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Pozenanymo mpusumipny 3zadauy npo
Hanpysceno-depopmosanuii cman naumu, y
AKOL XapaxKmepucmuxu npyncHocmi mamepi-
any 3MiHIOIOMbCA 30 MOGUWUHOI0 MA ONUCY-
10MbCsL 00GLILHUMU THMEZPOBHUMU (DYHKULA-
Mmu. Iloxasano, wo mouui, 6 cenci Cen-Benana,
anaimuui po36°a3Ku Kpaoeoi 3aoa4i MoicHa
ompumamu, SAKWO Po3noodij HABAHMANCEHD
3a0060J1bHsE 060BUMIPHOMY NONT2APMOHIY-
Homy piensannio. Chopmyavosano nadaudice-
Hi Meopii 051 THHCEHEPHUX PO3PAXYHKIE 32Uy
HeoOHOPIOHUX naacmun

Knwouoei cnosa: meopis npyicnocmi,
i30mponni miaa, HeoOHOPIOHI Mamepianu, 32un
naum, Hanpyscenns ma depopmauii

= yu

Paccmompena mpexmepuas 3zadaua o
HANPAXHCEHHO-0ePOPMUPOBAHHOM COCMOAHUU
naAUMbL, 6 KOMOPOU XAPaAKmepucmuxyu ynpy-
20Cmu mMamepuana U3MeHsAIOMCA No MoJuUHe
U ONUCLIBAIOMCA NPOUIBOTLHLIMU UHMEZPU-
pyemoimu Pynxuuamu. Iloxazano, umo mou-
Hote, 8 cmoicae Cen-Benana, ananumuueckue
peuenust Kpaeeoil 3a0auu MO}CHO NOTYHUMD,
ecau pacnpedeienue HazpY30K Yoo8aeMEopP-
em 08YMepHOMY NOJUZAPMOHUMECKOMY YPAB-
nenuto. Copmynuposanvl npududNCeHHbLE
meopuu 0Nl UHIHCEHEPHLIX PAacuemos uzuba
HEOOHOPOOHBIX NAACMUH

Knioueevie cnosa: meopusa ynpyzocmu,
uzomponnovle meaa, HeoOHOPOOHbIE Mamepua-

Jlbl, U32U0 NAUM, HANPANCEHUS U Dedopmayuu
O o

1. Introduction

The heterogeneity is a characteristic feature of virtually
all materials used in engineering and construction. It is due
to a number of factors, which conditionally can be divided
into three groups:

1. Action of environment (temperature fields, radioactive
radiation, uneven humidity, etc.).

2. Manufacturing techniques peculiarities (rolling, forg-
ing, hardening of casting and concrete etc.).

3. Project implementation plan (availability of the re-
inforcement, layers of other materials, etc.), which is an
important source of reduction in weight, size and cost of the
projected designs.

The improvement of calculations of machine elements, con-
structions and structures is associated with taking into account
the impact of heterogeneity of actual materials on the stressed
and deformed states of elastic bodies. Therefore, a relevant task
is the search for the methods of determining the displacements
and stresses in three-dimensional bodies of a relatively simple
form — slabs and plates made of inhomogeneous materials.

2. Analysis of scientific literature and the problem setting

Nowadays most of the studies in this direction consider a
fairly limited number of the types of heterogeneities, for which
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analytical solutions to the problems of elasticity theory were
obtained [1,2]. This is due to the fact that the difficulties
faced during consideration of specific problems are relatively
more complex than the similar problems of the classical theory
of elasticity, since variable coefficients appear in its funda-
mental equations. These characteristic features offer explana-
tion to the fact that analytical solutions to a limited number
of tasks for the bodies of the simplest geometric shapes have
been obtained until now: rectangular [1,5,6] and circular
plate [2], structure [3] and dimensions [4, 6] and elementary
dependencies of the characteristics of materials elasticity on
the coordinates of the points of the body [5].

The analysis of the above mentioned publications demon-
strated that the exact solutions to variable thickness of inho-
mogeneous rectangular plates were considered, the influence
of heterogeneity degree, the ratios of sides [1] and the hetero-
geneous boundary conditions [4] were taken into account.
As result of the research, it was found that the influence of
elasticity module on the plate of (FG) and (EG) materials
rested on the elastic foundation is produced according to the
exponential law [5, 6], and the influence of material proper-
ties and the strength of the elastic foundation on mechanical
properties of the plate was studied.

The bodies of the type of sphere, half-space and the
layered system were most often studied. The bodies with
exponential [7, 8] or degree [9, 10] Young’s law of the module
change and stable [4], and in some cases even the variable




Poisson coefficient [11, 12] were considered. It was proven
that such heterogeneities usually significantly affect both
stressed and deformed state of bodies. The works [13, 14] are
devoted to more complex dependencies.

Therefore, one can state that only quite a limited number
of types of heterogeneities have been studied until now, for
which analytical solutions to the problems of the theory of
elasticity were obtained. At the same time, there are no ex-
act, in the sense of Saint Venant, solutions to the boundary
problems for the plates, inhomogeneous in thickness, ex-
posed to the actions of the mass forces and the surface loads
in a general case. Therefore, various approximate methods of
solving the problems of mechanics of a deformed solid body
have been developed over the recent decades, which allow
receiving numeric solutions relatively easy.

But the vast majority of researchers feel the lack of a
sufficient number of analytical solutions to the problems,
which might serve as reliable test examples for approximate
methods. Therefore, this research is devoted to searching for
the new exact, in the sense of Saint Venant, solutions to the
boundary problems for the plates, inhomogeneous in thick-
ness, as well as the ways of building up approximate solutions
that have the set degrees of accuracy.

3. The aim and the tasks of the research

The purpose of the research is to build up analytical
solutions to the boundary problems for the plates, inhomo-
geneous in thickness, exposed to the action of mass forces
and surface loads.

To achieve this aim, the following tasks were set:

—to find the criteria, to which the distribution of the
forces inside and on the body surface should correspond, if
the material’s heterogeneity is described by arbitrary inte-
grated functions of one Cartesian coordinate;

— to obtain the exact, in the sense of Saint Venant, solu-
tions of boundary problems for the plates, inhomogeneous in
thickness, that can be used in engineering calculations, as
well as when testing the existing approximate theories;

— to develop methods for building up approximate solu-
tions that have a specified degree of accuracy.

4. Analytical solution of the problem about the bending of
a plate, inhomogeneous in thickness, and its discussion

Let us assume that the plate, inhomogeneous in thick-
ness, is loaded with mass forces X, Y, Z and is limited from
the sides by the cylindrical surface T (Fig. 1) (the load of the
plate surface is considered as a special case).

Fig. 1. Scheme of the plate, inhomogeneous in thickness
(external forces are not shown)

We will try to set the conditions that the mass forces
should meet for the problem on stressed and deformed states
of a studied elastic body to have the solution, exact in the
sense of Saint Venant, i. e. the plate thickness h will be con-
sidered a relatively small magnitude.

We will formulate the ways of building up so-called
“technical” (approximate) theories of the bending of plates.

1. To solve the problem, we will connect the body with
the Cartesian coordinate system, the O origin of which lies
inside the plate and the axes Ox, Oy are directed by parallel
bordering planes z=—h; and z=h,, that is, the plate thickness
h=hy+h, (position of the point O by height will be chosen
later from the condition of the simplest recording of final for-
mulas). With this choice of axes, the material’s heterogeneity
will be described by the functions of only one coordinate z,
which will be considered arbitrary and integrable.

As it is shown in the paper [14], the solution for the
problem formulated above comes down to the search for the
solutions of two linear differential equations with variable
coefficients, one of which is of the fourth, and the other is of
the second order. The equations have the form:
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where A,, A,, A, arethe special solutions for these problems:

A2A1 = 27 AAZ = an +%7
ox dy
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In this case, a,=a,(z) (i=1, 2, 3, 4) may be expressed
through the material’s elasticity parameters like this:
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where G=G(z) is the module of the plate material’s displace-
ment; E=E(z) is the Young module; v=v(z) is the Poisson ratio.

If the functions S;(i=1, 2, 3, 4), Tj(j=1,2) are introduced
for consideration with the help of the following dependencies:

S, = ! [a(al‘+1\1)+a4AL—A2],

_ai dz\ oz
SZZ—a1A 87L+A1 _ﬂv
0z 0z
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then for determining the displacements uy, uy, u, and the
stresses Oy, Oy,..., Oxy, We Will receive the following formulas:
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Thus, when solving any problem of the theory of elasticity
for bodies of one-dimensional heterogeneity, it is necessary in
general case to find the solutions for the differential equations
(1) and (2) by the corresponding boundary conditions. In
some cases, it is enough to examine only one of them.

2. To find the solutions for the equations (1) and (2), let
us first proceed to the dimensionless coordinates:

Xon2Y 2
g_l! T] 17 g h
and designate:
D=2, D=L D=D+D%,
o€ am
A A, A,
kizl—;, 7»2=1—32, stl—;,
h h h, f. f
SZT’ K1:F1’ Kzzf, q)z:l%’ ¢3:1%-

Here 1 is the characteristic plate dimension on the plan.
Now, the dependencies (3) take the form:
DA, =Z, DA, =90 , 00 D?A, LI 7Y

€ o on 9

(D2¢2 =X, D2¢3 =Y).
The formal solution for the equations (1) and (2) will be

searched for in the form of the series, similar to how it was
made in the paper [15]

L=hl'[L, +(eD)' L, +(eD) L. ] (7)
N=hP'[N, +(eD)' N, +(eD) N, +...| ®)

where L, N,(m, n=0,1,...) are the functions to be defined.

Let us substitute L and N to the equations (1) and (2)
and collect similar members by the same degrees eD. Then,
equating them to zero, we will obtain two recurrent sequenc-
es of ordinary differential equations:

[1]“:1,] == a2L11—1] +|:a1(L1,1—1+81n>\‘1)] _ﬁx

ay 4y
2
[ Ly, +8,, (M —ekz)]—(1—81n)(zj—a3]Ln2, )

(10)

We will enter the symbol here:

8, = {0’ o
1, i=j.

In these formulas, the differentiation by the coordinate C.
is marked with a stroke.

The boundary conditions for the functions L, N, follow
from the boundary conditions of the problem.

We agree to designate the value of any function by
€=-x,, with the top index in the form of a degree, and the
value {=x, is designated in the form of an asterisk.

First consider a separate case of the plate’s load.

Let us assume that the lower and the upper surfaces
of the plate{=-x, and {=x, are free from the action of
forces, and only mass forces affect the body.

Then the boundary conditions on the planes {=-x, and
€=x, will be written down as follows:

0'=S=0, It =D,S;+D,T; =0,
Ite, =D,S; -D,T; =0, 11
c,=S,=0, It =D,S,+D,T, =0,

It, =D,S,-D,T, =0.

Thus, S; and T,, as well as S; and T, , are interrelat-
ed by the Cauchy-Riemann conditions and, therefore, are
two-dimensional harmonic functions ®° and o’ i. e.

S,=D,»’, T, =D,0’,
S;=D,0", T, =D,0" (D’w* =0).

However, it is easy to prove that the influence of the
functions ®° and ®" on the stressed and deformed states
of the plate can be taken into account by using the arbitrary
elements in the selection of the functions A,, A, and A,. So
we put @’ =m"=0. Then the boundary conditions will take
the form:

S0 =S,=8)=S,=Ty =T, =0.



They are automatically satisfied if the condition is set:

Li=L =0, L' ==5_ A,

L''=-8§ A, N,=N.,=0 (nm=0,1_.).

We will consider the following geometric characteristics
of cross section of the plate:

E, =—} adg S= j a,Ldg;
¢ 1 g h
I= [ Sdg F =] Gdg (12)
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and choose the position of the origin of the coordinate O
from the condition S"=0.

Then the solution of the first equation of the sequence (9)
can be recorded as:

Ly=2-Q,-Q,—(e:Q;-Q; ) v, —e:Q} v, (13)
where
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Solutions of other equations are determined by the fol-
lowing recurrent dependencies:
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In this case,
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By solving equations of the sequence (10), we obtain:
Ny=-Q,+Q;x, N,=-R, +Rx,

F,
F

jxdc R, _dengn”dC, x=

—K —Ky

(16)

If we substitute series (7), (8) to the formulas (5) for Sy,
T1, Tg, SQ, Sg, S4, we WIH fil’ld:
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Thus, the stress and deformations have the form of the se-
ries, the members of which grow by degrees of the operator D?.
Therefore, if the functions X, Y, Z are polyharmonic, i. e. satisfy
a two-dimensional equation:

D*[X(gn,8), Y(&nY),

(the variable € plays the role of a parameter), the functions
L, and N, will be also polyharmonic. As a result, the series
(7), (8) and (17) will break and by using the formulas (17)
and (6) we will find the exact solution to the problem. Let
us remind that in this case the boundary conditions on the
planes {=-x, and {=x, will be satisfied exactly.

3. Let us focus in more detail on the possible forms of
setting the functions X, Y and Z in the search for the exact
solutions to the problem on the stressed and deformed states
of the plate.

It is easy to prove that the following features are charac-
teristic for the polyharmonic functions:

enpfo=0 (p=y&+)

So, if there is any polyharmonic function ¢ with arbitrary
m, then the new solution @ of the polyharmonic equation
with a larger m can be built up by using the formula:

2(&m,¢)|=0(k=12,3..)

if D*"¢=0, then D*™"

O= ¢P1u
In this case

k
P, = 2 Oﬁg(g)?ﬂj

i+j=0

or
k
Py =X o ©p”.

. Here a,(8) apd 0, (€) are the arbitrary integrable func-
tions of the coordinate z.
We will receive additional solutions if we take:
a) linear combinations of the known solutions;



b) the derivative of an arbitrary order by the parameter S

IDE N § s).
ds ’

¢) the integral by the parameter with the weight function
dependent on it

J®E .G 5)f(s)ds.

As an example, here are a few more types of polyhar-
monic functions, by which it is convenient to approximate
volumetric loads during the solution of the problems of the
theory of elasticity in Cartesian coordinates:

sin n& k .
CD — +nn . 1,
cos ne" 2O
sin M| , . & i
D= € éz‘xi(C)Ey
cos 01 g

4. The solution in the form of (17) is built in such a way that
the boundary conditions on the planes {=-x, and {=x, are
satisfied exactly. The conditions on the lateral area D have to
be satisfied by using arbitrariness in choosing the functions A4,
A2 and Az. The so-called “homogeneous solutions”, which deter-
mine the stressed and deformed states of the plate with the load
of the lateral side D, correspond to this arbitrariness.

Homogeneous solutions are easy to find if you put
X=Y=Z7=0. Then the above mentioned formulas imply that
A, Ao and A3 are biharmonic functions.

Now, if we find L, and N, from the dependencies (15)
and (16) and substitute them to the formulas (17), we will
find functions S;, and T;:

A
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2 (eD)2 v,

2

T, 2
Ih:—[l—(eD)

Here symbols ¥,,, designate the two-dimensional bi-
harmonic functions. Between the two of them — ¥, and
¥, there is a link: D*¥, and D*P, are adjoint harmonic
functions.

Now using the dependencies (6), it is easy to find the
formulas for determining the displacements and stresses in
the plate. They, along with (18), allow receiving the solution
to the problem on the balance of the plate, inhomogeneous
in thickness, loaded with mass forces of polyharmonic type.
Note that the boundary conditions may be satisfied exactly
on the planes {=-x, and {=x,, and on the lateral side T,
they are “softened” in the sense of Saint Venant.

We will note that the problem of searching for the “ho-
mogeneous” solutions for a non-homogeneous plate, but from
the electro elastic material, was studied earlier in [16].

5. The solution to the problem on the balance of the plate
subject to the actions of the surface polyharmonic loads may
be obtained from the solution given above.

Without limiting the studies generality, we will demon-
strate this with the example of loading the upper surface
{=x, with the normal efforts o, =c(§,n).

Put

Z=8(C-x,)o(E,m). 19)

In this case, 8(£—x,) is the asymmetric impulse func-
tion [17], and we will first obtain the solution to the problem
in the case when the plate is exposed to the mass forces Z
in the form (19), that is, we might consider that the load is
applied inside the plate under the surface {=x,.

We have the equation for defining the functions A4, Ay
and As:

D47“1 =8(L-x,)o(E,m), D27“2 =D,9,+D,0,,

DZ?‘S =D,0,-Dy¢;, D2¢2 =0, D2¢3 =0. (20)

Obviously, it is sufficient to find any special solutions to
these equations, whereas the general homogeneous solutions,
corresponding to them, are included in the formulas (18). So

we take:
A, =8k, FEM), A, =1,=0 (DF=0).
From the formulas (13), (14) and (16) we have:

Loz[W1_e(C_K2)]F(§rn)v N():Oy
where

0, C<x,,

c(é—r<2>={1 Efm

Hence, using the recurrent dependency (15), it is easy to
find the required number of functions L, (according to (16),
Nin=0 for all m), and when substituting them to the formulas
(5) and (6), one can find components of the displacement
vector and the stress tensor.

In this case, the boundary conditions on the planes
z=-k, and {=x, of the plate will have the form (11). Now,
to proceed to the problem of the influence of the surface
forces, it is necessary to exclude the boundary area {=x,
from the area belonging to the plate, and thereby, to “bring”
the load o(&,n) onto the surface {=x,.

In this case, for example, the function Ly will take the
form:

L,=y,FE, ).

If now we use the homogeneous solutions in the form of
(18), then it is possible in principle to satisfy the “softened”
boundary conditions on the surface I' and by so doing, to
solve exactly in the sense of Saint Venant the problem of
balance of a non-homogeneous plate under the action of the
surface load & on it.

Hence, if the external forces are represented by the poly-
harmonic functions with the variables &, 1, then the problem



of balance of a non-homogeneous plate may be solved exactly
in the sense of Saint Venant.

The thinner the plate, the more exact the solution is. All
the series introduced for consideration, break, and the result
contains the finite number of members.

6. It follows from the formulas (17) that the order of each
sticcessive summand is proportional to the value € relative
to the previous one. Therefore, if € is small, it is possible in
the series (17) to be limited by taking into consideration only
the first few members, while the others may be discarded; an
excessive precision of formulas in the theory, which permits
using the principle of Saint-Venant, is hardly appropriate.

If the external loads are not polyharmonic functions,
they may be in a sense approximated by such functions and,
thereby, a solution may be found. Moreover, if e<<1, then the
precision, sufficient for practical purposes, can be obtained
by leaving only one summand in the obtained formulas for
calculating stresses and displacements.

However, a similar result may be found when the loads
are not approximated by the polyharmonic functions. It is
only necessary to break the series in the formulas.

The elementary <«technical» theory of the bending of
non—homogeneous plates may be obtained by leaving only
one summand in the series. So, if X=Y=0, it is easy to find

u, =-efD,w, u, =-elD,w, u,=w,

2eCG ., ) 2eLG
= — D D: s =—
O = Ty P VPOV 0y =

(vD? +D?)w,
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Here w is the solution to a biharmonic equation

14 Ky
D'w=q, 4= 1o J Zd¢.

K,

To simplify these dependencies, it makes sense to proceed
from the dimensionless coordinates to the ordinary ones.

In a separate case when the material is homogeneous, the
above given formulas will in fact coincide with those used in
the theory of bending thin plates. The classical theory does
not take into account only the stress G,.

If we leave only two summands in the series for uy, uy, uy,
we will obtain a more precise method of calculation of the
bending of non-homogeneous plates.

4
u, =-¢D, |:§w -(eD)*U,, #],

4
u, =—¢D, [Cw -(eD)’U,, #],

4
u,=w+(eD)’W, #
We will note that it follows from the obtained results
that the results, exact in the Saint Venant approximation,
may be obtained in the case when the functions describing
the distribution of loads inside the plate and on its surface
satisfy two-dimensional polyharmonic equations (harmonic,
biharmonic, etc.). This somehow limits the class of functions,
which the real loads in a plate can correspond to, but allows
receiving analytical solutions, exact in the Saint Venant
approximation, which makes it possible, for example, to test
numerical methods of solving the problems of mechanics of a
deformed solid body.

5. Conclusions

A three-dimensional problem of bending the plate, in
which the parameters of elasticity of the material vary by
thickness and are arbitrary integrable functions, was exam-
ined. And the plate itself is exposed to the action of mass
forces while the action of the surface loads is studied as a
separate case:

1. We obtained analytical solution to the boundary
problem by the operator methods in a case when the bound-
ary conditions are satisfied exactly on the flat surfaces of
the plates, and on the lateral surface — in the Saint Venant
approximation.

2. It was theoretically proved that the exact, in the sense
of Saint Venant, analytical solutions may be obtained if the
plate is exposed to the action of mass and surface forces,
distributed on the plate and on its surface by the two-dimen-
sional polyharmonic law. In this case, the thinner the plate,
the more exact the solution will be, since the corresponding
solutions represent the series that contain a finite number of
members.

3. The obtained solutions allow using them as an
approximate, “technical” theory for engineering calcula-
tions of the stressed and deformed state of non-homoge-
neous plates.

4. Tt was demonstrated that the obtained formulas for
the calculation of the bending of thin plates in the case of
homogeneous material, transfer to the classic formulas of the
theory of bending thin plates.
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