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YUCTI0 nepeHeceHb Y CXeMi 6azamopo3paonoz0 napaiein-
HO020 cymamopa 3 napaneavHuM Cnoco6om nepeneceHns y
meopemuxo-uucaosomy 6asuci Pademaxepa. Ilpouec dooa-
8aHHSA 0BIUKOBUX HUCEL Y CXEMI CYMAMOPA SUKOPUCMOBYE
anzopumm nozapupmiunozo niocymosysanms

Knouosi crosa: cymamop, kackaona cxema, HanpasJe-
Hui ayuxaiunuil epadp, T9b Pademaxepa
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Paccmompenvt mamemamuueckue Mo0eau 6olvucau-
MeNbHOU CXeMbl 8 6Ude OPUECHMUPOBAHHO20 AUUKIUUECKO-
20 epagpa 0ns nocmpoenHus NAPaALIeNbHBIX CYMMAMOPO8 C
napanneavhvim cnocobomnepenoca. llpodemoncmpuposana
C6513b MeHCOY BLIMUCTUMETbHOIMU WAZAMU OPUECHMUPOBAH -
HO020 QUUKAUMHO020 2padda u npoyeccom nepeHoca eouHunbt
8 cxeme MHO20pA3PA0H0Z0 CYMMaAmMopa, 4wmo no3eoJsem
onpeoensims ONMUMANLHOE YUCTO NEPEHOCA 8 CXeMe MHO-
20pa3ps0H020 NAPANNETLHOZ0 CYMMAMOPA C NApaiieiv-
HbIM CNOCOOOM nepeHoca 8 meopemuxo-4ucaio8om oasuce
Paodemaxepa. Ilpoyecc cymmuposanus 080UMHbLIX HUCEN 8
cxXeme CymMmamopa ucnosv3yem anzopumm Jjaozapudpmuue-
CK020 CYMMUpPOBaAnHuUs

Kniouesvie cnosa: cymmamop, rackadwas cxema,
HanpasaeHHbLi auummuegxuﬁ ?Iéad’: TYb Pademaxepa

Poszenanymo mamemamuuni mooeai 004ucao6anvioi

1. Introduction or

The technology of computing in the Rademacher num-
ber-theoretic basis (NTB) has existed for a long time, the in-
formation has been accumulated, mathematical and software
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n=1

where k is the number of bits.

resources have been developed. The binary system is one of
the simplest positional numeral systems and, consequently,
electronic equipment, made on its basis is the most reliable
and versatile.

The unary numeral system, which in the 60s has been
used for developing the «Promin» computer is a simpler nu-
meral system than binary. But it can hardly be attributed to
positional numeral systems, and speed is low.

The range of addition of numbers in the Rademacher
NTB is:

Xp+yp =<2 1, )
where k is the number of bits. The number of addition
options for the multi-bit adder with the full adder in the
first bit is:

c=2x2"x2", (2)

where k is the number of bits. The number of addition options
for the half-adder in the first bit of the multi-bit adder is:

b=32 -n, 3)

Arithmetic devices with the characteristics (1)—(4) for
a number of examples do not require additional hardware
capacity, so the cost of them will be kept low, and this gives
premise to further developments in this area.

The methods of arithmetic operations are implemented
by gate circuits of functional elements in the bases consist-
ing of the functions of the algebra of logic. Minimization of
complexity and depth of logic circuits is one of the major and
practically important problems in this theory. Currently,
the circuit optimization is to some extent implemented by
software (for example, the Logic Friday program performs
circuit optimization in a set of bases — from a range of avail-
able elements). However, in general, the problem of optimi-
zation of the logic circuit (including adder circuits) today is
solved empirically. In this regard, the need for mathematical
research of the outcome formation process in the adder cir-
cuit is urgent, which allows the circuit control in the design.

2. Literature review and problem statement

The binary system has many undeniable advantages, but
it also has a number of essential drawbacks:




1. The binary system allows the sign-and-magnitude
representation only of positive numbers. Representation
of negative numbers needs the use of special codes — two’s
complement and one’s complement. This complicates the
arithmetic structure of computers and reduces their speed.

2. Zero redundancy. All computer circuits and devices
are exposed to numerous external and internal influences,
resulting in failures and faults. Such errors in the binary
system cannot be detected, since all binary code combina-
tions are allowed. The lack of code redundancy, which would
allow detecting errors directly in the computing process, is
a principal drawback of the classical binary number system.

3. «Long carry». The maximum time of the addition op-
eration is reached when the carry that occurred in the first
bit passes all the other bits (e. g., when adding codes 11...11
and 00...01), which is a principal factor of computer speed
reduction.

In [1] states that the main advantage of Fibonacci micro-
processors is noise immunity and the possibility to obtain
reliable data at the microprocessor output.

It should be assumed that the carry in the addition op-
erations in the Rademacher NTB is not related to the main
problem, as evidenced by, for example, the following publica-
tions: [2] presents the structure of the carry select adder to
perform parallel computing in the FPGA applications. Op-
timum structures for the FPGA implementation are shown.
The simulation results are used for verification of the theory;
[3] presents the 180 nm CMOS technology of the computing
process in the carry select adder circuit on the basis of the
parallel ripple carry adder. The proposed approach provides
a reasonable compromise between the computing cost and
performance. Note that the CLA adder (carry look ahead ad-
der) occupies a larger area on the chip and needs more power
for computing; [4] developed the mathematical model to
estimate the time attributes of the carry self-timing for the
Carry Select Adder structure, presented pilot projects of the
given approach; [5] presents the 128-bit Carry Select Adder
structure for the VLSI system design. The architecture,
based on the modification of 16, 32 and 64-bit Carry Select
Adder (CSLA) is designed, which is promising for reducing
the adder area and carry delay.

Reduction of hardware complexity of the electronic ad-
der by introducing the information redundancy on the basis
of modeling of the binary-ternary redundant numeral system
adder is considered in [6].

In [7], efficient use of the cascade computing circuit to
support dynamic data querying in the cloud is shown and
experimentally proved.

In [8], it is demonstrated that the operation of vector-ma-
trix multiplication, which is used for solving the problems
of processing, analysis of signals and images and pattern
recognition, is implemented by pairwise product formation
and multi-operand summation.

Modification of the method of computing of the group
summation operator for real-time neural networks based on
vertical and multi-operand approaches is considered in [9].

The use of nucleic acids (NA) for logic gates and comput-
ing in biotechnology and biomedicine is examined in [10]. In
particular, the logic gate that uses the cascade circuit for the
DNA logic implementation is shown. Nucleic acid-based log-
ic devices were first introduced in 1994. Since then, science
has seen the emergence of new logic systems for modeling
mathematical functions, diagnosing diseases and even those
that simulate biological systems.

Molecular logic circuits with multiple components,
placed in several layers, can be synthesized using DNA. The
issue whether the circuit depth, which is a standard measure
of computing time-complexity in digital electronic circuits is
an appropriate measure of time-complexity for the chemical
circuit is considered in [11]. To this end, the quantitative
analysis of how the computing time is associated with the
circuit size and cascade architecture is presented. The re-
sults of the work can be used for the synthesis of efficient and
more reliable molecular circuits.

Unlike [7-11], the present paper deals with the appli-
cation of the cascade circuit for the operation of addition
of binary numbers using the parallel carry adder in the
Rademacher NTB. The use of the mathematical model that
justifies the addition operation in the parallel carry adder
circuit clarifies the method and allows the complexity for-
mation of the computing algorithm.

3. Research goal and objectives

The goal of the paper is to find the relationship be-
tween computing steps of the directed acyclic graph and
the unit carry process in the multi-bit adder circuit using
the mathematical model of computing circuits, and thus
determine the optimum number of carries in the multi-
bit parallel carry adder circuit in the Rademacher num-
ber-theoretic basis.

To achieve this goal, it is necessary to solve the following
problems:

1. To identify the correct accordance in the arrangement
of the process of adding numbers by the cascade circuit and
the process of adding bits of similar bits of binary numbers.

2. To determine the adequacy of the mathematical model
in the form of the directed acyclic graph and the process of
adding binary numbers in the parallel carry adder, to assign
the parameters for describing the characteristics of the
mathematical model.

3. To derive logic equations of the optimized adder, built
taking into account the number of computing steps of the
corresponding directed acyclic graph.

4. To determine the complexity of the algorithm for com-
puting the sum and carry signals of the optimized parallel
carry adder in the Rademacher NTB.

5. To make the computing protocol of the process of
adding binary numbers and to test the synthesized adder for
compliance of the results of adding binary numbers and the
protocol.

4. Carry save

To demonstrate the carry process in arithmetic addition
of multi-bit numbers, we use a tabular arrangement of the
summation process (Table 1). In the top rows of Table 1, we
write two 4-bit numbers — A and B.

The similar number bits are recorded in the common
column in Table 1. A tabular arrangement of the summation
process involves computing cycles for each bit of the number.
The number of cycles is the number of bits of binary num-
bers. Thus, for this example, the number of computing cycles
equals four. Each cycle in Table 1 is represented by two rows.
The result of the bitwise addition is recorded in the first row,
the result of carry — in the second row.



The carry save process in the addition of binary numbers

Table 1 So=2. The latter notation of the sum in the binary

system is unconventional, but the result is still clear.

Number — A ay a,y ay a
a, a,
Number — B b, b, b, b, b b
- ; - ; 1 0
No Overflow 4th bit : 3rd bit 2 2nd bit : 1st bit ond bit st bit (5)
1 - a,®b,=S;|a,®b,=S;|a,®b,=S;|a,®b, =5, — a, @b, =S,
2 a;Ab, =1 a,Ab,=0) | a,ab, =1} |a, Ab, =1} - a, Ab, =1} _
1 - Slell=S' S el =SS @l =S, -
A similar redundancy of record is also present
3 13_ T4 2 y2_ 13 1o _ 2 B B
2 Sonl =1 Sonli =1 | Sonlo =T for the sums of other bits.
1 - Sel=S}|Sel’ =S, - - In the example in Table 1, the carry from the
9 S AP =T 2 113 LSB to the MSB is not used. This process is re-
AL =1, Si AL =1, - - - . . .
— placed with an extension of the set of significant
1 - S,®1I, =5, - - - figures in each bit of the result. However, this
9 SIAL =T B _ B _ procedure cannot be performed indefinitely. Even-
PE—— S tually, to return to the standard representation of
S;=LvIivL vl S, S, 5 0 numbers, all carries need to be performed as shown

The arithmetic procedure of addition consists of two
operations — XOR and AND. Summation of numbers begins
with LSB. XOR - a,®b,=S, — of the LSB is recorded
in the same column in the first row of the first computing
cycle. Carry of the LSB (AND result — a, Ab, =1}) is re-
corded in the second row of the first computing cycle in the
column shifted one bit to the left. Similar actions in the first
computing cycle are performed with the second bits of num-
bers — XOR — a,®b, =S| — of second bits is recorded in the
same column in the first row of the first computing cycle,
carry of the second bits (AND result — a, Ab, =12) is record-
ed in the second row of the first computing cycle in column
shifted one bit to the left. After finishing the considered
addition operations for the third and fourth bits, computing
in the first cycle is completed.

The second cycle repeats computing of the first cycle
with the difference that the computing is carried out with the
results obtained in the first cycle. So, XOR — S} @I} =S, —
of the results of the first computing cycle, the second bits is
recorded in the same column in the first row of the second
computing cycle. Carry of the computing results in the first
cycle, the second bits (AND result — S} AL} =I7) is recorded
in the second row of the second computing cycle, the column
shifted one bit to the left. Similar actions in the second com-
puting cycle are performed with the third bits of numbers —
XOR — S;@12=S? - of the third bits is recorded in the same
column in the first row of the second computing cycle, carry
of the third bits (AND result — S} AT =T?) is recorded in
the second row of the second computing cycle in the column
shifted one bit to the left. After finishing the considered ad-
dition operations for the fourth bits, computing in the second
cycle is completed.

The third cycle uses the computing results of the second
cycle, and the fourth cycle uses the computing results of the
third cycle (Table 1). In the end, the sum will be — S3, So, Sy,
So of the set binary numbers — a4, as, as, a; and by, bs, by, by.

The considered tabular arrangement of the process of
addition of binary numbers (Table 1) coincides with the car-
ry-save addition method (carry-save adder). For this method
of addition, the solution to the problem is reduced to the use
of redundant encoding of the result when the result in each
position is the value that exceeds the radix.

The record of the sum (5) for the LSB in Table 1 is redun-
dant, since for ap=1 and bo=1, the sum Sy is given as Sp=10

in Table 1.

The use of carry-save adders can significantly speed up
the chained addition, which, for example, is necessary for the
multiplication operation.

Example 1. Using the tabular arrangement of the addi-
tion process, to compute the sum of 4-bit numbers 0001 and
0111 (Table 2).

Table 2

Addition of binary numbers 0001 and 0111 according to the
computing circuit, determined by the tabular arrangement of
the process

Number — A 0 0 0 1
Number — B 0 1 1 1
L e - 0 1 1 0
0 0 0 1 -
- 0 1 0 -
2 0 0 1 = -
_ 0 0 _ _
3 0 1 B B -
_ 1 _ _ _
4 i - - =
- 1 0 0 0

Example 2. Using the tabular arrangement of the addi-
tion process, to compute the sum of 4-bit numbers 0011 and
0011 (Table 3):

Table 3

Addition of binary numbers 0011 and 0011 according to the
computing circuit, determined by the tabular arrangement of
the process

Number — A 0 0 1 1
Number — B 0 0 1 1
o e - 0 0 0 0
0 0 1 1 -
- 0 1 1 -
2 0 0 0 B -
_ 0 1 _
3 0 0 B - -
YR - - 0 - - -
0 _ _ _
— — 0 0




Using Table 1, we write the logic equations of the 4-bit
adder with the tabular arrangement of the addition of binary
numbers.

S,=a,®b,,
S,=(a, ®b,)®(a, Ab,),

S,=((a,®b,)®(a; Ab))®((a, ®b)) A(a, Aby)),

S;=(((a;®b;)®(a, Ab,))®((a,®b,)A(a; Ab)))®
®(((a,®b,)®(a, Ab ) A((a; ®b,) A(ay Aby))).

In the case where the range of numbers, in which the ad-
der operates is fixed, the possibility of increasing the number
of bits of the adder circuit is eliminated. Then, the logical OR
can be used in the last bit of the adder, which will simplify
the adder structure. The equation for S3 will be of the form:

Sy=(a, VbS)V(aZ Ab,)v((a,®b,)A(a, Ab)))v
v(((a,®@b,)®(a, Ab)) A((a, ®b,) A(a, Aby))). )
Fig. 1 shows the logical structure of the 4-bit adder,
which implements the tabular arrangement of the process of
addition of binary numbers.
a0, [ =]
bo |

Fig. 1. The logical structure of the 4-bit adder with the
tabular arrangement of the process of addition of binary
numbers: a — the adder circuit with pictorial symbol of the
logical XOR, b — the adder circuit with one of the options of
the open structure of the logical XOR

According to the classification, the adder with the
tabular arrangement of the addition of binary numbers
should be attributed to the parallel carry adders. The
feature of the logical structure of the adder in Fig. 1 is the
absence of the carry look-ahead circuits, which eliminates

technical problems when increasing the number of bits of
the adder.

5. The model of parallel addition of binary numbers of
the Rademacher NTB

The bitwise addition of binary numbers, with a few dif-
ferences, is similar to the doubling algorithm in the multi-op-
erand summation, when adjacent pairs of terms, and then
their sums are added (Table 4).

Table 4
Doubling algorithm (n=23=8)
Steps | e | e e3 | ey es | [ e7 | eg
1 eqtes esgtey esteg e7teg
2 eqtegtestey estegtestes
3 ejtegtestestestegterteg

If n=2%, where n is the number of terms, the doubling
algorithm consists of k steps (cycles), n/2 additions are
performed in the first step, n/4 — in the second, ..., one ad-
dition — in the last. The number of steps k is determined by
the formula:

k=log,n. @)
This option of the multi-operand addition is implement-

ed according to the cascade circuit («pyramid») [12—15]
(Fig. 2). There is also a recursive summation algorithm [14].

k=log;n @

N

Fig. 2. The cascade circuit of the multi-operand addition
algorithm (logarithmic summation)

Using the procedure of the multi-operand addition ac-
cording to the cascade circuit, it is clear that for the process
of parallel addition of binary numbers, bits of similar bits are
pairs of data, for each, the sum is computed.

Further, similar to the procedure of the multi-operand
addition, all sums of pairs of similar bit pairs of binary num-
bers, with their characteristics, are also divided into pairs
and addition of values of pairs is performed again, and so on.

As a result, the value of the MSB of the sum of binary
numbers can be compared with the value of the total sum
in multi-operand addition. Apart from the sum of the MSB,
intermediate results in the form of the values of sums of
previous bits of binary numbers are also used in the parallel
addition of binary numbers.

The computing circuit of parallel addition of binary num-
bers can be determined by the directed acyclic graph (Fig. 3),
which is a binary tree, which, in particular, adopted the fol-
lowing parameters: k — the number of steps in time; w — the
total number of the algorithm operations; t — the time of one
step; T=tk — the time of the algorithm; L. — the number of
types of operations, and so on.
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Fig. 3. The directed acyclic graph of the computing circuit
of the parallel carry-save addition of 4-bit numbers of the
Rademacher NTB

Thus, the computing circuit in Fig. 3 uses two logic op-
erations — AND and XOR, the number of computing steps
in it equals to the number of bits of binary numbers. For
example, the parallel addition of 4-bit numbers requires four
steps (Fig. 3).

The tabular arrangement of the computing circuit in
Fig. 3 is presented in Table 5. The superscript of the parameter
in Table 5 indicates the serial number of a computing step.

Example 3. Using the directed acyclic graph (Table 6), to
compute the sum of 4-bit numbers 0001 and 0111.

In the 4th row of Table 6, the value of the MSB of the
sum of binary numbers is recorded on the right, the value of
the overflow is recorded on the left. The process of addition
uses four computing steps.

The computing circuit of the parallel addition of 4-bit
numbers with the logical OR in the last bit is shown in Fig. 4.

Table 6

The process of addition of binary numbers 0001 and 0111
according to the computing circuit, determined by the
directed acyclic graph

N 0 0 0 1
0 1 1 1
t ] o tJoit 1o
2 0 i1 0
3 o [t o
4 0 i1
t [ o[ o] o]
a9 > S

Steps

| | | | |
0 1 2 3 4

Fig. 4. The computing circuit of the parallel carry-save
addition of 4-bit numbers with the logical OR in the last bit

The tabular arrangement of the computing circuit in
Fig. 4 is presented in Table 7.

Table 5
The tabular arrangement of addition of 4-bit numbers according to the computing circuit,
determined by the directed acyclic graph

az ay ay EN
Ne

b3 b2 b1 bO
1] a,ab,=1 a,®b, =S} a,Ab, =1, a,®b, =S} a, Ab, =1} a,®b, =S, a,Ab, =1 a,®b, =S,
2 SLAl =1, Si®1,=S;, SyAl =1, S,®1 =5, SiAl =12, S;@I; =S,
3 Sis A 1122 =r Sgs ® Ifz =S’ sz A Ifn =r S;zz ® 151 =S,
4 AL =T Ser=s,

S, S, S, So




Table 7

The tabular arrangement of addition of 4-bit numbers with the computing circuit, determined by the directed acyclic graph
with the logical OR in the last bit

a3 ay a4 e

Ne
b, b, b, b,

1 a;vb, =S} a,Ab, =T, a,®b, =S, a, Ab, =1, a,®b, =S a,Ab, =1} a,®b, =S,

2 SivI =S, SyAL =T, S,®I =S, SIAL =13, Si@l =S,

3 Sy vI, =8 St AL =T S, @15, =S,

4 SV =S,

SS Sz S1 So

Example 4. Using the directed acyclic graph with the
logical OR in the last bit (Table 8), to perform the addition
of 4-bit numbers 0011 and 0011:

Table 8

The process of addition of binary numbers 0011 and 0011
according to the computing circuit, determined by the
directed acyclic graph with the logical OR in the last bit

0 0 1 1
e 0 0 1 1
1 0 o fof 1t io] 1t o
2 | 0 1 0 1
3 | 0 0
4 | 0

Lol 1t ] 1] o]

In the 4th row of Table 8, the value of the MSB of the
sum of binary numbers is recorded. The process of addition
uses four computing steps.

Using Table 7, we write the logic equations of the 4-bit
adder, the computing circuit of which is determined by the
directed acyclic graph with the logical OR in the last bit.

So =ao®bov
S, =S;®I =(a,®b,)®(a, Ab,),

S,=S5,®L, =(S, @)@ (S| AL}) =
=((az®b2)®(a1 /\b1))®((a1 ®b1)/\(ao Abo))r

Sy =8 VI =(S;, VIV (S, ALG) =

=((S; V) V(S AID)IV((S, @I A(S{ ALY)) =
=(((a;vby)v(a, Ab,))v((a,®b,) Aa; Ab))))v
v(((a,®b,)®(a, Ab)) A((a, ®b,) A(a, Aby))).

or
Sp=2a,®b,,
S,=(a,®b)®(a, Aby),
S, =((a, ®b2)®(a1 /\b1))®((a1@b1)/\(ao/\b0))y

S, =(((agvby)v(a,Aby))v((a,®b,)A(a; Ab)))v
v(((a,®b,)®(a, Ab))A((a; ®b,) A(a, Aby))). (8)

Since the equations (6) and (8) coincide, the computing
logic in Table 1 and Table 7 is similar. But the computing
process in Table 7 uses computing steps instead of the carry
process.

Statement. The number of computing steps of the direct-
ed acyclic graph, which models the computing process of the
adder determines the optimum number of carries in the multi-
bit parallel carry adder circuit in the Rademacher NTB.

In the case where the synthesized adder got a larger
number of carries compared with the number of comput-
ing steps of the corresponding directed acyclic graph, this
adder will be suboptimal regarding the computing time of
the addition operation. In particular, according to the cri-
terion of the directed acyclic graph, the 8-bit Brent-Kung
PPA circuit [16] is suboptimal, yet it can be used in the
super-adder system.

Thus, the number of computing steps defines a minimum
sufficient number of carries in the adder circuit, which in
turn provides the hyper-parameter for the adder structure
optimization during its synthesis. The logic equations of the
optimized 4-bit adder with the number of carries of four are,
for example, the following:

S,=a,®b,,
S;=(a,®b,)®(a, Ab,),
S,=(a,®b,)®((a, Ab))v((a,vb)a(a, Aby))),

S;=(a;vby)v(a,ab,)v((a,vb,)a(a, Ab))v
v((a,vb,)A((a, vb) A(a, Aby))). )

The time T of addition of binary numbers of the adder is:
T=1tk,

where 1 is the time of one step (carry), k is the number of
steps (carries). The optimum adder (9) will run faster be-
cause it contains fewer XOR operations, compared with the
adder circuit in Fig. 1.

The adder in Fig. 1 performs 48 logical operations,
among them XOR - 11, AND - 11, OR - 4. The optimum
adder (9) performs 34 logical operations, among them
XOR - 5, AND - 10, OR - 9.

Given that the XOR logic uses four logical operations
(Fig. 1, b), we can estimate the acceleration rate S of the
optimum adder:



S=T,/T,, =59,/39=1,5128=51,28 %,

where Ty, T is the number of logical operations of the sub-
optimal and optimal adders respectively.

6. Discussion of results of research of modeling of the
process of addition of binary numbers in the parallel carry
adder of the Rademacher NTB by a binary tree in
the form of the acyclic graph with
two logical operations — AND and XOR

The research shows that computing steps of the directed
acyclic graph and carry of the unit from the previous adder
bits represent a single object. Computing, arranged in the
cascade circuit has logarithmic complexity, and since the
acyclic graph provides the cascade circuit, the number of
computing steps of the graph optimizes (indicates the min-
imum sufficient) the number of carries for the operation of
addition of multi-bit numbers in the parallel carry adder
circuit of the Rademacher NTB. The target function of the
optimization process of the number of the adder carries is the
equation (7).

Note that the method of empirical construction (includ-
ing software) of the parallel carry adder does not guarantee
the adder structure with a minimum number of carries and,
consequently, the adder circuit thus synthesized may require
more time for the addition operation.

The relationship between the number of computing steps
of the directed acyclic graph and the number of carries in
the parallel carry adder circuit indicates the feasibility of
comparison of the adder structure with the corresponding
directed acyclic graph, and feasibility is a necessity, so the
usefulness of this research is that they cause the process of
matching the adder structure with the corresponding direct-
ed acyclic graph to determine the optimum number of carries

for the operation of addition of binary numbers. Thus, the
research may be a part of the design technology of electronic
circuits of adders because:

— make it clear what is the adder structure;

— teach to operate the adder circuit in the design stage;

—allow predicting the implications of the given adder
structure.

Determination of conditions for reducing the computa-
tional complexity in terms of the adder computing time, for
example to O (n—1) may be promising for further consider-
ation of parallel carry adders.

7. Conclusions

1. It is found that computing of the sum and carry signals
in the parallel carry adder of the Rademacher NTB can be
justified by the mathematical model in the form of the direct-
ed acyclic graph, which is a binary tree.

2.1t is revealed that the performance indicator of the
directed acyclic graph in the form of a number of computing
steps determines the optimum number of carries in the multi-
bit parallel carry adder circuit in the Rademacher NTB.

3. It is found that the number of computing steps for the
considered models of parallel carry adders (models of 4-bit
adders) is equal to the number of bits of binary numbers n.
Thus, the complexity of the algorithm for computing the
sum and carry signals of the parallel carry adder in the
Rademacher NTB is O (n) and is linear — the time of the
algorithm increases linearly with n.

4.1t is revealed that computing of the sum and carry
signal in the parallel carry adder circuit is performed by the
logarithmic addition algorithm.

5. It is found that the logic of the optimized adder using
the considered mathematical model corresponds to the com-
puting protocol of the parallel carry adder.
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