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1. Introduction

Binary code is a general designation of the code, by which 
messages can be transmitted in sequences that have two 
characters (for example, “0” and “1”). In general, the number 
of combinations (codes) of n-digit binary code is equal to the 
number of locations with repetition of n elements by m

mP̂(n,m) n .= 	  (1)

For a binary code, the number of combinations equals:

nP̂(2,n) 2 ,=  	 (2)

where n is the digit capacity of a binary code.
The minimum possible number that can be written down 

by such a binary code equals 0. The maximum possible 
number that can be written down by such a binary code is 
determined by the formula

nM 2 1.= −  	 (3)

Table 1

4-bit binary codes in lexicographical order

Numeric  
(literal) value

Binary code
Numeric  

(literal) value
Binary code

0 0000 8 1000

1 0001 9 1001

2 0010 A 1010

3 0011 B 1011

4 0100 C 1100

5 0101 D 1101

6 0110 E 1110

7 0111 F 1111

These two numbers fully determine the range of numbers 
that can be presented by a binary code (2). For example, 
for an 8-digit binary without a signed integer, the range 
of numbers is 0…255. For a 16-bit code, the range equals  
0…65535.

The examples of binary codes are the code of Gray, Bau-
dot code, Hamming code, ASCII, etc.
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Development of the theory of universal and specialized 
processors is closely connected with the development of a 
binary number system, i.e. theoretical and numerical basis 
(TNB) of Rademacher [1].

The carry of one to a higher level in the basis of 
Rademacher leads to the decrease in fast performance of 
identifying correct signals at the outputs Si of the one-digit 
adders. The magnitude of this decline is proportional to the 
digit capacity of numbers and time delay of the signals in 
typical logical elements. The maximum time of the operation 
of summation occurs when the carry, which appeared in the 
first bit, passes through all the other bits (for example, when 
compiling codes 11...11 and 00…01). Modern achievements 
in the creation of high-performance processors are based on 
the designs of the theory of parallel computing.

The method of parallel computing in the Rademacher 
TNB, in particular, is based on the recurrent binary codes. 
Extension of the apparatus of obtaining these codes is one 
of the most central and practically important problems in 
this theory. The [2, 3] demonstrated, accordingly, receiv-
ing recurrent binary code using cyclic shift of the original 
4-digit non-zero code fragment – 1111 and the original zero 
code fragment of 0000. Since the specified original code 
fragments are part of a complete combinatorial system with 
repetition (Table 1), the research is actual into the process 
of formation of recurrent binary codes with the help of the 
rest of the initial code fragments in Table 1, which allows ex-
tending the apparatus of obtaining recurrent binary codes, 
controlling the selection of a code at the stage of designing 
a computing device and the classification generalization of 
the binary codes with the aim of simplifying the structure 
of the subject area, increasing the diversity of the systems 
of binary codes, in particular, for arithmetic operations with 
binary numbers.

The relevance of the classification generalization of the 
binary codes for arithmetic operations is also in presenting 
the data of the systems of binary codes by a unified general 
table of the data, and, therefore, the unified general hard-
ware costs at the level of an electronic device.

2. Literature review and problem statement

The [4] considered the design of the adder of binary 
numbers with a choice of carry (Carry Select Adder), which 
is one of the fast-performing versions of the parallel adder. 
The feature of the Carry Select Adder is in that the adder 
has linear complexity of the algorithm of the calculation, 
however, within the range of 16–128 bit scheme, it shows 
better efficiency of calculation compared with the scheme 
of the adder with logarithmic complexity of the calculation. 
The disadvantage of the Carry Select Adder is the orga-
nization of technology of selecting the carry through the 
split of the structure of the adder into separate groups of 
logical elements, each of which contributes to the delay of 
the carry signal (more groups – larger delay), which with 
increasing the digit capacity of the scheme reduces the pro-
ductivity of computing.

The [5] demonstrated better efficiency of multiplying 
binary numbers for a 64-digit sign multiplier using the 
technology of Carry Select Adder (CSA), compared with 
the Carry Look-Ahead Adder (CLA). Thus, the results of 
the paper [5] confirm the specifics of the Carry Select Adder 
that were examined in the analysis of the work [4]. With 

the increase in the digit capacity of a sign multiplier, more 
promising is the technology of the CLA, since the latter uses 
a cascading scheme [6]. The calculations organized by a cas-
cade scheme in the CLA demonstrate a significant advantage 
exactly while increasing the bit capacity of a device’s scheme.

The [7] examined designing the adder of binary num-
bers with a skip in the carry (Carry Skip Adder), which is a 
modification of the parallel adder with the structure of lower 
hardware costs and energy consumption compared to Carry 
Look-ahead Adder. The feature of the Carry Skip Adder is 
in that the adder occupies a technological niche between the 
Ripple Carry Adder with greater productivity of computing 
and Carry Look-ahead Adder with lower hardware costs. The 
disadvantage of the Carry Skip Adder is the organization of 
the technology of skipping the carry through the breakdown 
of the structure of the adder into separate groups of logical 
elements, the half of which contributes to the delay of the 
transfer signal, which limits the productivity of computing, 
that is why the Carry Skip Adder technology achieves the 
complexity of the algorithm of calculation not less than linear.

The [8] demonstrated better performance in multiplying 
binary numbers for a 32-bit multiplier using the technology of 
Carry Save Adder (CSA) compared with Carry Look-Ahead 
Adder (CLA). The feature of using the CSA for the process of 
the multiplication by a multiplier is in the way of performing 
of addition of partial multiplications (Carry Save) and their fi-
nal summation. The technology of Ripple Carry Adder is used 
only at the final stage. The multiplier with the CSA requires 
fewer complete adders than the multiplier with the CLA. 
Since the Carry Look-Ahead Adder uses a cascading scheme 
[6], then with increasing the digit capacity of binary numbers, 
the CLA becomes more promising. However, the analysis in 
[8] is limited by the consideration of calculations of 32-digit 
numbers while other data are not presented.

The [9] presents designing and implementation of an 
8-bit Carry Look-ahead Adder with low power consumption 
based on the 180 nm CMOS technology. The peculiarity 
of the CLA is the lowest depth of the adder’s scheme; in 
particular, for a 2048-bit scheme of the CLA, the depth is 
26 logical elements. An adder has logarithmic complexity 
of the calculation algorithm. Therefore, the CLA is the 
main functional unit in arithmetic-logical devices due to its 
high performance speed. However, the lower depth of the 
adder’s scheme is achieved by increasing the complexity of 
the scheme, which is a disadvantage of a Carry Look-ahead 
Adder. That is why 8-bit CLA is sufficient. In the practical 
context, 32-bit [8] and 64-bit CLA [5] are known.

The [10] presented a scheme of a serial adder with reverse 
logic gates. Reverse logic is able to effectively dissipate heat 
energy, which is the main requirement when designing VLSI 
with low power consumption. Reverse serial adder [10] is 
based on the serial adder of binary numbers which includes a 
complete single-digit adder and a trigger. The disadvantage 
of the latter adder is that it implements the technology of 
Ripple Carry Adder in the worst version, since the chain of 
carry consists of three logical elements, and, therefore, when 
adding n-bit numbers, the chain of carry will consist of 3n 
logical elements. Speeding up calculations is possible when 
using a serial adder without carry. In this case, a complete 
single-digit adder and a trigger will be replaced by one log-
ical element – OR or AND, which is the advantage of the 
reviewed technology.

The [11] presents designing and implementation of a  
16-bit Ripple Carry Adder (RCA) with low power consump-
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tion based on the 45 nm CMOS technology. The peculiarity 
of the RCA is the least complexity of the scheme in the class 
of parallel adders that provides the scheme’s performance 
with minimal consumption of power and thus it becomes 
possible, to certain extent, to solve primary problems in 
today’s VLSI that arise due to two main reasons. One is the 
continued work of a battery for servicing mobile and porta-
ble devices, and the second is due to the increase in the num-
ber of transistors on a single-chip VLSI. The disadvantage 
of the RCA is the increase in the carry signal chain, which 
slows down the establishment of stable values of the signals 
at the Si outlets of the RCA one-digit adders.

The operation of summation of binary numbers in the 
digital technologies [4, 5, 7–10], with the exception of [11], 
implies a way to reduce the carry. Summation in a position-
al system without carry was first demonstrated using the 
Galois field codes that are obtained by using theoretical-nu-
merical transformations over the Galois field and the initial 
non-zero code fragment.

However, the codes for the operation of summation with-
out carry in a positional system can be obtained through 
the initial, zero and each of non-zero blocks of complete 
combinatorial system with repetition (Table 1). Generated 
codes for the operation of summation are categorized only as 
binary and in this case they have recurrent properties.

Assume P(2, n) is the class of combinatorial systems 
with initial blocks of complete combinatorial system with 
repetition (Table 1). Then P(2, 1111) – an instance of the 
class P(2, n) is a combinatorial system with a 4-bit initial 
block – 1111. P(2, 0000) – an instance of the class P(2, n) 
is a combinatorial system with a 4-bit initial block – 0000. 
P(2, bi) – an instance of the class P(2, n) is a combinatorial 
system with a 4-bit initial block – bi Table 1.

Unlike [2, 3], in this paper the Galois field codes, codes 
XAND are determined by the respective instances P(2, bi) 
of the class P(2, n) by way of their selection on the ring struc-
ture using the original block bi Table 1. This means that the 
principle of the construction of the system of binary codes by 
its code-beginning (block-beginning) is located within the 
range of the complete combinatorial system with repetition 
(Table 1). Therefore, all the blocks in Table 1 are equal in 
the principle of the synthesis of the corresponding system of 
binary codes P(2, bi). In its turn, the chosen system of binary 
codes (an instance of P(2, bi) in the class P(2, n)) is equal 
in its use, among other systems, for example, in arithmetic 
operations.

Since the use of binary codes for the operation of summa-
tion without carry is the task still unsolved, this paper demon-
strates a new standard of the synthesis of binary codes, which 
comes down to that the set system of binary codes (instance 
of P(2, bi) of the class P(2, n)) is selected on the ring structure 
with the help of corresponding initial block of complete com-
binatorial system with repetition. Similarly selected are the 
other systems of binary codes, with their blocks-beginnings, 
that can be applied to carry out the operation of summation 
without carry, thus expanding the apparatus of the synthesis 
of recurrent binary codes for their use in digital technologies.

3. The purpose and objectives of the study

The aim of this work is to construct a scheme of a parallel 
adder of binary codes without inter-digit carries and to de-
termine the quality indicators of such an adder.

To achieve the set goal, the following tasks are to be 
solved:

– to determine the properties of recursive method of the 
synthesis of binary codes;

– to establish the validity of the use of any block-be-
ginning of complete combinatorial system with repetition 
(Table 1) for the synthesis of recurrent binary codes P(2, bi);

– to obtain an estimate of the complexity of the algo-
rithm of calculation of signals of the sum of a parallel adder 
of binary codes without carry;

– to compile a protocol of computing of the operation of 
summation of binary codes without carry, to conduct the 
test of the synthesized adder to match the results of the op-
erations of summation of binary numbers and the compiled 
protocol and to specify the range of adding the numbers of 
the adder of binary codes without carry;

– to perform a comparative performance analysis of the 
calculations of signals of the sum in the scheme of a paral-
lel adder of binary codes without carry to the scheme of a 
parallel adder with a parallel way of the CLA carry (Carry 
Look-ahead Adder).

4. Recursive method of synthesis of binary codes

The method of recursion provides for a synthesis of bina-
ry codes with the necessary properties for the operation of 
summation without carry.

1. Recursion submits the next code (or a recurrent 
sequence element) by using logical operation on the pre-
vious code (element). Thus all n-digit codes are the result 
of a cyclic shift of the original code fragment with the key 

j i n i 1x x x ,− −= ⊕  (for the case of a 4-digit code).
2. Compiled in this way, the system of codes must pos-

sess the properties of a ring, which gives, in particular, the 
formation of the initial code of the system at the operation of 
the shift in the last code by one bit of a recurrent sequence.

3. The set of binary codes of any instance P(2, bi) in 
the class P(2, n) with the properties of a ring relative to 
the operation of summation is the additive group of the 
instance P(2, bi) with a ring structure that can be marked 
as – P(2, bi)+. 

4. The system of codes will have a ring structure only 
when it contains one of the two combinations of binary num-
bers: 0000 or 1111 (for the case of 4-digit binary numbers).

5. It follows from the property 4 that, based on complete 
combinatorial system with repetition (Table 1), the forma-
tion of two ring structures, one of which contains the code 
0000 (4), is possible

0 0 0 0 1 0 1 0 0 1 1 0 1 1 1, 	 (4)

and the other one contains the code 1111 (5)

1 1 1 1 0 1 0 1 1 0 0 1 0 0 0. 	 (5)

6. In the system of codes with a ring structure, made by 
using the XOR operation, the code 0000 is missing, in the 
system of codes with a ring structure, formed by using the 
XAND operations, the code 1111 is missing (for the case of 
4-bit binary codes).

7. The order of alternation of recurrent binary codes in 
a ring structure is the same for all systems of binary codes 
(for all instances P(2, bi) in the class P(2, n)). For example, 
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for a ring structure (4), the order of alternation of codes is 
as follows:

…
1000
0000
0001
…, 
 

for a ring structure (5), the order of alternation of codes is 
as follows:

…
0111
1111
1110
…. 

8. It follows from the property 6 that the number of re-
current binary codes in the system P(2, bi) is determined by 
the number

nb 2 1,= − 	  (6)

where n is the digit capacity of a binary code.
9. It follows from the property 8 that the range of num-

bers that can be presented by the binary recurrent codes (6) 
consists of

xD+yD=<2n–2, 

where n is the digit capacity of a binary code.
For example, for an 8-bit binary without a sign integer, 

the range of numbers, which can be presented by binary re-
current codes is 0…254. For a 16-bit, without a sign code, the 
range equals 0…65534.

5. Recurrent binary codes

For binary, such as 4-bit codes, at logical operation 
XOR, each of 2n–1 n-digit non-zero code combination of 
recurrent sequence is the result of cyclic shift of any ini-
tial non-zero code fragment that belongs in complete com-
binatorial system with repetition (Table 1) with the key 

j i n i 1x x x .− −= ⊕
 

Compiled in this way, the system of codes has a ring 
structure, which provides, in particular, for the forma-
tion of initial system code at the operation of the shift 
in the last code of the system by one bit of recurrent  
sequence.

Table 2 presents all 4-bit initial code fragments of 
complete combinatorial system with repetition (Table 1), 
with the exception of zero (0000) and corresponding re-
current sequences of the code elements, formed by the key 

j i 4 i 1x x x .− −= ⊕

Logical operation XAND allows obtaining recurrent 
binary codes by a cyclic shift, starting at zero (0000) 
initial fragment [3].

All sequences (Table 2) present 4-bit binary recurrent 
codes shifted by one bit by to each other, the values of 
which are given in Tables 3, 4.

Table 2

Initial 4-bit code fragments of complete combinatorial system 
with repetition and corresponding recurrent sequence of 

code elements

# Initial code fragment Recurrent sequence
0 – –
1 0001 000111101011001
2 0010 001000111101011
3 0011 001111010110010
4 0100 010001111010110
5 0101 010110010001111
6 0110 011001000111101
7 0111 011110101100100
8 1000 100011110101100
9 1001 100100011110101

10 1010 101011001000111
11 1011 101100100011110
12 1100 110010001111010
13 1101 110101100100011
14 1110 111010110010001
15 1111 111101011001000

Table 4

Recurrent 4-bit binary codes for initial code fragments – 
1011, 1001, 1000, 0101, 0100, 0110, 1010

#
Initial code fragment

1011 1001 1000 0101 0100 0110 1010
Recurrent binary code

0 1011 1001 1000 0101 0100 0110 1010
1 0110 0010 0001 1011 1000 1100 0101
2 1100 0100 0011 0110 0001 1001 1011
3 1001 1000 0111 1100 0011 0010 0110
4 0010 0001 1111 1001 0111 0100 1100
5 0100 0011 1110 0010 1111 1000 1001
6 1000 0111 1101 0100 1110 0001 0010
7 0001 1111 1010 1000 1101 0011 0100
8 0011 1110 0101 0001 1010 0111 1000
9 0111 1101 1011 0011 0101 1111 0001

10 1111 1010 0110 0111 1011 1110 0011
11 1110 0101 1100 1111 0110 1101 0111
12 1101 1011 1001 1110 1100 1010 1111
13 1010 0110 0010 1101 1001 0101 1110
14 0101 1100 0100 1010 0010 1011 1101

Table 3

Recurrent 4-bit binary codes for initial code fragments – 
1111, 1110, 0001, 0011, 1101, 1100, 0010, 0111

#
Initial code fragment

1111 1110 0001 0011 1101 1100 0010 0111
Recurrent binary code

0 1111 1110 0001 0011 1101 1100 0010 0111
1 1110 1101 0011 0111 1010 1001 0100 1111
2 1101 1010 0111 1111 0101 0010 1000 1110
3 1010 0101 1111 1110 1011 0100 0001 1101
4 0101 1011 1110 1101 0110 1000 0011 1010
5 1011 0110 1101 1010 1100 0001 0111 0101
6 0110 1100 1010 0101 1001 0011 1111 1011
7 1100 1001 0101 1011 0010 0111 1110 0110
8 1001 0010 1011 0110 0100 1111 1101 1100
9 0010 0100 0110 1100 1000 1110 1010 1001

10 0100 1000 1100 1001 0001 1101 0101 0010
11 1000 0001 1001 0010 0011 1010 1011 0100
12 0001 0011 0010 0100 0111 0101 0110 1000
13 0011 0111 0100 1000 1111 1011 1100 0001
14 0111 1111 1000 0001 1110 0110 1001 0011
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For any given initial code fragment (Table 2), for exam-
ple, x1, x2, x3, x4 with the key 

j i 4 i 1x x x ,− −= ⊕  

all other representations of the bits of corresponding recur-
rent sequence (Table 2) can be obtained through the initial:

x5=x1⊕x4,

x6=x 2⊕x5=x1⊕x 2⊕x4,

x7=x3⊕x6=x1⊕x 2⊕x3⊕x4,

x8=x4⊕x7=x1⊕x2⊕x3,

x9=x5⊕x8=x2⊕x3⊕x4,

x10=x6⊕x9=x1⊕x3,

x11=x7⊕x10=x2⊕x4,

x12=x8⊕x11=x1⊕x3⊕x4,

x13=x9⊕x12=x1⊕x2,

x14=x10⊕x13=x2⊕x3,

x15=x11⊕x14=x3⊕x4,

x16=x12⊕x15=x1⊕x3⊕x4⊕x3⊕x4=x1,

x17=x13⊕x16=x1⊕x 2⊕x1=x 2,

x18=x14⊕x17=x 2⊕x3⊕x 2=x3,

x19=x15⊕x18=x 2⊕x4⊕x3=x4,

x 20=x16⊕x19=x1⊕x4. 	 (7)

From the review of dependencies (7) we see that in the 
calculations of each bit of the recurrent sequence, starting 
with x5, the first four bits participate.

6. Arithmetic operation of adding binary  
codes without carry

The operation of summation of binary codes А(х) 
and D(x) is the recursive shift in the selected sequence  
(Table 2), starting from the initial position of the code 
А(х) on a number of discrete positions defined by the deci-
mal equivalent of the code D(x). Thus, the implementation 
of the indicated operation of summation boils down to 
simultaneous parallel mutually independent 
formation of each bit of the result of the 
calculation as the sum of the operation ⊕ 
without having to perform the operations 
of inter bit carries. The calculation of each 
result of the operation is carried out in one 
cycle. The process of calculation is invariant 
to the digit capacity of a word of data.

To perform the operation of summation, 
the codes-summands are presented by using 
dependencies (7).

Example 1. For the initial code fragment 
1111, the dependency of the code А(х) – 0101 
(410), code D(x) – 0110 (610), code of the sum 
C(х) – 0100 (1010) are displayed in Table 5.

During the operation of summation, the code А(х) 
(Table 5, a) is exposed to the actions defined by the de-
pendencies of the code D(x) in the recurrent sequence 
(Table 2), which correspond to the value of the code D(x)  

(Table 5, b). The dependencies of the code D(x) set a certain 
programming procedure (vector) over the code А(х) for the 
calculation of each digit of the sum C(х) (Table 5, c).

The dependencies (7) of the code of the number А(х) – 
0101 (410) of the example 1 are in the 4th line of Table 8, 
the vector D’(x) is in the 6th line of Table 8 (Table 6).

Table 5

Expressions for the 4-bit codes: a – А(х), b – D(x), c – C(х), 
presented by dependencies (7)

А(х) – 0101 (410) D(x) – 0110 (610) C(х) – 0100 (1010)
x5 = 1 4x x⊕ x7 = 1 2 3 4x x x x⊕ ⊕ ⊕ x11 = 2 4x x⊕

x6 = 1 2 4x x x⊕ ⊕ x8 = 1 2 3x x x⊕ ⊕ x12 = 1 3 4x x x⊕ ⊕

x7 = 1 2 3 4x x x x⊕ ⊕ ⊕ x9 = 2 3 4x x x⊕ ⊕ x13 = 1 2x x⊕

x8 = 1 2 3x x x⊕ ⊕ x10 = 1 3x x⊕ x14 = 2 3x x⊕
a b c

According to the program D’(x) (the 6th line of Table 8), 
for the calculation of the first digit of the sum C(х), all four 
dependencies of the code А(х) (Table 5) must participate. 
To calculate the sum C(х) in the second digit, the first three 
dependencies of the code А(х) (Table 5) must participate. 
To calculate the sum C(х) in the third digit, the dependen-
cies of the second, third and fourth bits of the code А(х)  
(Table 5) must participate. To calculate the sum C(х) in the 
fourth digit, the dependencies of the first and the third bits 
of the code А(х) (Table 5) must participate.

The program procedure D’(x) over a 4-bit code А(х) can 
be presented by a table (Table 7). In the first line of Table 7, 
the dependencies of the code А(х) (Table 5) are recorded to 
calculate the first digit of the sum C(х) in accordance with 
program procedure D’(x) (Table 8). In the second line of 
Table 7, the dependencies of the code А(х) (Table 5) are re-
corded to calculate the second digit of the sum C(х) in accor-
dance with the program procedure D’(x) (Table 8) and so on.

Indexes at x in the far left column of Table 7 must be 
replaced with the corresponding indices for the sum C(х) – 
x11=x2⊕x4, x12=x1⊕x3⊕x4, x13=x1⊕x2, x14= x2⊕x3.

6. 1. Two general tables of representation of binary codes
Character representation of the expressions of the 

4-bit codes a – А(х), b – D(x), c – C(х) of the instances 

Table 6

Dependencies of the code of the number А(х) and the vector 
D’(x) of the example 1 in algebraic representation of Table 8

# D(х)
D’(x)

1st bit 2nd bit 3rd bit 4th bit

4 0101 b1⊕b4 b1⊕b2⊕b4 b1⊕b2⊕b3⊕b4 b1⊕b2⊕b3

6 0110 b1⊕b2⊕b3⊕b4 b1⊕b2⊕b3 b2⊕b3⊕b4 b1⊕b3

Table 7

Calculations over the 4-bit code А(х), which are defined by the program 
procedure D’(x)

– – x5(A) – x6(A) – x7(A) – x8(A) –
The amount 

of code
x7 = 1 4(x x )⊕ ⊕ 1 2 4(x x x )⊕ ⊕ ⊕ 1 2 3 4(x x x x )⊕ ⊕ ⊕ ⊕ 1 2 3(x x x )⊕ ⊕ = 2 4x x⊕

x8 = 1 4(x x )⊕ ⊕ 1 2 4(x x x )⊕ ⊕ ⊕ 1 2 3 4(x x x x )⊕ ⊕ ⊕ – – = 1 3 4x x x⊕ ⊕

x9 = – – 1 2 4(x x x )⊕ ⊕ ⊕ 1 2 3 4(x x x x )⊕ ⊕ ⊕ ⊕ 1 2 3(x x x )⊕ ⊕ = 1 2x x⊕

x10 = 1 4(x x )⊕ – – ⊕ 1 2 3 4(x x x x )⊕ ⊕ ⊕ – – = 2 3x x⊕
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P(2, bi) of the class P(2, n) allows, to all possible op-
tions of summation of binary codes, presenting the data 
about the vector of the code D(x) by two general tables  
(Table 8, 9).

6. 1. 1. General table of binary codes in algebraic rep-
resentation

Table 8 displays the data on the vector of the code D(x) 
in algebraic representation by dependencies (7). Table 8 is a 
general table of representation of codes for all combinatorial 
systems P(2, bi).

For the code D(х) – 1111, for example, at the operation 
of summation with any code А(х), the program procedure 
(vector) D’(x) over the code А(х) in algebraic representation 
will take the form:

1st bit 2nd bit 3rd bit 4th bit
D’(x)=> b1 b2 b3 b4 

Table 8

Program procedure D’(x) over the 4-bit code А(х) for all 
combinatorial systems P(2, bi) in algebraic representation

#
Bi-

nary 
code

Digits of binary codes presented by dependencies (7),  
in algebraic representation

– D(х) D’(x)

0 xxxx b1 b2 b3 b4

1 xxxx b2 b3 b4 b1⊕b4

2 xxxx b3 b4 b1⊕b4 b1⊕b2⊕b4

3 xxxx b4 b1⊕b4 b1⊕b2⊕b4
b1⊕b2⊕ 
⊕b3⊕4

4 xxxx b1⊕b4 b1⊕b2⊕b4 b1⊕b2⊕b3⊕4 b1⊕b2⊕b3

5 xxxx b1⊕b2⊕b4 b1⊕b2⊕b3⊕4 b1⊕b2⊕b3 b2⊕b3⊕b4

6 xxxx b1⊕b2⊕b3⊕4 b1⊕b2⊕b3 b2⊕b3⊕b4 b1⊕b3

7 xxxx b1⊕b2⊕b3 b2⊕b3⊕b4 b1⊕b3 b2⊕b4

8 xxxx b2⊕b3⊕b4 b1⊕b3 b2⊕b4 b1⊕b3⊕b4

9 xxxx b1⊕b3 b2⊕b4 b1⊕b3⊕b4 b1⊕b2

10 xxxx b2⊕b4 b1⊕b3⊕b4 b1⊕b2 b2⊕b3

11 xxxx b1⊕b3⊕b4 b1⊕b2 b2⊕b3 b3⊕b4

12 xxxx b1⊕b2 b2⊕b3 b3⊕b4 b1

13 xxxx b2⊕b3 b3⊕b4 b1 b2

14 xxxx b3⊕b4 b1 b2 b3

6. 1. 2. General table of binary codes in bitmap repre-
sentation

Table 9 displays the data on the vector of the code D(x) 
by the dependencies (7) using the numeric symbols (bits). 
Table 9 is a general table of representation of codes for all 
combinatorial systems P(2, bi), where the presence of a 
character in the dependencies (7) is indicated by one, and 
the absence of a character is indicated by zero.

For the code D(х) – 1111, for example, during 
the operation of summation with any code А(х), 
the program procedure (vector) D’(x) over the 
code А(х) in the bitmap representation will take 
the form:

1st bit 2nd bit 3rd bit 4th bit
D’(x)=> 1 1 1 1 

Table 9

Program procedure D’(x) over the 4-bit code А(х) for all 
combinatorial systems P(2, bi) in the bitmap representation

#
Binary 

code

Digits of binary codes presented by dependencies (7), 
in the bitmap representation

d44 d34 d24 d14 d43 d33 d23 d13 d42 d32 d22 d12 d41 d31 d21 d11

– D(х) D’(x)

0 xxxx 1⊕0⊕0⊕0 0⊕1⊕0⊕0 0⊕0⊕1⊕0 0⊕0⊕0⊕1

1 xxxx 0⊕1⊕0⊕0 0⊕0⊕1⊕0 0⊕0⊕0⊕1 1⊕0⊕0⊕1

2 xxxx 0⊕0⊕1⊕0 0⊕0⊕0⊕1 1⊕0⊕0⊕1 1⊕1⊕0⊕1

3 xxxx 0⊕0⊕0⊕1 1⊕0⊕0⊕1 1⊕1⊕0⊕1 1⊕1⊕1⊕1

4 xxxx 1⊕0⊕0⊕1 1⊕1⊕0⊕1 1⊕1⊕1⊕1 1⊕1⊕1⊕0

5 xxxx 1⊕1⊕0⊕1 1⊕1⊕1⊕1 1⊕1⊕1⊕0 0⊕1⊕1⊕1

6 xxxx 1⊕1⊕1⊕1 1⊕1⊕1⊕0 0⊕1⊕1⊕1 1⊕0⊕1⊕0

7 xxxx 1⊕1⊕1⊕0 0⊕1⊕1⊕1 1⊕0⊕1⊕0 0⊕1⊕0⊕1

8 xxxx 0⊕1⊕1⊕1 1⊕0⊕1⊕0 0⊕1⊕0⊕1 1⊕0⊕1⊕1

9 xxxx 1⊕0⊕1⊕0 0⊕1⊕0⊕1 1⊕0⊕1⊕1 1⊕1⊕0⊕0

10 xxxx 0⊕1⊕0⊕1 1⊕0⊕1⊕1 1⊕1⊕0⊕0 0⊕1⊕1⊕0

11 xxxx 1⊕0⊕1⊕1 1⊕1⊕0⊕0 0⊕1⊕1⊕0 0⊕0⊕1⊕1

12 xxxx 1⊕1⊕0⊕0 0⊕1⊕1⊕0 0⊕0⊕1⊕1 1⊕0⊕0⊕0

13 xxxx 0⊕1⊕1⊕0 0⊕0⊕1⊕1 1⊕0⊕0⊕0 0⊕1⊕0⊕0

14 xxxx 0⊕0⊕1⊕1 1⊕0⊕0⊕0 0⊕1⊕0⊕0 0⊕0⊕1⊕0

In a shortened record of the vector D’(x), the sign of the 
operation is omitted, for example:

– D(х) D’(x)
14 0111 0011 1000 0100 0010

In the end Table 9 will take a compact view.

6. 2. Adding binary codes in bitmap representation 
without carry

Since arithmetic operations in electronic schemes are 
carried out by using physical signals, which, in turn, are 
defined by substitution, in accordance with the bits of 
binary codes

1 2 k

1 2 k

i i i

i i ... i
A ,

...

 
=  α α α 

we will present binary codes of the numbers А(х), D(x), C(х) 
in bits, where the presence of a character of the sequence (7) 
is denoted by one, while the absence of a character is denoted 
by zero. For example, the 4-bit code 1 4x x⊕  for any initial 
code fragment of combinatorial systems P(2, bi), in the bit-
map representation will look like 1 0 0 1,⊕ ⊕ ⊕  the 4-bit code 

1 2 3 4x x x x⊕ ⊕ ⊕  in the bitmap representation will take the 
form 1 1 1 1.⊕ ⊕ ⊕

Example 2. For the initial code fragment 1111 (as for 
other initial code fragments), the vector D’(x) and the code 
А(х) from the example 1 can be presented in bits (Table 11).

The program procedure D’(x) over the code А(х) from 
the example 1 (Table 5) will look like (Table 10).

Table 10

Program procedure (vector) D’(x) over the 4-bit code А(х) – 0101 (410) 
from the example 1

1st bit 2nd bit 3rd bit 4th bit

D’(x) 11⊕12⊕13⊕14 11⊕12⊕13⊕04 01⊕12⊕13⊕14 11⊕02⊕13⊕04



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 4/4 ( 82 ) 2016

34

Table 11

Calculations defined by the program procedure D’(x)  
(the 6th line of Table 8) over the 4-bit code А(х) from  

the example 1 (Table 5), presented in bits

– – x5(A) – x6(A) – x7(A) – x8(A) – Sum of codes

x7 = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0

x8 = 0 ⊕ 1 ⊕ 0 ⊕ 0 = 1

x9 = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0

x10 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0

The obtained values of bits in the lines of Table 11 x7=0, 
x8=1, x9=0, x10=0 correspond to the bits of the code of the 
sum C(х). Indices at x must be replaced with the correspond-
ing indices for the sum C(х) – x11=0, x12=1, x13=0,x14=0.

Dependencies (7) are used to construct the vector D’(x), 
so in general one can consider missing the character of the 
vector D’(x), which is denoted by 0D. The vector D’(x) with 
regard to the missing characters will look like (Table 12).

Table 12

Vector D’(x) (the 6th line of Table 8) with regard to  
the missing characters

# D(х)
D’(x)

1st bit 2nd bit 3rd bit 4th bit

4 0101 0 1 0 1

6 0110
b1⊕b2⊕ 
⊕b3⊕b4

b1⊕b2⊕ 
⊕b3⊕0D

0D⊕b2⊕ 
⊕b3⊕b4

b1⊕0D⊕ 
⊕b3⊕0D

The calculations in Table 11 will be written down by 
equations (8), each of which is formed by substituting the 
bits of the code А(х) in the structure of the corresponding 
digit of the vector D’(x), given the missing character 0D. For 
another option of adding codes it is necessary to perform 
another substitution of the А(х) code bits in the structure of 
the corresponding digit of the vector D’(x) and to repeat the 
considered order of arithmetic operation.

x7=0A⊕1A⊕0A⊕1A=0,

x8=0A⊕1A⊕0A⊕0D=1,

x9=0D⊕1A⊕0A⊕1A=0, 

x10=0A⊕0D⊕0A⊕0D=0.	 (8) 

The obtained values of the equations x7=0, x8=1, x9=0, 
x10=0 correspond to the bits of the code of the sum C(х). 
Indices at x must be replaced with the corresponding indices 
for the sum C(х) – x11=0, x12=1, x13=0,x14=0.

Substitution at the level of the scheme requires a process 
of logical operation, which for the missing characters of the 
vector D’(x) gives the following options matching the wild-
card characters:

0A˄0D,

1A˄0D.

The last option of the substitution inverts one into 
zero (excludes the bit-unit of the code A from logical pro-
cess), which requires a logical element I for the scheme. 
Substitution with the present characters of the vector 

D’(x) gives other variants of the logical substitution of 
the variables:

0A˄1D,

1A˄1D,

that is, zero becomes zero, one becomes one.
The process of the substitution with the specified logic 

is represented by the equations (9), in which the A code is 
written down by the initial values of the bits –0101 (410):

x7=(0A˄1D)⊕(1A˄1D)⊕(0A˄1D)⊕(1A˄1D)=0,

x8=(0A˄1D)⊕(1A˄1D)⊕(0A˄1D)⊕(1A˄0D)=1,

x9=(0A˄0D)⊕(1A˄1D)⊕(0A˄1D )⊕(1A˄1D)=0, 

x10=(0A˄1D)⊕(1A˄0D)⊕(0A˄1D)⊕(1A˄0D)=0. 	 (9)

The obtained values of the equations x7=1, x8=0, x9=1, 
x10=1 correspond to the bits of the code of the sum C(х). 
Indices at x must be replaced with the corresponding indices 
for the sum C(х) – x11=1, x12=0, x13=1, x14=1.

6. 3. Scheme of the adder of binary codes without carry
By the equations (9) a combination scheme of the 4-bit 

adder of binary codes is synthesized. For the first digit of the 
code of the sum C(х) x11 such a scheme, which is built based on 
the adder of the Galois field codes [12] is presented in Fig. 1.

 
 
 
 
 
 
 

a 
 
 
 
 
 
 
 
 
 

b  
Fig. 1. 4-digit adder of binary codes for the first bit of the 
sum C(х): a – combination scheme of the first digit of the 

adder; b – scheme of the adder of the first bit presented by 
complex logic

Similarly to the scheme in Fig. 1, the schemes of other digits 
of the adder of binary codes are built, for the synthesis of which 
the appropriate logical equations are used similar to (9). 

Fig. 2 presents the scheme of the first digit of the 8-bit 
adder of binary codes without carry on the logical elements 
AND and XOR.

Fig. 3 presents the scheme of the first digit of the 16-bit 
adder of binary codes without carry on the logical elements 
OR and XAND [3].
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6. 4. Other examples of adding binary codes without 
carry

Example 3. For the codes with the original code fragment 
1000, А(х) – 1111 (410), D(x) – 1101 (610), the code of the 
sum C(х) – 0110 (1010) (Table 4), to conduct the operation 
of summation in the bitmap representation.

Table 13

Calculations defined by the program procedure D’(x)  
(the 6th line of Table 9) over the 4-bit code А(х) – 1111 (410) 

of the initial code fragment 1000 represented in bits

– – x5(A) – x6(A) – x7(A) – x8(A) – Sum of codes

x7 = 1 ⊕ 1 ⊕ 1 ⊕ 1 = 0

x8 = 1 ⊕ 1 ⊕ 1 ⊕ 0 = 1

x9 = 0 ⊕ 1 ⊕ 1 ⊕ 1 = 1

x10 = 1 ⊕ 0 ⊕ 1 ⊕ 0 = 0

The obtained values of bits in the lines of Table 13 
x7=0, x8=1, x9=1, x10=0 correspond to the digits of the 
code of the sum C(х). Indices at x must be replaced with 
the corresponding indices for the sum C(х) – x11=0, x12=1, 
x13=1, x14=0.

Example 4. For the codes with the original code fragment 
1011, А(х) – 1100 (210), D(x) – 0001 (710), the code of the 
sum C(х) – 0111 (910) (Table 4), to conduct the operation of 
summation in the bitmap representation.

Table 14

Vector D’(x) (7th line of Table 9) with regard to  
the missing characters

# D(х)
D’(x)

1st bit 2nd bit 3rd bit 4th bit

2 1100 1 1 0 0

7 0001
11⊕12⊕ 
⊕13⊕04

01⊕12⊕ 
⊕13⊕14

11⊕02⊕ 
⊕13⊕04

01⊕12⊕ 
⊕03⊕14

Table 15

Calculations defined by the program procedure D’(x)  
(7th line of Table 8) over the 4-bit code А(х) – 1100 (210) of 

the initial code fragment 1011, presented in bits

– – x3(A) – x4(A) – x5(A) – x6(A) – Sum of codes

x8 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0

x9 = 0 ⊕ 1 ⊕ 0 ⊕ 0 = 1

x10 = 1 ⊕ 0 ⊕ 0 ⊕ 0 = 1

x11 = 0 ⊕ 1 ⊕ 0 ⊕ 0 = 1

The obtained values of the digits in the rlines of Table 
15 x8=0, x9=1, x10=1, x11=1 correspond to the digits of the 
code of the sum C(х). Indices at x must be replaced with 
the corresponding indices for the sum C(х) – x10=0, x11=1, 
x12=1, x13=1.

 
Fig. 2. Scheme of the first digit of the 8-bit adder of binary codes without carry on the logical elements AND and XOR

 

Fig. 3. Scheme of the first digit of the 16-bit adder of binary codes without carry on the logical elements OR and XAND
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7. The structure of functional connection of the control 
output of a decoder with a string of intermediate 

coefficients dji of the logical vector D’(x) in the scheme 
of the adder of binary codes

The calculation of the 4-bit code of the sum C(х) requires 
submitting to one of the input of the adder 16 (2k, where k 
is the digit capacity of the adder) of the bits of intermediate 
coefficients dji of the logical vector D’(x). For this, one needs 
a functional connection of the control output of the decoder 
with a string of intermediate coefficients dji of the vector 
D’(x) belonging to the code D(x). One of the devices that can 
provide such a functional connection is a memory device. An-
other solution might be a multiplexer, which, however, gives 
a linear total complexity of computing in the adder’s scheme.

Functional connection of the adder with a string of in-
termediate coefficients dji of the logical vector D’(x) uses the 
decryption of the k-digit code D(x) into a 2k-digit unitary 
code, in which one determines current vector D’(x) in the 
line of Table 9.

For the operation of summation of binary codes, con-
trolling output of the decoder (one in unitary code) connects 
with the corresponding line in Table 9, after which all 2k bits 
of the line are submitted onto 2k inputs d11, d12, d13, d14 … d41, 
d42, d43, d44 of the adder (Fig. 4).

The structure of the functional connection of the adder 
with a string of intermediate coefficients dji of the logical 
vector D’(x) consists of the circuit of a memory device, a de-
coder and the scheme of the adder of binary codes of 4 digits. 
To the inputs d1, d2, d3, d4 of the structure, the bits of the 
code D(x) are submitted; to the inputs a1, a2, a3, a4 the bits of 
the code А(х) are submitted. The bits of the code of the sum 
C(х) receive the adder S1, S2, S3,S4 at the outputs.

With increasing digit capacity of an adder, the principle 
of constructing the structure of the functional connection 
of the control output of the decoder with a string of inter-
mediate coefficients dji of the logical vector D’(x) does not 
change.

8. Computation protocol of the 4-bit adder of  
binary codes

The range of adding numbers of an adder of binary codes 
without carry is:

xD+yD=<2n–2, 

where n is the digit capacity of a number. A number of 
options to add a multi digit parallel adder of binary codes 
without carry is:

n2 1
n

k 0

b 2 k 1
−

=

= − −∑

or

n2 1

k 1

b k,
−

=

= ∑

where n is the digit capacity of a number.
Having computed the values b, we determine the number 

of strings of the computation protocol of the 4-bit parallel 
adder of binary codes without carry, which is 120 lines  
(Table 16).

 

Fig. 4. Structure of the functional connection of the control output of the decoder with a string of intermediate coefficients dji 
of the logical vector D’(x) using the multiplexer in the scheme of the 4-bit adder of binary codes
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Table 16

Computation protocol of the 4-bit adder of binary codes without carry for the initial code fragment – 1111

#
input output

a1 a2 a3 a4 d1 d2 d3 d4 g1 g2 g3 g4

1 2 3 4 5 6 7 8 9 10 11 12 13
1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 0 1 1 1 0
3 1 1 1 1 1 1 0 1 1 1 0 1
4 1 1 1 1 1 0 1 0 1 0 1 0
5 1 1 1 1 0 1 0 1 0 1 0 1
6 1 1 1 1 1 0 1 1 1 0 1 1
7 1 1 1 1 0 1 1 0 0 1 1 0
8 1 1 1 1 1 1 0 0 1 1 0 0
9 1 1 1 1 1 0 0 1 1 0 0 1

10 1 1 1 1 0 0 1 0 0 0 1 0
11 1 1 1 1 0 1 0 0 0 1 0 0
12 1 1 1 1 1 0 0 0 1 0 0 0
13 1 1 1 1 0 0 0 1 0 0 0 1
14 1 1 1 1 0 0 1 1 0 0 1 1
15 1 1 1 1 0 1 1 1 0 1 1 1
16 1 1 1 0 1 1 1 1 1 1 1 0
17 1 1 1 0 1 1 1 0 1 1 0 1
18 1 1 1 0 1 1 0 1 1 0 1 0
19 1 1 1 0 1 0 1 0 0 1 0 1
20 1 1 1 0 0 1 0 1 1 0 1 1
21 1 1 1 0 1 0 1 1 0 1 1 0
22 1 1 1 0 0 1 1 0 1 1 0 0
23 1 1 1 0 1 1 0 0 1 0 0 1
24 1 1 1 0 1 0 0 1 0 0 1 0
25 1 1 1 0 0 0 1 0 0 1 0 0
26 1 1 1 0 0 1 0 0 1 0 0 0
27 1 1 1 0 1 0 0 0 0 0 0 1
28 1 1 1 0 0 0 0 1 0 0 1 1
29 1 1 1 0 0 0 1 1 0 1 1 1
30 1 1 0 1 1 1 1 1 1 1 0 1
31 1 1 0 1 1 1 1 0 1 0 1 0
32 1 1 0 1 1 1 0 1 0 1 0 1
33 1 1 0 1 1 0 1 0 1 0 1 1
34 1 1 0 1 0 1 0 1 0 1 1 0
35 1 1 0 1 1 0 1 1 1 1 0 0
36 1 1 0 1 0 1 1 0 1 0 0 1
37 1 1 0 1 1 1 0 0 0 0 1 0
38 1 1 0 1 1 0 0 1 0 1 0 0
39 1 1 0 1 0 0 1 0 1 0 0 0
40 1 1 0 1 0 1 0 0 0 0 0 1
41 1 1 0 1 1 0 0 0 0 0 1 1
42 1 1 0 1 0 0 0 1 0 1 1 1
43 1 0 1 0 1 1 1 1 1 0 1 0
44 1 0 1 0 1 1 1 0 0 1 0 1
45 1 0 1 0 1 1 0 1 1 0 1 1
46 1 0 1 0 1 0 1 0 0 1 1 0
47 1 0 1 0 0 1 0 1 1 1 0 0
48 1 0 1 0 1 0 1 1 1 0 0 1
49 1 0 1 0 0 1 1 0 0 0 1 0
50 1 0 1 0 1 1 0 0 0 1 0 0
51 1 0 1 0 1 0 0 1 1 0 0 0
52 1 0 1 0 0 0 1 0 0 0 0 1
53 1 0 1 0 0 1 0 0 0 0 1 1
54 1 0 1 0 1 0 0 0 0 1 1 1
55 0 1 0 1 1 1 1 1 0 1 0 1
56 0 1 0 1 1 1 1 0 1 0 1 1
57 0 1 0 1 1 1 0 1 0 1 1 0
58 0 1 0 1 1 0 1 0 1 1 0 0
59 0 1 0 1 0 1 0 1 1 0 0 1
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1 2 3 4 5 6 7 8 9 10 11 12 13
60 0 1 0 1 1 0 1 1 0 0 1 0
61 0 1 0 1 0 1 1 0 0 1 0 0
62 0 1 0 1 1 1 0 0 1 0 0 0
63 0 1 0 1 1 0 0 1 0 0 0 1
64 0 1 0 1 0 0 1 0 0 0 1 1
65 0 1 0 1 0 1 0 0 0 1 1 1
66 1 0 1 1 1 1 1 1 1 0 1 1
67 1 0 1 1 1 1 1 0 0 1 1 0
68 1 0 1 1 1 1 0 1 1 1 0 0
69 1 0 1 1 1 0 1 0 1 0 0 1
70 1 0 1 1 0 1 0 1 0 0 1 0
71 1 0 1 1 1 0 1 1 0 1 0 0
72 1 0 1 1 0 1 1 0 1 0 0 0
73 1 0 1 1 1 1 0 0 0 0 0 1
74 1 0 1 1 1 0 0 1 0 0 1 1
75 1 0 1 1 0 0 1 0 0 1 1 1
76 0 1 1 0 1 1 1 1 0 1 1 0
77 0 1 1 0 1 1 1 0 1 1 0 0
78 0 1 1 0 1 1 0 1 1 0 0 1
79 0 1 1 0 1 0 1 0 0 0 1 0
80 0 1 1 0 0 1 0 1 0 1 0 0
81 0 1 1 0 1 0 1 1 1 0 0 0
82 0 1 1 0 0 1 1 0 0 0 0 1
83 0 1 1 0 1 1 0 0 0 0 1 1
84 0 1 1 0 1 0 0 1 0 1 1 1
85 1 1 0 0 1 1 1 1 1 1 0 0
86 1 1 0 0 1 1 1 0 1 0 0 1
87 1 1 0 0 1 1 0 1 0 0 1 0
88 1 1 0 0 1 0 1 0 0 1 0 0
89 1 1 0 0 0 1 0 1 1 0 0 0
90 1 1 0 0 1 0 1 1 0 0 0 1
91 1 1 0 0 0 1 1 0 0 0 1 1
92 1 1 0 0 1 1 0 0 0 1 1 1
93 1 0 0 1 1 1 1 1 1 0 0 1
94 1 0 0 1 1 1 1 0 0 0 1 0
95 1 0 0 1 1 1 0 1 0 1 0 0
96 1 0 0 1 1 0 1 0 1 0 0 0
97 1 0 0 1 0 1 0 1 0 0 0 1
98 1 0 0 1 1 0 1 1 0 0 1 1
99 1 0 0 1 0 1 1 0 0 1 1 1

100 0 0 1 0 1 1 1 1 0 0 1 0
101 0 0 1 0 1 1 1 0 0 1 0 0
102 0 0 1 0 1 1 0 1 1 0 0 0
103 0 0 1 0 1 0 1 0 0 0 0 1
104 0 0 1 0 0 1 0 1 0 0 1 1
105 0 0 1 0 1 0 1 1 0 1 1 1
106 0 1 0 0 1 1 1 1 0 1 0 0
107 0 1 0 0 1 1 1 0 1 0 0 0
108 0 1 0 0 1 1 0 1 0 0 0 1
109 0 1 0 0 1 0 1 0 0 0 1 1
110 0 1 0 0 0 1 0 1 0 1 1 1
111 1 0 0 0 1 1 1 1 1 0 0 0
112 1 0 0 0 1 1 1 0 0 0 0 1
113 1 0 0 0 1 1 0 1 0 0 1 1
114 1 0 0 0 1 0 1 0 0 1 1 1
115 0 0 0 1 1 1 1 1 0 0 0 1
116 0 0 0 1 1 1 1 0 0 0 1 1
117 0 0 0 1 1 1 0 1 0 1 1 1
118 0 0 1 1 1 1 1 1 0 0 1 1
119 0 0 1 1 1 1 1 0 0 1 1 1
120 0 1 1 1 1 1 1 1 0 1 1 1

Ccontinuation of Table 16
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The logic of the work of the adder of binary codes  
(Fig. 4) corresponds to the computation protocol of the 
adder for the initial code fragment – 1111 (Table 16). For 
other initial code fragments, the codes in the computation 
protocol will have different location, corresponding to the 
initial block of the chosen system of binary codes.

9. The complexity of the algorithm of calculation of the 
adder of binary codes without carry

The schemes in Fig. 2, 3 represent a structure that imple-
ments multi operand summation [13, 14], when at the same 
time the neighboring pairs of terms are added, and then their 
sums (Table 17).

Table 17

The algorithm for pairing (n=23=8)

Steps e1 e2 e3 e4 e5 e6 e7 e8

1 e1+e2 e3+e4 e5+e6 e7+e8

2 e1+e2+e3+e4 e5+e6+e7+e8

3 e1+e2+e3+e4+e5+e6+e7+e8

If n=2k, where n is the number of terms, then the algo-
rithm for pairing consists of k steps (cycles): the first step 
includes n/2 addition, the second – n/4, ..., the last –one ad-
dition. The number of steps k is determined by the formula:

2k log n.=  	 (10) 
 
This variant of multi operand addition is implemented by 

a cascade scheme (“pyramid”) [13–16], and it has logarith-
mic complexity.

Assume as one computing step the calculation on one 
logical element, in the serial connection of the elements of 
the scheme. Given the fact that the logical XOR elements in 
the scheme in Fig. 2, 3 are connected by a cascade scheme, 
the complexity of the algorithm of calculation of signals of 
the sum will look like

O(log2n+1),	  (11)

where n is the digit capacity of binary codes, which equals 
the number of terms in the cascade scheme of the summa-
tion. In the (11), log2n reflects a cascade connection of 
XOR logic elements; one displays the logical item I, includ-
ed sequentially.

The adder of binary codes (Fig. 4) includes a decoder, a 
memory device and the circuit of summing of the coefficients 
dji with bits of the code of the number A.

The connection of multi-pass logic elements AND (Fig. 5)  
of the decoder can also be organized according to the cas-
cade scheme.

Fig. 5. Multi-pass logic element AND

Then the complexity of calculating of the decoder can be 
presented by the estimation (11), in which one reflects the 

Invertor, connected in series (Fig. 4). The estimation of the 
total complexity of calculation by logical elements XOR and 
the decoder will look like

O(log2n+1+log2n+1)=O(2log2n+2). 	 (12)

For quick selection of bits of intermediate coefficients 
dji of the logical vector D’(x) from the string in Table 9, one 
requires a device of constant memory, the cells of which will 
store the values of the bits of the logical vector D’(x) after 
their recording. These requirements are met by, for example, 
static memory. Fig. 6 presents a cell of static memory, in 
which the key of the cell is modeled by a trigger.

Fig. 6. Cell of static memory

We see in Fig. 6 that the unit of the unitary code of a 
decoder chooses recorded bit of the vector D’(x) (Table 9) 
by using the chain of the depth in eight (including Invertor 
on the elements AND) logical elements, connected in series. 
This number of logical elements does not depend on the digit 
capacity of the adder of binary numbers. That is why the 
estimation (12) will increase by 8 elements more, connected 
in series and, therefore, will manifest the overall complexity 
of the algorithm of calculation in the parallel adder of binary 
codes without carry.

O(2log2n+10)=O(log n).	  (13)

The estimation (13) specifies the logarithmic growth of 
the complexity of the algorithm of the calculation – doubling 
the digit capacity of the adder n increases the time of deter-
mining correct signals of the sum by a stable value.

10. Comparison of the structures of parallel adder 
without inter digit carry and parallel adder with a parallel 

way of carry

Table 18 presents the dynamics of increasing the depth 
of the scheme of parallel adder with a parallel way of carry 
CLA (Carry Look-ahead Adder), the synthesis of which is 
based on the model of calculation of the adder in the form of 
oriented acyclic graph that represents a binary tree [6]. Since 
the acyclic graph provides a cascading scheme, then, therefore, 
the number of computational steps of the graph optimizes 
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(indicates the minimum sufficient) number of carries for the 
operation of addition of multi digit binary numbers in the 
scheme of the parallel adder with a parallel way of carry CLA.

Table 18

Dynamics of increasing the depth of the scheme of parallel 
adder with a parallel way of carry with increase in the digit 

capacity of the adder

n 8 16 32 64 128 256 512 1014 2048

CLA 10 12 14 16 18 20 22 24 26

The estimation of the complexity of computing in the 
scheme of the adder with increasing dynamics of the depth of 
the scheme of the adder in Table 15, with increasing the digit 
capacity of the adder looks like

O(2log2n+4). 	 (14)

Fig. 7 presents the dynamics of increasing the depth of the 
scheme of the parallel adder without inter digit carry (AWC) 
and the parallel adder with a parallel way of carry CLA.

Given the Fig. 7, we see that the complexity of the 
algorithm of the calculation of both adders obeys the log-
arithmic law.

11. Discussion of the results of the study of the operation 
of summation without inter digit carry for binary codes

The studies of this work demonstrate that:
1. The codes known in the literature for the operation of 

summation – for example, Galois field codes [2, 4], XAND 
codes [3], are determined by the combinatorial systems with 
initial blocks of complete combinatorial system with repeti-
tion P(2, n) (Table 1). In its turn, the combinatorial systems 
(instances P(2, bi) of the class P(2, n)) are the systems of bi-
nary codes and therefore belong in the same object. Thus, the 
only basis of the specified binary codes indicates the useful-
ness of their classification generalization, within the range 
of operation of summation, on the basis of a single criteri- 
on – an object of binary codes. And appropriateness here is 
the necessity, so the usefulness of this study lies in the fact 
that they predetermine generalization of classification of 
binary codes, in order to simplify the structure of the subject 
area and to increase the diversity of binary codes, in particu-
lar, for arithmetic operations with binary numbers.

2. The data about the vector of the code D(x) that are 
presented by dependencies (7) in algebraic or bitmap view 
are general representation of binary codes for all combina-
torial systems P(2, bi) that allows changing the system of 

binary codes using a single universal table of the data on the 
vector of the code D(x).

Thus, the studies of this work may become a component 
of the technology of designing electronic computing sys-
tems, because:

– they expand the apparatus of obtaining recurrent bina-
ry codes for their application in the information technology;

– they provide a possibility to control the selection of the 
code at the stage of designing a computing device;

– they help predict the impact of the implementation of 
the selected code in the solution of problems of the informa-
tion systems;

– they minimize hardware costs associated with the se-
lection of the system of binary code for the calculation.

Reduction of thesaurus of parallel adder of binary codes 
without inter digit carry

An instance P(2, bi) of the class P(2, n) is selected on 
a ring structure using original block bi of complete com-
binatorial system with repetition (Table 1). This means 
that the principle of setting up the system of binary codes 
with its code-beginning is within the range of complete 
combinatorial system with repetition (Table 1). Since the 

location of the principle of obtaining 
binary codes is defined, the thesaurus of 
parallel adder of binary codes without 
carry is necessary to rewrite (Table 19).

We see from Table 17 that the num-
ber of concepts of thesaurus of the adder 
of binary codes is less in comparison with 
the number of concepts of thesaurus of 
the adder of the Galois field codes, which, 
however, does not affect the quality of 
the construction of the adder of binary 
codes without carry and reliability of the 
computational results in this adder.

Table 19

Comparison of the thesaurus of the Galois field codes and 
the adder of binary codes

#
Thesaurus of the Galois field 

codes adder
Thesaurus of the adder of 

binary codes

1 Galois field combinatorial system

2 irreducible polynomial –

3 generating vector –

4 initial code fragment initial code

5 key key

6 recursion recursion

7 logic operation XOR, XAND logic operation XOR, XAND

The prospect of further review of the operation of summa-
tion of binary codes without carry is to use it in other digital 
technologies, in particular, in the methods of cryptography.

12. Conclusions

1. It was established that the properties of recursive 
method of the synthesis of binary codes allow focusing the 
principle of building codes in the range of complete combina-
torial system with repetition, which ensures reduction of the 
thesaurus of the parallel adder of binary codes without carry.

2. It was found that the system of binary codes, formed by 
means of any initial code of complete combinatorial system with 
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repetition, has a ring structure, which allows using any system 
of binary codes in the operation of adding codes without carry.

3. We discovered that the calculation of the signals of 
the sum in the scheme of a parallel adder of binary codes 
without carry is performed by the script of the algorithm of 
pairing. Thus, the complexity of the algorithm of calculation 
of the signals of the sum of a parallel adder of binary codes 
without carry is O(log n) and it is logarithmic – the time of 
algorithm realization increases by the logarithmic law with 
the increase in the digit capacity of numbers n.

4. It was established that the logic of the work of the 
adder of binary codes without carry corresponds to the 
computation protocol of the parallel adder without carry. A 
number of options of adding b of multi digit parallel adder of  
 binary codes without carry is 

n2 1

k 1

b k,
−

=

= ∑ where n is the digit 

capacity of a number.

5. It was established that the range of adding of numbers 
of the adder of binary codes without carry is:

xD+yD=<2n–2, 

where n is the digit capacity of a number.
6. It was established that the productivity of computing 

of signals of the sum by the parallel adder of binary codes 
without carry and by the parallel adder with a parallel way of 
carry CLA (Carry Look-ahead Adder) is approximately the 
same. Thus, the complexity of the algorithm of calculation 
of signals of the sum and the carry of the CLA adder is also 
subject to the logarithmic law. And since the adders of binary 
codes have no hardware costs for the carries between the 
digits, obvious is reduction in energy consumption, decrease 
in the heat release by a computing device (integrated circuit) 
based on such adders.
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