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1. Introduction

It is known that at a definite stage of loading a rein-
forcing elastic-plastic body, the process of the homogenous 
plastic deformation branches off and localization of the 
plastic deformation occurs. In the formal plan, the problem 
of localization comes down to determining own values and 
forms of linearized boundary problem for the difference in 
fields of the rates of change in stresses and of the rates of 
deformations and displacements. This problem is usually 
solved for an infinite body on the assumption that the local-
ization region is the plane of plastic shear.

A localization region at the point of bifurcation is pre-
sented in the form of a line of discontinuity of speeds of the 
finite length. It is a very thin layer of the material, the banks 
of which can slide freely but in this case they must stay in 
contact. The problem is reduced to the linearized problem in 
rates for the abrupt change in the rate of displacements along 
the line of localization. The theory of microdeformation [1], 
which leads to the singular surface of fluidity, is used for 
describing mechanical behavior, which is very important in 
the problems of localization.

2. Scientific literature analysis and problem setting

In the works [2–4], it is shown that a localized defor-
mation of time-independent materials is connected with 
the loss of ellipticity of the linearized defining relations of 
continuous load and leads to bifurcation in the form of the 

flat band of infinite length. The sensitivity of the bifurcation 
point to the properties of defining relations is established in 
these works. The impossibility of using the classical asso-
ciated law of flow with smooth fluidity surface for realistic 
description of a slip band in reinforced metals is shown in 
the studies [5–7]. The need for the introduction of theories 
of plasticity with the singular surface of fluidity is confirmed 
in them. Determining relations of this kind emerge with the 
formulation of the equations of the state of polycrystalline 
materials based on micromechanical prerequisites [8, 9]. The 
presence of an angular point on the surface of fluidity allows 
abrupt changing in the direction of the deformation rate; it 
is examined in more detail in the papers [10, 1].

In the works [11–13], attention was paid to the existence 
of a localization line of finite length, which was represented 
as a crack, the edges of which can slide freely relative to each 
other but not diverge. Within the framework of this model, it 
was shown that the crack has special features on its edges and 
has a tendency of developing along the crack line. In this case, 
the crack was assigned as an initial disturbance and the depen-
dence of its length on the acting load was not established. This 
problem has not been solved until now. Let us use the methods 
proposed in the papers [14, 15] for the formulation of the cri-
terion of brittle fracture. In the work [16–18], the problem of 
formation of the shear lines was solved with the help of method 
of finite elements, but the problem of an analytical solution 
remains open. The influence of the distribution of dislocations 
and the initial defects on the localization of the shear was 
explored in the paper [19]. In the work [20] the phenomenon 
of localization for the case of the combined load was studied.

ANALYSIS OF 
ORIGIN OF SHEAR 

BANDS IN A 
REINFORCING 

ELASTIC-PLASTIC 
BODY

Y u .  C h e r n y a k o v
Doctor of Physical and 	

Mathematical Sciences, Professor*
E-mail: yu.chernyakov@gmail.com

A .  S h e v c h e n k o
Postgraduate student*

E-mail: artur_shev91@mail.ru
*Department of Theoretical and Applied Mechanics

Dnipropetrovsk National University 	
named after Oles Honchar

Gagarin ave., 72, Dnipropetrovsk, Ukraine, 49010

Для випадку плоскої деформації область лінії 
локалізації пластичної деформації на ділянці 
зміцнення представлена у вигляді смуги кінце-
вої довжини. Береги смуги можуть вільно ковза-
ти, але при цьому повинні залишатися в контак-
ті. Побудовано замкнутий аналітичний розв'язок 
задачі. Визначено орієнтація смуги, поля швид-
костей зміни напруг і переміщень, отримана 
залежність довжини лінії локалізації від величини 
навантаження

Ключові слова: теорія пластичності, мікро-
механіка, полоси зсуву, теорія мікродеформацій, 
біфуркація, полікристали, критичне наванта-
ження

Для случая плоской деформации область 
линии локализации пластической деформации на 
участке упрочнения представлена в виде поло-
сы конечной длины. Берега полосы могут свобод-
но скользить, но при этом должны оставаться в 
контакте. Построено замкнутое аналитическое 
решение задачи. Определены ориентация полосы, 
поля скоростей изменения напряжений и переме-
щений, получена зависимость длины линии лока-
лизации от величины нагрузки

Ключевые слова: теория пластичности, микро-
механика, полосы сдвига, теория микродефор-
маций, бифуркация, поликристалл, критическая 
нагрузка

UDC 539.374
DOI: 10.15587/1729-4061.2016.75099



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 4/7 ( 82 ) 2016

18

3. The purpose and tasks of the study

The purpose of the work is building up a closed analyti-
cal solution of the problem of localization of the shear defor-
mation in a reinforcing elastic-plastic body.

To achieve the aim, it is necessary to solve the follow-
ing tasks:

– solution of the problem of localization in the form of a 
band of discontinuity of rates of the finite length;

– formulation of the criterion of destruction with the use 
of the Novozhilov condition;

– determination of the critical length of a slip line on 
the basis of monotonous loading conditions (without partial 
load reliefs).

4. Localization in form of a shear band

4. 1. Localization of shear band of infinite length
Let us examine a shear localization in an incompressible 

elastic-plastic body, which is located under the plane strain 
conditions. Let the strain occur in the plane 1 20x x ,  then

3 1 3 2 3 3 3v = 0, dv / dx = dv / dx = dv / dx = 0,

the component 3n  of the vector of normal to the line of 
localization also equals zero, where kv  is the components of 
the rates vector. Assume the body is under the influence of 
tensile stresses only

11 1 22 2 12 13 22= , = ( = = = 0),σ σ σ σ σ σ σ

and in view of incompressibility of the material

33 1 2= ( ) / 2.σ σ + σ

Here and throughout, the averaging sign is omitted.
The equations of stability in this case can be represented 

in the following form:

11 22 21 11 22
1 2 1

1 1
( ) = ( ),

2 x x 2 x
∂ ∂ ∂

∆τ − ∆τ + ∆τ − ∆τ + ∆τ
∂ ∂ ∂

� � � � � 	

11 22 12 11 22
2 1 2

1 1
( ) = ( ),

2 x x 2 x
∂ ∂ ∂

∆τ − ∆τ − ∆τ ∆τ + ∆τ
∂ ∂ ∂

� � � � � 	 (1) 

where b 0
ij ij ij=∆τ τ − τ� � �  is the difference of the fields of rates of 

change in the first tensor of Piola-Kirchhoff. 
Condition of incompressibility:

i,iv = 0.∆

In this case, the connection of ij∆τ�  with the Jaumann 
derivative of the Cauchy stress tensor ij

∇∆σ  follows from:

1 2
11 11 1 22 22 2

1 2

v v
= , = ,

x x
∇ ∇∂ ∂

∆τ ∆σ − σ ∆τ ∆σ − σ
∂ ∂

� �

1 2
12 12 1 2 1 2

2 1

v v1 1
= ( ) ( ) ,

2 x 2 x
∇ ∂ ∂

∆τ ∆σ − σ + σ + σ − σ
∂ ∂

�

1 2
21 21 1 2 1 2

2 1

v v1 1
= ( ) ( ) ,

2 x 2 x
∇ ∂ ∂

∆τ ∆σ − σ − σ − σ + σ
∂ ∂

�

where the equation of moments is taken into account:

2 1
12 21 1 2

1 2

v v
= .

x x
∂ ∂

∆τ − ∆τ σ − σ
∂ ∂

� �

We will use the theory of plasticity, which considers 
microstresses and microdeformations (theory of micro-
deformations) [1, 21], intended for describing plastic 
deformation of polycrystalline metals. In theory, the in-
homogeneity of plastic deformation at the grain level of 
polycrystal and the nonuniformity of distribution of de-
fects is represented in the form of the sum of local plastic 
deformations corresponding to its own surface of fluidity 
and the system of internal forces.

The detailed account of theoretical principles can be 
found in the works [1, 15, 21]. Determining ratios of the 
theory of microdeformation at the plane strain on condition 
of monotonous load (without partial load reliefs) may be 
presented in the form:

1 2
11 22 p 1 2

1 2

v v1
=[2G ( )] ,

2 x x

 ∂∆ ∂∆
∆τ − ∆τ − σ + σ − ∂ ∂ 
� �

2 1
12 q 1 2 q 1 2

1 2

v v1 1
=[G ( )] [G ( )] ,

2 x 2 x
∂∆ ∂∆

∆τ + σ − σ + − σ + σ
∂ ∂

�

2 1
21 q 1 2 q 1 2

1 2

v v1 1
=[G ( )] [G ( )] ,

2 x 2 x
∂∆ ∂∆

∆τ − σ + σ + − σ − σ
∂ ∂

�
 
(2)

where p qG , G  are the rigidity modules of the continuous 
load and orthogonal additional loading, which are deter-
mined by the formulas:

p 1 q 1

1 1 C( ) 1 1 B( )
= , = ,

2G 2G A 2G 2G A

   α α
+ +   

   

where

( )
2

3 5B( ) = 8 15cosa 10 a 3 a ,cos cos
30
π

α − + −  

2F ( )
C( ) = A( ) ,

1
µ α

α α −
+ µ

( )
2

3 52
A( ) = 2 5 a 3 a ,cos cos

15
π

α − +

( )
2

2 4
3 1F( ) = 1 2 a a , A / A .cos cos

2
π

α − + µ =

It is necessary to use the experimental data for deter-
mining the constants of material A1, A3, as it is described in 
the paper [1].

Besides, α  is the apex angle at the hypercone top of di-
rections of active microplastic deformation, the axis of which 
is directed along the guiding deviator. The value of the angle 
is determined by the formula:

0 (t)
cos = ,

r(t)
τ + κ

α

where 0  τ is the fluidity limit

t

0

F
r(t) = r(t) : r(t), (t) = r : dr.

r(t)(1 )
µ

κ
+ µΩ∫
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Furthermore, according to the theory of microdeforma-
tions, we can define the limits of the use of ratios as:

cos F( )
tg ,

sin
α − κ α

β ≤
α

		  (3)

where β  is the angle of fracture of the loading trajectory at 
the point of bifurcation.

Let us note that the simple loading occurs with the bi-
axial tension (compression) of an incompressible body under 
the plane strain conditions. As a consequence, the theory 
of microdeformation transfers to the deformation theory of 
plasticity and the modules of tangential rigidity transfer 
respectively to the tangent and the secant  modules of the 
diagram of pure shear.

Determining ratios in this case can be represented in the 
following form (with regard to incompressibility):

ij ijkl l,k ij= K v q .∆τ + δ� �

Components of the matrix ijklK  take the form:

1111 q 1122 q 1112 1121K = G ( k ), K = G , K = K = 0,ξ − − η − ξ 	

2211 q 2222 q 2212 2221K = G , K = G ( k ), K = K = 0,− ξ ξ + − η

1212 q 1221 2112 q 2121 qK =G (1 k),K =K =G (1 ),K =G (1 k),+ − η −

and

p1 2 1 2

q q q

G
k = , = , = .

2G 2G G
σ − σ σ + σ

η ξ 	

Let us introduce the function of current 1 2(x , x ),ψ  
which provides identical fulfillment of incompressibility 
conditions:

1 2
2 1

v = , v = .
x x

∂ψ ∂ψ
∆ ∆ −

∂ ∂
	

Then we obtain a differential equation in the partial 
derivatives of the fourth order relative to the function of 
current from the equations of stability (1) with regard to 
determining ratios (2):

4 4 4

4 2 2 4
1 1 2 2

(1 k) 2(2 1) (1 k) = 0.
x x x x

∂ ψ ∂ ψ ∂ ψ
+ + ξ − + −

∂ ∂ ∂ ∂

Following the papers [6, 14, 15], the solution to this 
equation can be presented in the form of the analytic 
function F :

1 2 1 2(x ,x ) = F(x x ),ψ + Ω

where F is the arbitrary function, Ω  is the complex con-
stant, which satisfies the biquadratic equation:

2 4(1 k) 2(2 1) (1 k) = 0.+ + ξ − Ω + − Ω
	

	 (4)

In a general case, the equation (4) has four different roots:

( ) j 2 2
2
j

1 2 1 (1 2 ) (1 k )
= .

1 k

− ξ + − − ξ − −
Ω

−

Depending on the nature of roots, the area of elliptic-
ity (E), hyperbolicity (G) and parabolicity (P) is defined.

The boundary between regimes E and P, and G and P is 
assigned by the line k=1. The boundary between E and G  
 
areas is the parabola 22 =1 1 k >1.ξ − −  Two shear bands, 

the slope of which is assigned by the angle 0±θ  between the 
shear band and the axis 10x , simultaneously appear on the 
border of the two regions (E/G):

2
0

1 2sign(k) (1 )
= .cot

1 2

+ ξ − ξ
ϑ

− ξ

On the border of E/P mode, only one band, parallel to 
axis 1 2x (x ),  appears when

0 0k =1(k = 1) : = 0, k =1, = , k = 1.
2
π

− ϑ ϑ −

Since k, ,η ξ  depend on parameter ,α  it is possible to plot 
the dependency k − ξ  and to find the point of intersection 
with the line (E/G), using their parametric representation,

4. 2. Line of localization of finite length 
Let us examine, as in the preceding chapter, a uni-

form, preliminarily plastically deformed, incompressible 
elastic-plastic body under the plane strain conditions. Me-
chanical behavior of the body is characterized by the defin-
ing equations in rates of the theory of microdeformation (2). 
With a definite load, the line of localization of finite length 
can be formed in the body, which may be represented as the 
weakened surface, along which the adjacent layers of materi-
al can slide freely but they stay in contact, as it was adopted 
in the works [11–13]. This slip line is different from the sec-
tion because it receives normal cohesive forces.

The shear band of finite length in the plane 1 2ˆ ˆ0x x  will 
be represented by the line of discontinuity of rates with 
the length 2l,  located along the axis 1ˆ0x  (Fig. 1). We will 
consider that the line of discontinuity has slope angle 0ϑ  to 
axis 10x , i. e., the same as in the case of the infinite band, 
examined in the preceding chapter.

Fig. 1. Shear band of finite length

The transition to the system of coordinates 1 2ˆ ˆ0x x  is 
achieved with the use of matrix of rotation Q, determining 
the turning of axes 1 2ˆ ˆ0x x  by the angle 0ϑ  in relation to 
system 1 20x x  (accepted by the positive counterclockwise 
rotation) according to the formula:

0 0T

0 0

cos sin
x̂ =[Q ] x,[Q]= .

sin cos

ϑ ϑ 
⋅  − ϑ ϑ 

The rates of change in the components of the first tensor 
of Piola-Kirchhoff, the rates of displacements and the gradient 
may be expressed in the frame of reference 1 2ˆ ˆ0x x  as follows:
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T T Tˆ ˆˆ ˆ= Q Q, v = Q v, v = Q vQ.∆τ ∆τ ∇ ∇� �

Let us represent determining ratios in the form:

Tˆ ˆˆ= K( v) qe,∆τ ∇ +� �

where the tensor of conversion of the fourth order is defined as:

ijhk li mj lmno nh okK̂ = Q Q K Q Q ,

and the indices take values 1 and 2. 
Following the paper [13], let us introduce the function of 

current 1 2ˆ ˆ ˆ(x , x )ψ  in the form:

2
21

1 2 j j
j=1q

ˆ
ˆ ˆ ˆ ˆ(x ,x ) = Re A f(z ) ,

2G

∞τ  ψ  ∑

where

( )2 2 2 2 2 2
j j j j j jˆ ˆ ˆ ˆ ˆ ˆf(z ) = z z z l l ln z z l ,− − + + −

0 j 0
j 1 j 2 j

0 j 0

sin cos
ˆ ˆ ˆz = x W x ,W = .

cos sin

ϑ + Ω ϑ
+

ϑ − Ω ϑ

We will use the boundary conditions on the line of localiza-
tion for determining the constants Aj They are based on the rate 
of change in tangent stresses being equal to zero and the conti-
nuity of normal components of the first tensor of Piola-Kirch-
hoff, as well as continuity of rates of normal displacements 
of the bifurcational solution. For the difference of fields, we 
obtain respectively:

21 1 21 1
ˆ ˆˆ ˆ(x ,0 ) = , x < l,± ∞∆τ −τ ∀� � 	

22 1 1
ˆ ˆ ˆ(x ,0) = 0, x < l, ∆τ ∀ 
�

2 1 1ˆ ˆ ˆv (x ,0) = 0, x < l. ∆ ∀ 

Using the solution and boundary conditions on the line 
of discontinuity, we arrive to the system of linear algebraic 
equations relative to the constants Aj :

11 21 12 22 1

21 11 22 12 1

31 41 32 42 2

41 31 42 32 2

c c c c Re[A ] 0

c c c c Im[A ] 0
= ,

c c c c Re[A ] 1

c c c c Im[A ] 0

     
     − −     
     −
     
− −        

	

coefficients of which are determined by the formulas:

1j 1112 1222 j 1111 1122 1221 2222

j 1121 2122 j 2121

2
j 1121 2122 j 2121

2 j j 1111 1122 1221 2222

j 1121 212

ˆ ˆ ˆ ˆ ˆ ˆ2 c =K K Re[W ][K 2K K K

ˆ ˆ ˆRe[W ](2K 2K Re[W ]K )]

ˆ ˆ ˆIm[W ] (2K 2K 3Re[W ]K )],

ˆ ˆ ˆ ˆ2 c =Im[W ][K 2K K K

ˆ ˆRe[W ](4K 4K

µ − − − − + +

+ − + +

+ − +

µ − − + +

+ − 2 j 2121 j 2121

3 j 1221 j 1121 2122

j 2121 j 2121

4 j j 1121 2122 j 2121

ˆ ˆ3Re[W ]K ) Im[W ]K ],

ˆ ˆ ˆ2 c = K Re[W ][K K

ˆ ˆRe[W ]K ] Im[W ]K ],

ˆ ˆ ˆ2 c =Im[W ][ K K 2Re[W ]K ], j=1,2.










+ −


µ − + − +

+ −


µ − + −

It is possible to show easily that the conversion of the 
system determinant to zero corresponds to the line of dis-
continuity of infinite length.

On the line of localization of the band 2x̂ 0,=  then:

( )

( )( )
21

1 1 2
q

2 2 2 2 2 2
1 1 1 1 1

ˆ
ˆ ˆ(x ,0) = Re A Re A

2G

ˆ ˆ ˆ ˆ ˆx x x l l ln x x l .

∞τ
ψ + ×      

× − − + + −

�

Using the obtained solution, it is possible to determine 
the fields of rates of displacements and deformations, and, 
with the help of determining ratios (2), to build up the rates 
of change in the stresses in the vicinity of the apex of the 
band of localization.

11 22 222 2
1

l
= A ,

x l
∞∆τ − ∆τ τ

−
� � � 		  (5)

12 222 2
1

l
= B ,

x l
∞∆τ τ

−
� �

21 222 2
1

l
= C ,

x l
∞∆τ τ

−
� �

where A, B, C are the constants, which depend on parame-
ters of the material.

As it can be seen from the obtained solution, the root spe-
cial features appear in the apex of a slip line. A concept of the 
coefficient of intensity of stresses is used in the mechanics of 
destruction for determining the critical length of a crack. In 
our case, the problem is solved in rates, which leads to the 
need for a new formulation of the criterion of the localization 
development.

5. Special features of behavior of solution in apexes  
of slip line

As follows from the presented solution (5), the field of rates 
of change in the stresses has a root peculiarity, which at first 
glance makes no physical sense. Let us formulate a criterion 
of ductile fracture, using the Novozhilov fracture criterion 
[14, 15] and averaging of infinite stresses in the vicinity of the 
apex of a crack. Let us consider that in the case with ductile 
fracture we deal with the occurrence of the localized flow, in 
which the strength of the body with the section is determined 
by the average values of stresses in a small vicinity of the apex 
of the crack. In this case, it is possible to consider the vector of 
Burgers at the level of a monocrystal or a localized shear with-
in the limits of grain of polycrystalline metal as “the quantum” 
of slip. As follows from the solution represented above (5), the 
gradient of the rates of change in stresses in the vicinity of the 
apex of a slip line is so large that it is not possible to disregard 
its change even within the limits of one grain. In that case, we 
can judge the stressed state, using the concept of the average 
rates within the limits of the grain:

l b

ij ij 1 1l

1
ˆ ˆ= (x )dx .

b

+
σ σ∫� �

This, practically discrete, representation differs from the 
continual one only in the vicinity of singular points of the 
field of stresses (Fig. 2).
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Fig. 2. Classification of regimes

We will use the condition of complete loading (3), ap-
plied to the averaged stresses ij.σ�  to plot the dependency of 
the length of the line of localization on the load.

The point of intersection of the curve k,ξ∼  built up ac-
cording to the theory of microdeformations, with the curve, 
determining the boundary (E/G) on the diagram of the 
classification of the regimes of solution, makes it possible to 
determine the value critα  and crit 0.θ = ϑ

6. Comparison of results for finite and infinite  
band of localization

In Fig. 2, the results of calculation at s = 0.002,γ  1a = 0.0063,  
 

2

3
= ,

2
µ −

π
 crit =1.084,α  crit = 0.618.θ  are presented. Assuming 

that the initial band of localization of plastic deformation is 
formed on condition that l/b=1, we can obtain parameters , kξ , 
with which the line of discontinuity is formed. Using the for-
mulas enumerated above, we receive that = 0.62, k = 0.0035ξ  
at crit crit initial=1.084, = 0.618, a = 0.1687.α ϑ  Thus, localization 
of the band in the initial state can have dimension that is 
possible to compare with the grain size, which is proved by 
numerous studies of plastic deformation of polycrystal.

In Fig. 3, the initial point of formation of the localization 
line is shown by a circle, and the point, at which the band 
of localization of the infinite length is formed, is shown by 
a square. As can be seen from the obtained results, localiza-
tion in the form of the slip line of finite length precedes the 
localization at the point.

Fig. 3. Diagram of material

7. Conclusions

1. Within the framework of the theory of microdeforma-
tions, for the case of biaxial tension under the plane strain 
conditions of incompressible body, the fields of rates of dis-
placements and changes in stresses in the vicinity of the apex 
of the assigned line of discontinuity of displacements were 
built in a closed analytical form.

2. It was established that the solution has the root pe-
culiarity at the apex of the band. For the formulation of a 
fracture criterion (advance of the line of discontinuity), 
the average values of the fields of rates of change in stresses 
in the vicinity of the apex of the line of discontinuity were 
introduced, by analogy with the concept of the averaged 
stresses under the Novozhilov fracture condition.

3. The dependence of the length of localization line on 
subcritical stresses was obtained from the condition of the 
limitation of the angle of the fracture of the trajectory of load 
(the angle between the directions of the deviator of subcrit-
ical stress and the rate of change in stresses), which follows 
from the theory of microdeformation. It was established that 
the localization line in the initial state can have dimension, 
compared with the characteristic size of  the material (in our 
case, with the size of a grain).
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