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Ipeonoscen memod cuema 6 xodax
Dubonauuu ¢ MUHUMANLHOU POPpMOU npeo-
cmaenenus u dana ezo mooenwv 6 euoe Hao-
pa Jozuneckux onepavuil, nPueoOAUUX K
Qubonanuuesomy cuemy. Ha smoii ocroge
paspaboman memoo onMUMAILHOZO CUHME-
3a cuemuuxoe Dubonawu ¢ MUHUMATLHOU
dopmoii npumenumenvHo K YCA0BUAM UX
pabomot. [lana ouyenxa nomexoycmouuueo-
cmu cuemuuxoe Dubonanwuu ¢ MUHUMATILHOU
dopmoii

Kniouesvte cnosa: ¢ubéonanuuesvie uuc-
aa, mMunumanvnas Qopma, cuemuuxu Du-
Oonauuu, nomexoycmouuusocmv, OvICMPo-
deticmeue

1. Introduction

On the agenda today, as well as earlier, there is a relevant
task of increasing the speed of performance and the level of
noise immunity of digital devices, which provide transfer,
processing and conversion of information. The efficiency of
their performance depends largely on the systems of coding,
selected for them, which are the base of their work, since
they, in particular, determine the structures of digital devic-
es and their characteristics.

Asarule, an increase in the noise immunity of digital de-
vices is accomplished based on the information redundancy,
including natural, embedded in the structures of the codes
they use. Noise immunity to digital devices can also be pro-
vided by noise-immune positional number systems, used for
their construction, due to availability of information redun-
dancy in them. They include such number system as bino-
mial or Fibonacci. The peculiarity of the latter is the binary
coding of their numbers. The noise-immune number systems
also include a number of the multivalued number systems,
such, for example, as factorial, which are implemented for
the formation of permutations [1]. These and other, similar
to them, noise-immune number systems are widely used for
the solutions of applied problems, in particular, combinato-
rial optimization. Their full classification is given in [2]. In
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contrast to the noise-immune systems, binary, decimal and
other, similar to them, usual number systems do not possess
information redundancy. But they have simple structure,
which simplifies their fulfillment of arithmetical and logical
operations. Especially distinguished by its simplicity is the
binary number system, which, due to it, is so wide-spread
today in the practice for developing digital devices and
systems.

In some cases, the number systems with information
redundancy, in addition to providing noise immunity to the
digital devices that use it, increase their performance speed
while solving a number of special problems. As a result,
there appears a possibility for the digital systems, which use
such devices, to achieve, in the same codes, a start-to-finish
control of information processing and transmission. Their
efficiency thus considerably increases both from the point of
view of the control of errors in the data processed by them,
and the speed of their processing. In this case, a required
amount of hardware expenses can be reduced, which, in its
turn, leads to the improved reliability of the systems. A use-
ful feature of digital devices, which function in the noise-im-
mune number systems, is also the fact that the redundancy
in them, necessary for detection of errors, is evenly distrib-
uted in the structures of their schemes, which gives them
homogeneity, and, therefore, technological efficiency of their




manufacturing. Furthermore, the control schemes of digital
devices in such number systems, as a rule, require minimum
quantity of hardware expenses for their realization, and the
digital devices themselves acquire increased reliability.

Among the noise-immune number systems, the Fibo-
nacci number systems, which work in Fibonacci codes,
which are the sets of the Fibonacci numbers, have in the
recent decades gained special importance, owing to their
simplicity. They use, for representations of numbers as the
weight coefficients, the Fibonacci numbers. Their theory
began active development from the beginning of the sixties
of the past century, after writing a paper on the Fibonacci
numbers [3]. The book “Fibonacci & Lucas Numbers, and
the Golden Section. Theory and Applications” was pub-
lished in 1989 [3]. It developed and expanded the ideas,
presented in the work [3], on the Lucas numbers and the
area of golden section and conducted their study. There
were other works on this topic, for example, the paper [5].
It thoroughly examined, for the first time, the minimal and
maximal form of representation of the Fibonacci codes. The
given and other similar papers laid the foundation for the
theory of the Fibonacci numbers.

In the seventies of the past century, based on these
books, the theory of the noise-immune codes of Fibonacci
was proposed, and the idea was put forward of developing
“the Fibonacci computers” based on them, partially realized
in the papers [6, 7]. Initially this idea attracted many sup-
porters; however, later on, in connection with the explosion
of computer technology based on the binary number system,
interest in the Fibonacci computers decreased, though, in
spite of this, it still exists.

Most likely, should the universal Fibonacci computers
appear, then this does not happen any time soon, while the
various existing Fibonacci digital devices, described, among
others, in the papers [6, 7], can be effectively utilized today.
The devices of digital Fibonacci calculation, the Fibonacci
pulse counters, are of special importance among them. Due
to their possibility of detecting errors, they are capable of
increasing their noise immunity. Furthermore, the Fibonac-
ci counters make it possible to speed up their performance
during calculation owing to the absence of carries between
the bits.

The Fibonacci counters can be effectively used also for
constructing coding and decoding devices that makes it pos-
sible to build on their basis noise-immune communication
networks in the Fibonacci codes. A start-to-finish control
is possible in them, both at transmitting information and
at its processing, which can considerably increase their effi-
ciency. Positive effect in this case is achieved due to the use
of the same codes both for the control of digital devices that
process information and for the control of communication
channels. This reduces hardware expenses, required for the
work of a network, and increases its performance speed and
reliability.

2. Literature review and problem statement

Counters are the most common devices of digital tech-
nology because not a single contemporary digital device is
possible without them, starting from the sensors of various
specialized devices and systems and ending with comput-
ers and their systems. However, binary counters in the
known schemes, for increasing their performance speed,

used those methods that required considerable hardware
expenses, which decreased reliability of their performance.
More to the point, the counters’ structures turned more
complex, which disrupted the homogeneity of their struc-
ture while decreasing their manufacturability. Thus, in the
patent [8], an attempt at increasing operating speed of the
counter required the increase in the hardware expenses,
which, in turn, decreased its reliability but raised the cost.
Sufficient measures to boost its noise immunity were not
undertaken either.

The article [9] proposes binary composite counters
with the selective carry (Carry-Select Counters), whose
performance speed is quite close in value to the counters
with parallel operation. However, the amount of the nec-
essary hardware expenses proved to be too large. There
were also practically no schemes, which protected the
counter from the noises, which, with an increase in speed,
tend to grow. Additional shortcoming of the counters,
given in the paper [9], is impossibility to read the data
immediately after the end of calculation, which compli-
cates compatibility of such computing devices with other
digital devices.

The articles [10, 11] describe the binary counters, the
high switching rate of which is reached due to realization of
the capacity to preset their subsequent states. This ability is
defined by the authors as “Pipeline Partitioning”. An essen-
tial drawback of such counters is a relatively large number of
logic elements that organize connections between the bits,
which leads to noticeable hardware expenses and increase in
the transfer time of count signals.

A characteristic shortcoming of all the devices described
above is the presence of carries, which slows their work,
and the capacity to control errors. These shortcomings are
successfully removed by the Fibonacci counters that use the
Fibonacci codes. They make it possible to optimally combine
hardware expenses, performance speed and noise immunity.
However, even here the results proved to be rather inefficient
because of the necessity of transfer from the minimal form to
the maximal form of representations of the Fibonacci num-
bers and back with the help of operations of convolutions
and deconvolutions, as this was proposed to carry out in the
papers [12—14]. But the evaluation of performance speed
and noise immunity of the proposed Fibonacci counters was
not performed up to the level in these articles. Although it is
obvious that their performance speed, because of the absence
of carries, is higher than that of the binary counters at the
same hardware expenses. They are also characterized, along
with the noise immunity, by increased performance reli-
ability. Therefore, they are promising for practical purposes
from this point of view. However, the presence of operations
of convolution and deconvolution in their work is also their
drawback, which decreases both the performance speed and
noise immunity.

That is why the task was set of the synthesis of high-
speed Fibonacci counters, which work only in the minimal
form and do not use operations of convolution and deconvo-
lution. Such a counter was for the first time synthesized in
[15]. But it was not optimal from the point of view of speed
performance, hardware expenses and noise immunity under
all possible conditions of its work. That is why the task was
set of the synthesis in connection with the specific condi-
tions of the work of Fibonacci counters with the optimum
structure in the minimal form. This particular problem is
being solved in this work.



3. The purpose and objectives of the study

The purpose of this work is to increase performance
speed and noise immunity of digital pulse counters.

To achieve the set goal, two problems are being solved:

— to develop a universal method of synthesis of the Fibo-
nacci counters, which work in the minimal form;

— to carry out assessment of the noise immunity of the
Fibonacci counters, synthesized by the proposed method.

The estimation of performance speed and hardware ex-
penses is solved for each structure of the Fibonacci counter
separately after its synthesis and, therefore, it is beyond the
scope of the stated purpose.

4. Materials and methods of studies of
the Fibonacci codes

Table 1 demonstrates an example of the Fibonacci code in
the minimal form, whose numbers emerge from the series of
the Fibonacci numbers 1, 2, 3, 5. They differ in the table from
each other by 1. The range of the Fibonacci numbers is equal
to the sum of the weights of the high-order and low-order bit
of the Fibonacci number, adjacent to it — 3+5=8.

By the Fibonacci codes we understood the sets of the
Fibonacci numbers, which used, as the weight coefficients of
their bits, the Fibonacci numbers, included in the Fibonacci
sequence — 0, 1,1, 2, 3, 5, 8, ..., F,,. Each number in it, start-
ing from the third one, is determined as the sum of the two
preceding numbers [7]. This condition corresponds to the
recurrent ratio:

Fn = Fn—l + Fn—2' (1)

However, at formation of the Fibonacci codes, only the
part of the Fibonacci sequence 1, 2, 3, 5, 8, ..., Fy, is usually
used. Zero in this case is excluded.

A non-negative integer Fibonacci number in the minimal
form is represented by the following numerical (numbering)
function [6]:

F

N=aF +a, F_ +..+aF+..+aF, )

n-1

Its abbreviated record takes the form: N=a a_,..a...a,
where a, € {0,1} is the binary digit of the i-th bit of the po-
sitional representation of the number (2); n is the code bit
capacity; F; is the weight of the i-th bit, which equals the
i-th Fibonacci number. For example, the Fibonacci number
is 10101=1-8+0-5+1-3+0-2+1-1=12.

From the onset of appearance of the Fibonacci codes,
two forms of their representation of the Fibonacci numbers,
included in them, were examined — minimal, which is also
called normal, and maximal. They seem to complement each
other because they make it possible to perform arithmetic
operations, passing, with the aid of special operations of
convolutions and deconvolutions, from the minimal form
to the maximal form and back. However, this approach of
performing arithmetic operations caused certain inconve-
niences while constructing the Fibonacci counters, due to
the increase in the complexity of their design and decrease
in the speed of performance. That is why the idea came up
to use, for synthesis of the counters, only minimal form of
representation of the Fibonacci codes without their transfer
to the maximal form and back.

The minimal form of the representation of the Fibonacci
codes is main for them. That is why, at first, the Fibonacci
numbers were represented in this form [3]. The Fibonacci
numbers were used as the weights of digits in their bits.

Table 1
Fibonacci code in the minimal form

Bit number 4 3 2
Bit weight 5 3 2 1
Digit of the i-th bit ay a3 ay ay
0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 1 0 0
4 0 1 0 1
5 1 0 0 0
6 1 0 0 1
7 1 0 1 0

The minimal form of the Fibonacci code takes the form
100, and the maximal — 011. It is possible to pass from the
minimal form of the Fibonacci code to its maximal form
and back after performing operations of convolution and
deconvolution. They take the form, respectively, — 100011
and 011—-100. This means that the Fibonacci number in the
minimal form 100 can be represented as 011 in the maximal
form. The quantitative equivalent of the Fibonacci number
in the maximal form 011 coincides with the quantitative
equivalent of the Fibonacci number 100 in the minimal form
and back. For example, if the weights of the low-order two
digits of the number in the maximal form, where there are
ones, are equal to 3 and 5, then their sum will equal 8, which
corresponds to the weight 1 of the corresponding number
in the minimal form and, therefore, the Fibonacci numbers
011 and 100 by the weight equivalent are equal to each
other 011=100=8. It should be noted that convolutions and
deconvolutions simplify fulfillment of arithmetic operations
and that is why they are widely used for constructing the
Fibonacci arithmetic, composing its basis. Its special case,
the Fibonacci calculation, is widely used for constructing the
Fibonacci counters [6, 7].

5. Main properties of the Fibonacci codes in
the minimal form

Among many known properties of the Fibonacci
codes in the minimal form, we will highlight the fol-
lowing properties, most frequently used in practical
problems [6, 7].

1. The Fibonacci number, in which ones are in all
odd bits 1, 3,..., n, represents the largest possible number
among all Fibonacci numbers of odd length n and equals
F,, —1. Such a five-digit Fibonacci number is the number
10101=8+0+3+0+1=12.

2. The Fibonacci number, in which ones are in all even
bits 1, 2, ..., n, represents the largest number among the Fi-
bonacci numbers of even length n and equals F,_, —1. Thus,
the Fibonacci four-digit number 1010=5+0+2+0=7 will be
maximal among all Fibonacci numbers of the same length.



3. The number (range) of the Fibonacci numbers of
length n equals P=F,,,=F +F_,.

For example, a quantity of the Fibonacci numbers of
length 5 in the Fibonacci code is equal to the sum of the
weights of the elder 5th and adjacent to it 4th low-order
bits — 8+5=13. At the length of the Fibonacci numbers equal
to 4 digits, their number in the Fibonacci code equals 5+3=8.
All of them are represented in Table 1.

4. In the minimal form of the Fibonacci code, appearance
of two ones in a row is forbidden.

This particular property makes the Fibonacci num-
bers in the minimal form noise-immune. We will note that
Table 1 does not contain any Fibonacci number, in which
two ones are next to each other.

Unique property, poorly explored as yet, of the Fibonacci
codes is the fact that fulfillment of arithmetic operations
within them does not require the carries between the bits of
their numbers, which indicates potential possibility of con-
structing high-speed schemes of the Fibonacci calculation.

6. Study of the noise immunity of the Fibonacci counters
with the minimal form of representation

A shortcoming in the Fibonacci numbers in the minimal
form is the fact that they reveal only erroneous transfers
of 0 to 1, and the transfers of 1 to 0 are not revealed. But
the quantity of zeros in the Fibonacci numbers exceeds
the quantity of ones by times, and that is why, even in the
symmetrical communication channels, erroneous transfers
of zeros to ones will predominate over those of ones to zeros.
This enables us to speak about acceptable immunity of the
Fibonacci code in the minimal form from the errors. How-
ever, in the real digital schemes, the errors are asymmetrical
and that is why such a coding of the Fibonacci numbers with
the minimal form can reveal the majority of their errors.
This means that the Fibonacci codes by their structure are
adapted for detecting errors in digital schemes, which by
their nature model asymmetrical communication channels.

Errors in the Fibonacci numbers, as in any other codes,
can be detected and corrected only when their transfer oc-
curs to the forbidden combinations, and the more forbidden
combinations in the code, the higher its noise immunity
will be. That is why an important stage in the study of any
noise-immune code is determining the number of permitted
and forbidden code combinations in it. As was indicated
above, for the Fibonacci numbers with the minimal form,
appearance of two and more 1 next to each other is forbidden,
which is equivalent to the ban of appearance of at least one
0 between the ones next to each other in the number [6, 7].
The violation of this ban testifies to the presence of errors
in the Fibonacci numbers. That is why such numbers relate
to the forbidden code combinations, whose number together
with the permitted Fibonacci numbers equals 2", Since the
appearance of several, standing next to each other, ones usu-
ally occurs in the error packets, then the Fibonacci code is
capable to detect them first of all. But single errors are also
easily detected with its aid.

For the example of the Fibonacci code, examined above
in Table 1, which consists of 8 permitted 4-digit Fibonacci
numbers, there will be 8 forbidden code combinations. For
example, such combinations are 0011 and 0110. The number
of forbidden combinations is determined by the difference
2"—P=2"—(F, +F_,). Each of them contains at least 2 ones

next to each other. That is why appearance of any of these
numbers is the error. The larger the number of forbidden
combinations relative to the number of those permitted, the
higher is the capacity to reveal errors in the code.

For estimation of the efficiency of application of the Fi-
bonacci numbers, it is at first necessary to solve the task of
determining the share of the detected errors, and then the
share of the errors not detected. In the first case, this will be
the ratio of the number of permitted combinations to their
total number, and in the second — ratio of forbidden combi-
nations to this number. These shares are the probabilities of
appearance of the forbidden and permitted combinations at
equal probability of appearance of all possible combinations.
They characterize directly the codes without taking into ac-
count parameters of the communication channels, thus rep-
resenting universal characteristics of these particular codes.

The share of the detected errors is determined by the
known formula [6]:

P
D=1-—, 3
N ©)

where P is the number of permitted code combinations — the
Fibonacci numbers; N is the number of all possible combina-
tions of the assigned length n.

After substituting the values of magnitude P into the
formula (3) and accepting N=2", it is possible to obtain the
share of the detected errors in the Fibonacci numbers for
each value n=1, 2, ...

p=1-fath ;F1 : %)

It is obvious that for n=1 the forbidden combinations
are absent because the Fibonacci code degenerates into two
permitted code combinations — 0 and 1.

Fig. 1 presents, in the form of a solid line, the chart that
shows the share of the detected errors depending on the bit
capacity n=5 of the Fibonacci numbers. A dotted line shows
the graph, which reflects the share of the errors, not detect-
ed, for the same bit capacity of the Fibonacci numbers n=5.
It is obvious that the share of the detected and the share of
those not detected errors give 1 in the sum, forming a full
group of probabilities.
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Fig. 1. Graphs of dependency of the share of detected
and those not detected errors on the bit capacity n of the
Fibonacci codes

It follows from the graphs in Fig. 1 that the share of the
detected errors D in the Fibonacci code grows with an



increase in n and it seeks to limit to one while the share of
the errors Z, not detected, in this case is approaching zero.
The conclusion follows that the larger the length of the Fi-
bonacci numbers, the higher is their capacity to detect the
errors. That is why the Fibonacci counters with the larger
bit capacity are more efficient from the point of view of noise
immunity in comparison to the counters with small bit ca-
pacity. This is one of the reasons why it is expedient to design
the multidigit Fibonacci counters rather than compile them
from the counters with small bit capacity.

7. Logical model of Fibonacci counters with
the minimal form of the representation

In the Fibonacci counters with the minimal form of
representation, the capacity of significant increase in perfor-
mance speed and natural noise immunity, inherent to them,
are combined. The increase in performance speed, as already
mentioned earlier, is the result of absence of the carries of
ones at calculation. This is explained by the specific charac-
ter of Fibonacci calculation and by the absence of operations
of convolutions and deconvolutions. Noise immunity is ex-
plained by the availability of forbidden states in the Fibonac-
ci counters. Two or more ones next to each other correspond
to them in the Fibonacci numbers.

The attempt to exclude from the operations of calcu-
lation the carry of operations of convolutions and decon-
volutions led in its time to the method of the Fibonacci
calculation with the minimal form of representation of the
Fibonacci numbers. The idea of this method is the presence
of two zeros in the Fibonacci number, represented in the
minimal form. They are located at the look at the digits of
the Fibonacci number from right to left. After this, the tran-
sition is performed of the first of zeros that is on the right, to
1. Simultaneously occurring is the transition of the values of
all low-order digits, which are before this zero, to zero. The
Fibonacci number, next on order, is obtained.

For example, if the 8-digit Fibonacci number is assigned
in the minimal (normal) form 01000101 with the weights
1, 2, 3, 5, 8, 13, 21, 34, equal to 25, then the next in order
there will be number 01001000, equal to 21+5=26. It is
received like this because, with the sequential survey of the
digits of the initial number from the right, starting from the
4th bit, three zeros, next to each other, are observed. This is
the signal that zero in 4 bit must be converted to 1 while all
low-order digits, preceding it, including the first bit, must
be converted to 0. By following the given logic, it is obvious
that the next number after number 01001000 will be num-
ber 01001001 equal to 27. Number 28, obviously, will equal
01001010. By analogy, all the remaining Fibonacci numbers
can be obtained, whose number for the present case equals
21+34=>55. Appearance of two and more ones in the normal
Fibonacci number, for example, 01100101 will be recorded
as error.

This method of the Fibonacci calculation in the minimal
form makes it possible to simplify realization of the Fibonac-
ci counters both in the hardware and program form. Howev-
er, it does not by itself provide another possibility to obtain
different structures of the Fibonacci counters. For their syn-
thesis, it was necessary to also develop logical model of the
method of the calculation of the Fibonacci numbers in the
minimal form. Subsequently, based on it, it was possible to
obtain a universal method of the optimal synthesis of various

variants of the Fibonacci counters with the minimal form for
any bit capacity n.

Such a logical model of the Fibonacci calculation in the
minimal form takes the following form:

1.In the given Fibonacci number F=x,, X,,.., XX,
when calculating from right to left, 2 adjacent bits are locat-
ed, the sum of which x;vx; =0, j=1,2,..n

2. If one will not find in the Fibonacci number the sum
X;vx, =0, then the calculation finishes.

3. If this sum is found, then 1 is included in the X; bit and
all the bits, which are located to the right of it, are set to 0.

4. 1f, in the obtained code, the composition X AX =1,
then the received number is erroneous. Stop.

5.If the composition x;Ax, ;=0 for all j, then the re-
ceived Fibonacci number is correct.

It is obvious that this model can be used for synthesis of
the Fibonacci counters both in the schematic and program
variant.

8. Method of synthesis of the Fibonacci counters with
the minimal form of representation

The logical model of the Fibonacci calculation in the
minimal form shows that the corresponding Fibonacci
counters must contain the following blocks: Register, Block
of analysis of the register outputs, Block of register control,
Block of setting the triggers to zero, Block of dispositions,
Block of errors control. The indicated blocks make possible
to reduce synthesis of the Fibonacci counters in the minimal
form to two stages — synthesis of internal structures of the
indicated blocks — serial, parallel, serial-to-parallel, and syn-
thesis of particular system connections between the blocks
of the counter.

The set-up and functions of each block are the following:

1. The register contains n memory elements (triggers)
and is intended for storing the Fibonacci numbers. Each
trigger has capability to forbid the change in the state of the
trigger of high-order bit next in order to it. That is why, in
the zero state of the counter, only the memory element of the
first bit can be set to 1. This means that after the state 00000
the counter can transfer only to the state 00001.

2. The block of analysis contains n—1 of two-input
schemes AND, each of which corresponds to two adjacent
triggers. They issue single signals only in the case when the
triggers, corresponding to them, are in the zero state. In the
remaining cases, they issue zero signals. That is why, for
example, in the state of the 5-bit Fibonacci counter of 10101,
there will be signal 0 in all 4 schemes AND, which indicates
the end of calculation.

3. The block of register control consists of n of the 4-in-
put schemes AND, the output of each of which is connected
to the input of setting the trigger to a single state. One of
the inputs of each scheme AND is connected to the input
of clock pulses. The remaining three inputs are controlling,
forbidding or permitting setting the corresponding triggers
to a single state and discarding in this case all memory ele-
ments of the low-order bits to a zero state. Thus, if there is
the Fibonacci number 01001010, then the signal, delivered
from the 5th scheme AND, will set the corresponding trigger
to 1, and all 4 triggers of low-order bits — to 0. The number
will be as a result obtained 01010000.

4. The block of setting the triggers to zero contains n—1
of elements OR. The output of each of them is connected to



the inputs of setting to zero of the corresponding trigger. The
number of inputs of schemes AND, depending on the struc-
ture of the counter, can take the value from 2 to n. The inputs
of the OR schemes are connected to the appropriate outputs
of the block of register control, from their AND schemes.

5. The block of dispositions contains n—1 schemes AND
with inverse inputs. The number of inputs of each of them,
depending on the structure of the counter, is within the
range from 2 to n. Signals from the outputs of AND schemes
possess a capacity, through the appropriate AND scheme of
the control block and further OR scheme of block of setting
to one, to set into initial state all memory elements, preced-
ing them.

In the synthesis of counters with the minimal and max-
imal performance speed, the number of inputs for all AND
schemes in the first case will equal 2, and in the second —
consistently growing to 2, 3 and to n.

6. The block of errors control contains n—1 of two-input
AND schemes, each of which, with the exception of the first
and n—1, is connected by the second input to the first input
of another one and direct output of the corresponding trig-
ger of the register. The first and second input, in line with the
first and n—1 OR schemes of the control block, are connected
to direct outputs of the first and the n-th the trigger of the
register. The outputs of all AND schemes are connected to
the OR scheme, which indicates presence of error in the
counter. Signals 1 at the outputs of separate AND schemes of
control block indicate two bits of the counter, corresponding
to it, in one of which the error occurred.

This method of synthesis was verified in the synthesis
of the counter [15]. Its workability was checked and tested
with the aid of computer simulation. The result was positive.
The counter confidently functioned in all verifying modes,
it demonstrated high speed operation and found both the
single errors in the form of transfers 0 to 1 and the packets
of similar errors.

By varying connections of the blocks of the Fibonacci
counter in different ways, and their elements inside the
blocks, it is possible to obtain their different structures.
Each of them possesses its own value of performance speed,
noise immunity and hardware expenses. From this array
of structures, it is possible to select the structure, which
will optimally correspond to the initial requirements to the
counter. As a result, it will be possible to produce the optimal
synthesis of the Fibonacci counters.

9. Discussion of the results of the study of noise immunity
of the Fibonacci codes

The results obtained in the work show that the Fibonacci
codes with the minimal form of representation of numbers, in
comparison with the usual binary counters, are capable, with
high probability, of revealing the errors in their performance
in the form of transfers 0 to 1. In comparison to the counters

with detection of errors, they require less hardware expenses
for their realization and display higher performance speed.
That is why the Fibonacci counters with the minimal form
are promising for constructing high speed noise-immune
pulse counters.

The evaluation of the noise immunity of the Fibonacci
codes in the minimal form, used in the Fibonacci counters,
demonstrates good noise immunity of the counters even at
small bit capacity. The share of the errors, detected in the Fi-
bonacci codes, increases with the increase in the bit capacity
of their combinations. Especially efficient are such codes in
the systems with asymmetric nature of appearance of errors
because errors in the Fibonacci codes are revealed only at
transfers of 0 to 1.

Taking into account that the Fibonacci codes by their
nature are capable of detecting errors in the Fibonacci
counters and simultaneously in the communication chan-
nels, it is possible to apply them in the systems, which
process and transmit information, realizing, in so doing,
their start-to-finish control. Thus, the use of the high speed
noise-immune Fibonacci counters with the minimal form in
the systems of collection and transmission of information
increases considerably the authenticity of performance of the
information transmission system and simplifies its structure.

10. Conclusions

1. The characteristic feature of the method of synthesis
of the high speed noise-immune Fibonacci counters with
the minimal form of representation is the possibility of their
optimal synthesis, based on logical model. Logical model is a
set of logical operations, which ultimately lead to the struc-
ture of a synthesized counter with the set parameters by
performance speed, noise immunity and hardware expenses.
The proposed method differs from the known methods by
the possibility of synthesis of the optimal structure of the
Fibonacci counter. Especially important is the fact that,
among the Fibonacci counters synthesized with the aid of
this method, there is a ultra-high-speed counter, which has
minimal signal delay, not depending on the bit capacity of
the counter.

2. The performed evaluation of noise immunity of the
Fibonacci counters with the minimal form showed their
high noise immunity for asymmetric errors, which are most
probable in the digital devices in general, and the Fibonacci
counters in particular. With an increase in the bit capacity
of the Fibonacci counters, the probability of detecting errors
in them considerably increases. That is why it is expedient to
use in practice multibit counters, rather than compile them
from the counters with a small number of bits. It is especially
important for the high speed and ultra-high-speed Fibonacci
counter, for which the probability of occurrence of errors,
as a result of the increase in the switching rates of their ele-
ments, considerably increases.
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1. Introduction in the accuracy of classification that is understood in the
sense of minimization of the share of incorrect classifica-

Solving the problems of pattern recognition, which  tions of objects. When such problems are solved for face
appear in many applications, requires, mainly, an increase  recognition [1, 2], identification of objects by their text,




