o o
Jna eunaoxy naockoi depopmauii odaracmo ninii

aokanizauii naacmuunoi Odepopmauii na Oinsnui
3MiunenHs npeocmasiiena y 6uznidi cmyeu KiHue-
601 dosocunu. Bepeeu cmyeu moxncymo 6inbHO K0B3A-
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mi. Ilo6ydoeano samxnymuil anaimuunuii po3e 130K
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1. Introduction

It is known that at a definite stage of loading a rein-
forcing elastic-plastic body, the process of the homogenous
plastic deformation branches off and localization of the
plastic deformation occurs. In the formal plan, the problem
of localization comes down to determining own values and
forms of linearized boundary problem for the difference in
fields of the rates of change in stresses and of the rates of
deformations and displacements. This problem is usually
solved for an infinite body on the assumption that the local-
ization region is the plane of plastic shear.

A localization region at the point of bifurcation is pre-
sented in the form of a line of discontinuity of speeds of the
finite length. It is a very thin layer of the material, the banks
of which can slide freely but in this case they must stay in
contact. The problem is reduced to the linearized problem in
rates for the abrupt change in the rate of displacements along
the line of localization. The theory of microdeformation [1],
which leads to the singular surface of fluidity, is used for
describing mechanical behavior, which is very important in
the problems of localization.

2. Scientific literature analysis and problem setting

In the works [2—4], it is shown that a localized defor-
mation of time-independent materials is connected with
the loss of ellipticity of the linearized defining relations of
continuous load and leads to bifurcation in the form of the

flat band of infinite length. The sensitivity of the bifurcation
point to the properties of defining relations is established in
these works. The impossibility of using the classical asso-
ciated law of flow with smooth fluidity surface for realistic
description of a slip band in reinforced metals is shown in
the studies [5-7]. The need for the introduction of theories
of plasticity with the singular surface of fluidity is confirmed
in them. Determining relations of this kind emerge with the
formulation of the equations of the state of polycrystalline
materials based on micromechanical prerequisites [8, 9]. The
presence of an angular point on the surface of fluidity allows
abrupt changing in the direction of the deformation rate; it
is examined in more detail in the papers [10, 1].

In the works [11-13], attention was paid to the existence
of a localization line of finite length, which was represented
as a crack, the edges of which can slide freely relative to each
other but not diverge. Within the framework of this model, it
was shown that the crack has special features on its edges and
has a tendency of developing along the crack line. In this case,
the crack was assigned as an initial disturbance and the depen-
dence of its length on the acting load was not established. This
problem has not been solved until now. Let us use the methods
proposed in the papers [14, 15] for the formulation of the cri-
terion of brittle fracture. In the work [16—18], the problem of
formation of the shear lines was solved with the help of method
of finite elements, but the problem of an analytical solution
remains open. The influence of the distribution of dislocations
and the initial defects on the localization of the shear was
explored in the paper [19]. In the work [20] the phenomenon
of localization for the case of the combined load was studied.




3. The purpose and tasks of the study

The purpose of the work is building up a closed analyti-
cal solution of the problem of localization of the shear defor-
mation in a reinforcing elastic-plastic body.

To achieve the aim, it is necessary to solve the follow-
ing tasks:

—solution of the problem of localization in the form of a
band of discontinuity of rates of the finite length;

— formulation of the criterion of destruction with the use
of the Novozhilov condition;

— determination of the critical length of a slip line on
the basis of monotonous loading conditions (without partial
load reliefs).

4. Localization in form of a shear band

4. 1. Localization of shear band of infinite length

Let us examine a shear localization in an incompressible
elastic-plastic body, which is located under the plane strain
conditions. Let the strain occur in the plane 0x,x,, then

v,=0,dv, /dx, =dv, /dx, =dv, /dx, =0
the component n, of the vector of normal to the line of
localization also equals zero, where v, is the components of
the rates vector. Assume the body is under the influence of
tensile stresses only

Oy =0,,09, =0, (G}, =03 =0, =0)

and in view of incompressibility of the material
6,,=(0,+06,)/2.
Here and throughout, the averaging sign is omitted.

The equations of stability in this case can be represented
in the following form:

19 9

EBY(A;C“ A'Ezz)+ AT21 D) ax, (ATM +AT,),
1
10 . . J .. J , .. .
EHT(AT“ _A722)_87AT12 :EST(AT“ +AT,,), @
2 1 2

where At =1} —1] is the difference of the fields of rates of
change in the first tensor of Piola-Kirchhoff.
Condition of incompressibility:

In this case, the connection of At; with the Jaumann
derivative of the Cauchy stress tensor AG follows from:

At = Aoy, -0, M , At,=Ac),—0,—% v,
ox, ox,’

. 1 av, 1 ov
ATy, = AGYz —(o,+0 z) Ly— (o,- z) 2,
2 2

1 ov ov
A%, = Aoy, ——(0, -0, CAZRY G, +0 2
21 21 2 ( 2 8X2 2 ( 1 2) aX1

where the equation of moments is taken into account:

av, s ov,

AT, - 6,—=—-0C,—.
? Yox, ox,

Aty =

We will use the theory of plasticity, which considers
microstresses and microdeformations (theory of micro-
deformations) [1, 21], intended for describing plastic
deformation of polycrystalline metals. In theory, the in-
homogeneity of plastic deformation at the grain level of
polycrystal and the nonuniformity of distribution of de-
fects is represented in the form of the sum of local plastic
deformations corresponding to its own surface of fluidity
and the system of internal forces.

The detailed account of theoretical principles can be
found in the works [1, 15, 21]. Determining ratios of the
theory of microdeformation at the plane strain on condition
of monotonous load (without partial load reliefs) may be
presented in the form:

. . 1 JAV, O0AvV
1 2

. 1 JAV 1 JAV
AT12:[Gq+§(G1_Gz)] 3 2 +[Gq _5(61 z)] L
1 2
. 1 JAV 1 JAV
8ty =[G, ~ (0, +0,)] = -6 @)
1

where G, G, are the rigidity modules of the continuous
load and orthogonal additional loading, which are deter-
mined by the formulas:

SRR (O S S S =)
2G, [2G A, [2G, [2G A, [

where
2
B(OC)_ 0(8 156053+10cosa 3cosa)
C(oy - Aoy - K@,
+H

Ao )—7(2 5cos'a+3cos’a),

2

T
F(Oﬂ)_?(1—2cosza+cos4a), n=A,/A,.

It is necessary to use the experimental data for deter-
mining the constants of material Ay, As, as it is described in
the paper [1].

Besides, o is the apex angle at the hypercone top of di-
rections of active microplastic deformation, the axis of which
is directed along the guiding deviator. The value of the angle
is determined by the formula:

where 1, is the fluidity limit

1(6) = (D) (D), () = [ ——F——

r(t)(1+ w)



Furthermore, according to the theory of microdeforma-
tions, we can define the limits of the use of ratios as:

coso.—KkF(a)

tgf< 3)

sino

where B is the angle of fracture of the loading trajectory at
the point of bifurcation.

Let us note that the simple loading occurs with the bi-
axial tension (compression) of an incompressible body under
the plane strain conditions. As a consequence, the theory
of microdeformation transfers to the deformation theory of
plasticity and the modules of tangential rigidity transfer
respectively to the tangent and the secant modules of the
diagram of pure shear.

Determining ratios in this case can be represented in the
following form (with regard to incompressibility):

Aty =Ky vy, +693;

1

Components of the matrix Ky, take the form:

K, =Gq(é—k—1’]),K1122 =—Gq§, K=K, =0,

Ky = —Gqf_,, Ky =G, E&+k-m),K,,, =K,,,, =0,

Ky, =G, (1+k), Ky, =K, 1, =G, (1-M),K,,,, =G, (1-k)
and

k= 6,-0,
2G,

)

_6,%0, §:&.
2G, ° G,

Let us introduce the function of current w(x,,x,),
which provides identical fulfillment of incompressibility
conditions:

Av,=— Av,= —g%.
1

Then we obtain a differential equation in the partial
derivatives of the fourth order relative to the function of
current from the equations of stability (1) with regard to
determining ratios (2):

4 4
IV (1-102Y¥ o,

1+k
S 0X,0X, ox,

+2(26-1)

o'y
ox;

Following the papers [6, 14, 15], the solution to this
equation can be presented in the form of the analytic
function F:

W(x,,x,) =F(x; +Qx,),

where F is the arbitrary function, Q is the complex con-
stant, which satisfies the biquadratic equation:

(1+k)+2(26 - 1)Q +(1-k)Q* =0. 4)

In a general case, the equation (4) has four different roots:

oo 1-28+(=1) J(1-28)* —(1-Kk*)

! 1-k

Depending on the nature of roots, the area of elliptic-
ity (E), hyperbolicity (G) and parabolicity (P) is defined.

The boundary between regimes E and P, and G and P is
assigned by the line k=1. The boundary between E and G

areas is the parabola 2&=1-+/1-k> >1. Two shear bands,

the slope of which is assigned by the angle 8, between the
shear band and the axis 0x,, simultaneously appear on the
border of the two regions (E/G):

, 1+ 2sign(k)/E(1-&)
cot ¥, = 1ot .

On the border of E/P mode, only one band, parallel to
axis x,(x,), appears when

k=1(k=—1):1‘)o=0,k=1,ﬁ0=g,k=—1.

Since k, m, & depend on parameter o, it is possible to plot
the dependency k—& and to find the point of intersection
with the line (E/G), using their parametric representation,

4. 2. Line of localization of finite length

Let us examine, as in the preceding chapter, a uni-
form, preliminarily plastically deformed, incompressible
elastic-plastic body under the plane strain conditions. Me-

anical behavior of the body is characterized by the defin-
g equations in rates of the theory of microdeformation (2).
With a definite load, the line of localization of finite length
can be formed in the body, which may be represented as the
weakened surface, along which the adjacent layers of materi-
al can slide freely but they stay in contact, as it was adopted
in the works [11-13]. This slip line is different from the sec-
tion because it receives normal cohesive forces.

The shear band of finite length in the plane 0%,x, will
be represented by the line of discontinuity of rates with
the length 21, located along the axis 0%, (Fig. 1). We will
consider that the line of discontinuity has slope angle 9, to
axis 0x,, i.e., the same as in the case of the infinite band,
examined in the preceding chapter.

U A
—
] X, 0;

0 )

-
0;

0,
Fig. 1. Shear band of finite length

The transition to the system of coordinates 0x,X, is
achieved with the use of matrix of rotation Q, determining
the turning of axes 0%,X, by the angle 9, in relation to
system 0x,x, (accepted by the positive counterclockwise
rotation) according to the formula:

sind
cosV, |

cos Y,

ﬁ—[QT]-Xy[Q]—[

—sind,

The rates of change in the components of the first tensor
of Piola-Kirchhoff, the rates of displacements and the gradient
may be expressed in the frame of reference 0%X, as follows:



AT=Q"AIQ,¢=Q"V,Vi=Q"VvQ.

Let us represent determining ratios in the form:
AT=K(VV)" +de,
where the tensor of conversion of the fourth order is defined as:

Kijhk = QliQmjKlmnOthQOk’

and the indices take values 1 and 2.
Following the paper [13], let us introduce the function of
current Y(X,, X,) in the form:

Ao 2
W2~ - YRe[Af @),

q 1

(2 =2 =37 = +In 3+ 7 - 1),

sind, +Q;cos Y,

! cos®,-Q;sinY,

We will use the boundary conditions on the line of localiza-
tion for determining the constants A; They are based on the rate
of change in tangent stresses being equal to zero and the conti-
nuity of normal components of the first tensor of Piola-Kirch-
hoff, as well as continuity of rates of normal displacements
of the bifurcational solution. For the difference of fields, we
obtain respectively:

2 A nin L Ae ~
Aty (%,,0 )7-r21,v|x1|<1,

x| <],

[4%,G,0)]=0,9%,

[AV,(%,0)]=0,V[%,| <L

Using the solution and boundary conditions on the line
of discontinuity, we arrive to the system of linear algebraic
equations relative to the constants A;:

Ciy  Cy  Cpp  Cyp f| Re[A] 0
—Cy €y —Cyp  Cyy || IM[A,] _ 0

Cyi  Cy  Cyp  Cp || Re[A,] -1
—C4 Cy —Cp Cy [[Im[A,] 0

coefficients of which are determined by the formulas:

(2110, =R 11y =K gy ~Re[W,I[K, 1y = 2K, 1y =K 3+ Ko, +
+Re[W, (2K, 5, 2K, + Re[ W, K, )]+

+Im[W, (2K, 15, ~ 2K, 5, + 3Re| W, Ky,

2uc,, = Im[W,][K, ;2K 1, — Ky + Koy +
+Re[W, (4K 5, —4K 5, + 3Re[W, K, o, )~ Im[ W, K, ],
2uc3j = —K% +Re[Wj][IA(1121 —sz +
+Re[W, K, 5, ]~ Im[ W, K, ],

|20, =Im[W,|[-K, ,, +K, 5, - 2Re[ WK, ], j=1,2.

It is possible to show easily that the conversion of the
system determinant to zero corresponds to the line of dis-
continuity of infinite length.

On the line of localization of the band x,=0, then:

2
o

2G

q
x(if KT+ PIn(R,+ KT ))

Using the obtained solution, it is possible to determine
the fields of rates of displacements and deformations, and,
with the help of determining ratios (2), to build up the rates
of change in the stresses in the vicinity of the apex of the
band of localization.

\TJ()A(“O) =

(Re[A1]+ Re [AQJ) X

. . |
AT - ATy, = A S V22 )
x; —1
At =B | .
Tis T T
A =C |
Tot T T

where A, B, C are the constants, which depend on parame-
ters of the material.

As it can be seen from the obtained solution, the root spe-
cial features appear in the apex of a slip line. A concept of the
coefficient of intensity of stresses is used in the mechanics of
destruction for determining the critical length of a crack. In
our case, the problem is solved in rates, which leads to the
need for a new formulation of the criterion of the localization
development.

5. Special features of behavior of solution in apexes
of slip line

As follows from the presented solution (5), the field of rates
of change in the stresses has a root peculiarity, which at first
glance makes no physical sense. Let us formulate a criterion
of ductile fracture, using the Novozhilov fracture criterion
[14, 15] and averaging of infinite stresses in the vicinity of the
apex of a crack. Let us consider that in the case with ductile
fracture we deal with the occurrence of the localized flow, in
which the strength of the body with the section is determined
by the average values of stresses in a small vicinity of the apex
of the crack. In this case, it is possible to consider the vector of
Burgers at the level of a monocrystal or a localized shear with-
in the limits of grain of polycrystalline metal as “the quantum”
of slip. As follows from the solution represented above (5), the
gradient of the rates of change in stresses in the vicinity of the
apex of a slip line is so large that it is not possible to disregard
its change even within the limits of one grain. In that case, we
can judge the stressed state, using the concept of the average
rates within the limits of the grain:

- 1pei+b, A
6, :EJ.I Gij(x1)dx1.

This, practically discrete, representation differs from the
continual one only in the vicinity of singular points of the
field of stresses (Fig. 2).



Fig. 2. Classification of regimes

We will use the condition of complete loading (3), ap-
plied to the averaged stresses 6. to plot the dependency of
the length of the line of localization on the load.

The point of intersection of the curve & ~ Kk, built up ac-
cording to the theory of microdeformations, with the curve,
determining the boundary (E/G) on the diagram of the
classification of the regimes of solution, makes it possible to
determine the value o, and 6_, =9,.

crit crit

6. Comparison of results for finite and infinite
band of localization

In Fig. 2, the results of calculation at y, =0.002, a, =0.0063,
3
w= —z—nz, Uie = 1084, 0

that the initial band of localization of plastic deformation is
formed on condition that1/b=1, we can obtain parameters &, k,
with which the line of discontinuity is formed. Using the for-
mulas enumerated above, we receive that &=0.62,k =0.0035
at o, =1.084,9 , =0.618,a, .., =0.1687. Thus, localization
of the band in the initial state can have dimension that is
possible to compare with the grain size, which is proved by
numerous studies of plastic deformation of polycrystal.

In Fig. 3, the initial point of formation of the localization
line is shown by a circle, and the point, at which the band
of localization of the infinite length is formed, is shown by
a square. As can be seen from the obtained results, localiza-
tion in the form of the slip line of finite length precedes the
localization at the point.

=0.618. are presented. Assuming
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Fig. 3. Diagram of material

7. Conclusions

1. Within the framework of the theory of microdeforma-
tions, for the case of biaxial tension under the plane strain
conditions of incompressible body, the fields of rates of dis-
placements and changes in stresses in the vicinity of the apex
of the assigned line of discontinuity of displacements were
built in a closed analytical form.

2. It was established that the solution has the root pe-
culiarity at the apex of the band. For the formulation of a
fracture criterion (advance of the line of discontinuity),
the average values of the fields of rates of change in stresses
in the vicinity of the apex of the line of discontinuity were
introduced, by analogy with the concept of the averaged
stresses under the Novozhilov fracture condition.

3. The dependence of the length of localization line on
subcritical stresses was obtained from the condition of the
limitation of the angle of the fracture of the trajectory of load
(the angle between the directions of the deviator of subcrit-
ical stress and the rate of change in stresses), which follows
from the theory of microdeformation. It was established that
the localization line in the initial state can have dimension,
compared with the characteristic size of the material (in our
case, with the size of a grain).
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