0 0a b S⊕ =

2 1 1 2
3 2 23S I S∨ = 1 1 2

2 1 12S I I∧ = 1 1 2
2 1 12S I S⊕ = 1 1 2

1 0 01S I I∧ = 1 1
1 0 1S I S⊕ =

3 2 2 3
23 12S I S∨ = 2 2 3

12 01S I I∧ = 2 2
12 01 2S I S⊕ =

4 3 3
3S I S∨ =

3S 2S 1S 0S
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1 opt.S T / T 59 / 39 1,5128 51,28 %,= = = =

where T1, Topt is the number of logical operations of the sub-
optimal and optimal adders respectively.

6. Discussion of results of research of modeling of the 
process of addition of binary numbers in the parallel carry 

adder of the Rademacher NTB by a binary tree in  
the form of the acyclic graph with  

two logical operations – AND and XOR

The research shows that computing steps of the directed 
acyclic graph and carry of the unit from the previous adder 
bits represent a single object. Computing, arranged in the 
cascade circuit has logarithmic complexity, and since the 
acyclic graph provides the cascade circuit, the number of 
computing steps of the graph optimizes (indicates the min-
imum sufficient) the number of carries for the operation of 
addition of multi-bit numbers in the parallel carry adder 
circuit of the Rademacher NTB. The target function of the 
optimization process of the number of the adder carries is the 
equation (7).

Note that the method of empirical construction (includ-
ing software) of the parallel carry adder does not guarantee 
the adder structure with a minimum number of carries and, 
consequently, the adder circuit thus synthesized may require 
more time for the addition operation.

The relationship between the number of computing steps 
of the directed acyclic graph and the number of carries in 
the parallel carry adder circuit indicates the feasibility of 
comparison of the adder structure with the corresponding 
directed acyclic graph, and feasibility is a necessity, so the 
usefulness of this research is that they cause the process of 
matching the adder structure with the corresponding direct-
ed acyclic graph to determine the optimum number of carries 

for the operation of addition of binary numbers. Thus, the 
research may be a part of the design technology of electronic 
circuits of adders because:

– make it clear what is the adder structure;
– teach to operate the adder circuit in the design stage;
– allow predicting the implications of the given adder 

structure.
Determination of conditions for reducing the computa-

tional complexity in terms of the adder computing time, for 
example to O (n–1) may be promising for further consider-
ation of parallel carry adders.

7. Conclusions

1. It is found that computing of the sum and carry signals 
in the parallel carry adder of the Rademacher NTB can be 
justified by the mathematical model in the form of the direct-
ed acyclic graph, which is a binary tree.

2. It is revealed that the performance indicator of the 
directed acyclic graph in the form of a number of computing 
steps determines the optimum number of carries in the multi-
bit parallel carry adder circuit in the Rademacher NTB.

3. It is found that the number of computing steps for the 
considered models of parallel carry adders (models of 4-bit 
adders) is equal to the number of bits of binary numbers n. 
Thus, the complexity of the algorithm for computing the 
sum and carry signals of the parallel carry adder in the 
Rademacher NTB is O (n) and is linear – the time of the 
algorithm increases linearly with n.

4. It is revealed that computing of the sum and carry 
signal in the parallel carry adder circuit is performed by the 
logarithmic addition algorithm.

5. It is found that the logic of the optimized adder using 
the considered mathematical model corresponds to the com-
puting protocol of the parallel carry adder.
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