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1. Introduction

Input data uncertainty is one of the key factors in com-
plex natural systems modeling. These include ecological,
social, economic, technical systems of various nature. Con-
structing a single analytic expression that would mathemati-
cally describe such a system is a highly complicated task, and
it is only possible to make assumptions about the way the
system operates based on an experimental data set.

In [1] a number of UN-factors are described, that have a
defining impact on the experimental data set quality, includ-
ing measurements imprecision, lack of conditions for direct
observations of the object, incompleteness and ambiguity
of the knowledge related to the subject area and the task at
hand, unaccounted for (hidden) parameters impact, lack of

expert knowledge about the subject area or inability to for-
malize them, as well as uncertainty caused by input feature
space dimensionality (redundancy and noise) [1, 2].

All these factors are inherent in natural systems and
processes in one way or another. As an example of modeling
a system of this class, later in this paper we show how the
condition of an artesian well can be evaluated at any given
time from the beginning of hydrogeological exploration
up to its full completion. This task is characterized by
difficulties in accessing experimental data, since obtaining
input data necessary for operation of any given model re-
quires significant effort. It is therefore to be expected, that
geological exploration which precedes putting an artesian
well into operation lasts ranging from 6 months and up to
several years [3].




Three stages can be defined within the flow of hydro-
geological exploration (HGE): preliminary exploration, de-
tailed exploration, and operational exploration [3, 4]. One of
the characteristic features of the artesian well as an object of
modeling is uncertainty, more specifically gaps in the input
data vector characterizing it at any given moment in time
until the full completion of all three research stages. This
determines the necessity of developing mathematical models
and technologies that would be able to provide results on
early stages of work with the system, when the researcher
does not possess the full data vector. Such models would
allow to evaluate the prospects of further work with the
system on early stages, and detect cases, when further work
presents certain challenges. Based on this information ad-
ditional research may be conducted, or a decision taken to
terminate the operation altogether, that would allow to save
physical and human resources.

2. Literature review and problem statement

Statistical models, which are successfully used for anal-
ysis of complex systems of various nature under conditions
of input data certainty, appear inefficient on uncertain data.
Applying statistical models on relatively small amounts of
experimental data is especially dangerous, as the distribu-
tion laws obtained from them may be unstable [5]. Further-
more, statistical models and methods do not (fully) account
for the expert knowledge of the area.

Artificial intelligence technologies such as classification
and cluster analysis show good results on multi-dimension-
al data [6-9]; they are successfully applied for extracting
hidden patterns and internal correlations within a data set
(6, 10-12].

Techniques based on interval fuzzy sets allow to build
mathematical models of complex systems and processes,
which are capable of handling input data that contains gaps
[13]. Tt is important that they do not impose any limitations
in terms of model complexity, as it is only the response of the
system to the given input data vector that is being modeled,
without having to build a physical model of any internal
processes occurring within the system, or causal relation-
ships existing therein [6]. As of today, such models have wide
application in medical diagnostics [13], pattern recognition
[14, 15], for multimedia traffic modeling and classification
[16], portfolio optimization [17], forecasting of time series
[18, 19] etc. Artesian well prospects evaluation is another
application for which the existing decision-making models
can be adapted, and new ones proposed.

Fuzzy and neuro-fuzzy methods have long been applied
for water quality evaluation: fuzzy inference based decision
support methods and systems are presented in [20-22];
in [23] a method of fuzzy water quality evaluation for
multiple monitoring points is proposed. Fuzzy clustering
methods also yield positive results in this application
[24, 25]. Working with groundwater is complicated due to
their inaccessibility for direct examination. On the prima-
ry stages of hydrogeological exploration it is technically
possible to collect only indirect knowledge. Information
about system status is available only in individual points
of the deposit; information about other areas is acquired by
extrapolating the actual point data onto areas, for which no
actual information is available [3]. That is why the modern
groundwater quality evaluation methods and technologies

[26-28] are in general no different from the methods used
for surface water analysis. They too require direct access
to aquifers, capabilities for performing pumping tests and
research pumpings, unhindered test water sample obtain-
ment, which means full completion of the HGE. Of all
factors impacting groundwater quality and drinking water
mining feasibility, the most attention is given to anthro-
pogenic pollution [29, 30] and investigating aquifers’ vul-
nerability to harmful substance present in the air, soil and
surface waters [31, 32].

From this point of view models based on type-1 fuzzy
sets have a significant limitation: they cannot directly
process incomplete/uncertain input data [13]. The existing
fuzzy inference technique does not allow to determine the
output value in case the input vector is incomplete. Inter-
val type-2 fuzzy models allow to account for and to model
different types of uncertainties, including, in some cases,
uncertainty originating from missing values [33]. Therefore
in such conditions it is advisable to apply mathematical tools
of type-2 fuzzy sets.

As a rule, in order to study behaviors of complex sys-
tems a single model is synthesized, and also a single crite-
rion to measure discrepancies between the model output
and the observations data. This approach only works when
there is a functional relation between inputs and outputs
of the system, and when observations are conducted with
perfect precision. In case at least one of these conditions is
not satisfied, it is recommended to build a system of models
and conformity criteria [34, 35]. Natural systems and pro-
cesses are an example of these due to low accessibility of
observations data and no way to guarantee the precision of
quantitative parameters measurements. Herewith, accord-
ing to [34], the more complex the system and the less the
certainty and accessibility of observations data, the more
diverse the models selected by different criteria will be.
This factor fully applies to natural systems as well. Based
on all of the above, we propose to not restrict ourselves to
using the capabilities of fuzzy set mathematics only, but
to develop an approach based on a system of models, that
allows for utilizing other decision making methods and
technologies.

The given problem can be formulated as follows. Consid-
er an experimental data set (X, Y):

1 1

Xi X2 m y1
2 2 2

X X y

_ 1 2 m 2
X - ’ Y - ’

n n n

X1 X2 Xm Y.

where X'={xi,..,x.} are results of examining a system W'
against parameters p;...p,. For each vector X' the value of the
linguistic variable Y is known, and is the final conclusion for
the system W' assigned by an expert (a diagnosis, a quality
class, operability, — depending on the application).

For any given system W* defined by the input vector

X ={x},..xp}, X ¢X; X, X, €D

find the value of the linguistic variable Y. Considering the
challenges described above, the problem requires synthe-
sizing a system of models capable of fuzzy inference, taking
expert knowledge into account, and including additional
models and methods into the decision making process.



3. Research goal and objectives

The goal of the research is expanding the capabilities
of existing decision making models and methods operating
under conditions of input data uncertainty. We propose to
build a system of models that would combine the advantages
of an interval fuzzy inference based decision support system,
as well as Data Mining technologies.

In order to reach the goal set for the present research,
following objectives were to be achieved:

— develop a data classification model fit for operating on
an uncertain input vector;

— propose ways of accounting for expert knowledge
during decision making;

— propose an aggregated criterion that would give a
generalized interval estimation of the output variable value
based on multiple models;

— propose an alternative decision making model based on
Data Mining technologies.

4. Methods and tools for modeling a natural system state
under the conditions of input data uncertainty

The general look of the aggregated model of the decision
making process under the conditions of uncertainty is shown
in Fig. 1.

Input vector
(may contain gaps)
X={X1, ..., Xm}

Type-2 FLS

Informative feature

detection ,
Alternative Y
model 1
Alternative ™ . intermediate
model m result

Fig. 1. Aggregated Decision Making Model

The source experimental data vector that may contain
gaps is applied to the input of an interval type-2 fuzzy system
unmodified, and also after going through an informative fea-
ture detection procedure. This procedure may be performed
by one or more experts in the subject area. In case when
more than one expert is present, every one of them generates
one’s own feature set, and as a result, a separate model. The
interval output of the fuzzy logic system on the full vector is
subsequently united with the outputs of the models resulting
from uninformative features elimination. The union is per-
formed according to the aggregating criterion Y.

The proposed system of models supports integration
with one or more alternative models based on other decision
making technologies or formal procedures that already exist
in the area for solving the given problem. A decision making

procedure based on a clustering method will be shown fur-
ther as an example of such a model.

In case the interval output of an alternative model has
the same dimensionality and qualitative nature as the fuzzy
logic system output intervals, it is also taken into account
when calculating an aggregated interval with the criterion
Y. Otherwise the alternative models’ outputs are present-
ed to the user as separate intervals regardless of the main
output.

4. 1. Interval type-2 fuzzy logic system for decision
making

In order to solve the formulated problem, a classifier
fuzzy logic system was built. An input vector is a set of sys-
tem parameters’ values X' ={x}, .., x. }. The knowledge base
is formed by the known (Xj, Y;) pairs, where an input vector
is mapped to a linguistic estimation of the output variable Y
value given by an expert. This way every input vector gen-
erates one rule. Rules antecedents are created by replacing
a value X'J with the respective fuzzy term Al ; consequents
are terms of the linguistic variable y, assigned by an expert
for the vector X:

R':IF x, eAfK1 A
Ax, €Al A..AX, €Al THENyel! e{L,..L,},
where x; are the input variables, y is the output variable,

L,e{L,..L}

are term sets of the output variable. The term sets of the
input and output variables are defined with Gaussian mem-
bership functions

2
x—b!

Given the (X, Y) data set, as well as the knowledge base
synthesized from the experimental data, a type-1 fuzzy logic
system with a crisp output Y €[0;10] is built. If necessary,
membership functions parameters optimization is performed
in order to improve the adequacy of reflecting the learning
data by the model. After that the resulting type-1 mem-
bership functions are transformed into type-2 membership
functions with uncertain means (Fig. 2).

ux)=c'
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6.5 6.8 7.2 7.8
pH Level

Fig. 2. An Example of an Interval Membership Function with
an Uncertain Mean

Membership functions intervals bounds expansion is
performed until the following condition is satisfied:

vx, € X F(x,,P®)=F(x,,P"),
where P® are initial membership functions parameters,

PO ={u, k,..u, k}, k=k=0,001,



F(x,,P®) is the systems output without defuzzification —
the ID of the term with the highest coverage by the resulting
membership function.

Fuzzy inference is performed according to the algorithm
by Karnik and Mendel [36]. Interval membership grades of
every rule are calculated as minimums of all antecedents:

(2)AS (2)A§?

" (x))) s min(i

j J

Mg, =| min(p (x)

In order to find the left and right bounds of the output
variable interval [yj; y;], an output type-2 fuzzy set is built
based on the calculated rules membership grades and rules’
consequents interval values. The output value interval is
obtained from the fuzzy set type reduction procedure. For
the right interval bound:

1. Calculate
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4.1f y”#y,, go to step 5, otherwise vy,
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=y”, back to step 2.

For the left bound of the interval:
1. Calculate
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3. y 2 fl 1+21 =L+ 17
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4.1f y'#y,, go to step 5, otherwise y,
step 6.

5. yi=y7, back to step 2.

The width of the resulting interval [yy; y;] characterizes
the degree of uncertainty associated with the decision taken.

’YI Yi-

=y; and go to

4. 2. Models with input feature set dimensionality
reduction

Experimental research shows, that the interval fuzzy
classifier shown above does not always yield the expected
result. A subset of modeling problems that deal with sys-
tems of unformalizable nature is comprised by problems
with a significant number of input parameters. Such prob-
lems contain uncertainty related to the input feature space
dimensionality. Some of its features might be redundant,
others are not informative enough and act as sources of noise
and anomalies in the experimental data set. In cases when
it is almost impossible for a system to operate on the entire
input feature set, we propose to reduce the dimensionality of

the problem by eliminating the part of features that do not
cause any apparent impact on the system’s outcome. In the
generic system of models presented in Fig.1 this function is
performed by experts 1, ..., n, every one of whom offers one’s
own combination of informative features. Input variables
eliminated by the experts are excluded from the input vec-
tor, and also from those rules of the knowledge base, in the
antecedents of which they are present.

Involving several or even one expert does not always
appear possible. A method described in [37] may be used to
perform the role of an expert. It allows to account for both
theoretical knowledge of an expert, and the quantitative
data accumulated from real objects observations.

4. 3. A fuzzy clustering method with interval member-
ship grades for decision making

Apart from the interval fuzzy set based decision making
technique, which is the main part of the system of models
discussed in this paper, an alternative model based on the
modified PCM clustering method with interval outputs [11]
is proposed. In the cluster analysis terminology the problem
defined earlier may be reformulated as follows.

Consider an experimental data set X:

1 1 1

X1 X2 m
2 2 2
X X X
_ 1 2 m
X= ;
n n n
Xy Xy o X

where X'={xl,..,x" } are results of examining a system W'
against parameters pi...py. In a general case the conclusion as
to whether the system W' belongs to one or more classes ac-
cording to the evaluated parameter (quality, diagnosis etc.)
for each of the vectors X' is unknown, but it is known that
the objects x!, ..., x" are distributed to form compact clusters
in the input feature space p...pp.

The requirement is to break the set X down into ¢
clusters and calculate the membership grades for every of
the c clusters for a given system W?* described by an input
vector X*={x{,..,x,}, X*eX. The set X must satisfy the
condition of being representative of the feature vectors
universal set, i. e. the set X must contain representatives
of all ¢ classes.

The decision making process involves dividing the set
comprised from the experimental data set X and the evaluat-
ed system’s parameter vector X*into cluster according to the
method discussed in [11]. The final decision is taken based
on the membership grades of the point defined by the vector
X% in every one of the ¢ resulting clusters.

4. 4. An aggregated criterion

The end-to-end operation flow of the described system of
models can be presented as the following sequence of actions.

1. Select all parameters, the values of which are known at
the given moment.

2. Eliminate all other (unknown) parameters from rules
antecedents.

3. Apply the vector comprised by known values to the
input of the type-2 fuzzy system: X — Y.

4. Dismiss (in any available way) the features that are
uninformative and not informative enough and apply the
resulting vector to the input of the type-2 fuzzy logic system,
which results in the model X! —Y,.



5. Repeat step 4 for all available informative feature de-
tection methods.

6. (optional) Obtain intermediate results according to
alternative models 1..m.

7. Obtain the aggregated result of the main model ac-
cording to the rule

YA =?ﬁ111 ﬂ(oi)

i=1

5. Modeling results. Artesian well condition evaluation

5. 1. Interval fuzzy clustering for artesian well condi-
tion evaluation

The interval clustering method was applied to the tech-
nological problem of expert evaluation of an artesian well
condition. An individual clustering object is a set of

The learning data set was divided into clusters accord-
ing to method [11]. The number of clusters is considered
predefined, ¢=3.

Membership grades for all well research samples from
the learning set to every one of the clusters were calculated.
The test data set consists of 10 samples, which do not form
a subset of the learning data set. The membership grades
calculation results for test data set samples to three clus-
ters are shown in Table 3. Analyzing locations of cluster
centers and the contents of clusters in terms of the “well
perspective” concept allows to assign perspective values
to clusters: cluster 1 — high, cluster 2 — sufficient, clus-
ter 3 — insufficient.

In Table 3 and further on erroneous outputs of the sys-
tem, i.e. those which do not match the expert’s conclusion on
the well, are highlighted with color.

parameters values X' ={x},..,x'} of an artesian well; Table 3
the parameters include those describing the distinctive Test data set samples membership grades

features of geological composition, tectonic, climatic

and hydrogeological conditions, data acquired by ex- Cluster 1 Cluster 2 Cluster3 | pesult/ y
amining cher wells operating in the area adjacent to  |Ne| | ¢ | g ght | Left |Right| Left | Right | Interval ES:IIL (:tti(sm
the deposit, as well as results of the research conducted Bound | Bound | Bound | Bound | Bound | Bound|  Width

directly inside the well: geophysical research data, -

pumping test and research pumping results, regu- |1 0,165 | 0,178 | 0,618 | 0,918 | 0,249 | 0,491 1‘“““01‘3 Insufficient
lar hydrogeological observations, and parameters that clent/0
characterize the groundwater quality. Cluster analysis - —

is performed in the well feature set xi, .. xg;. Some ex- |4 [0,722 ] 099 [ 0029 ] 0326 0,053 0,352 [High/0,27| Insufficient
amples of the clustering features are shown in Table 1.

Table 1
Hydrogeological research parameters
Variable Values | Research
. |Parameter name . Term Sets
denotation domain| stage No
Distance to hu- {L - low,
X1 man habitation, | 0-50 1 M — medium,
km H - high}
Distance to {L - low,
X2 interstate high- | 0-50 1 M — medium,
ways, km H — high}
Hydrogeolog- {A — category A,
ical conditions B — category B,
X84 by degree of | 0-10 3 C1 — category C1,
knowledge C2 — category C2,
availability P — category P}

A learning data set was compiled based on the archive
research data of groundwater deposit wells located on the
Right-Bank Geological Expedition territory. An input vec-
tor containing all well parameters x;—xg4 is mapped to a
conclusion of an expert in hydrogeology as to its fitness for
drinking water production for the period of the following
5 years. The learning data set consists of 20 samples, some of
the samples are shown in Table 2.

5. 2. Type-1 fuzzy set based model

A type-1 fuzzy set based model is constructed as an
intermediate stage for creating a type-2 FLS. An input
vector consists of parameter values xy, ... xg4. The knowl-
edge base is created based on the experimental data from
previous artesian wells explorations (Table 2). The data
were processed by mapping every value from Table 2 a
fuzzy variable term set from Table 1. A fragment of the
resulting formalized knowledge base is given in Table 4.

On the full input data vector the system operation out-
come matches the conclusion of an expert in hydrogeology in
20 cases out of 20 for the learning data set, and in 8 cases out
of 10 on the test data set.

Let us model the type-1 system operation in case of
uncertain input data. For this purpose Table 1 contains
stages of the hydrogeological research on which values
of respective parameters become known. The division
into stages is relative and exists only for the sake of
demonstration; in a generic case the requirement is for
the system to produce results at any given moment of
time between the beginning and the full completion of
hydrogeological exploration. Values of the parameters
that become available on a later stage are not taken into
account on the current one. Columns corresponding to
the unknown variables are also excluded from knowledge
base rule antecedents. The third

Table 2 . .
stage is equivalent to the complete
Well examination data (learning set) certainty of all parameters.
Variable| 1 [ 2] 3 [4]5]6[7]8]9fto]t1]12]13]14[15[16]17[18]19]20 Table 5 shows a partial result of
< |15]3 | 12 [22[18[15 152637 (35|27 | 4 | 4850|5030 25|22[39]31| the system’s operation on the three
v |43 |12]125]25] 4 |11]32] 2 | 5] 2 [10|3 | 3 [08]45] 1 [40|14|15] 3| Stages. In general erroneous output

xee |54 3[2]5]4a]lal9lo]l7][9]9]8]s]10][10]10][10][10]10

was received in 6 cases out of 10 on
the first stage, and in two cases on the
second and third stages.



A fragment of the fuzzy knowledge base

Table 4

Rl RZ R3 R4 RS RG R7 RS R9 R10 R11 R12 R13 R1/1 R15 R16 R17 R18 R19 RZO
X4 H H H M M L M M L H M H H M M M L L L H
X9 H H M M L L H H M M M L M M M M M L L L
X84 B C1 C1 C2 B C1 C1 A A B A A B A A A A A A
y H H H H H H S S S S S S S S 1 1 1 1 1 1
Table 5 : " .
6. Artesian well condition evaluation model results
Results of type-1 FLS operation on uncertain input data discussion
System output
Ne | 1vst 3 ond 5t L g Expert’s Experimental tests of the interval clustering model par-
) s1age siage stage evaluation ticularly show a mismatch between the decision taken b,
(18 features) | (35 features) | (84 features) Y ] y
1 404 352 i12 sufficiont the system and the expert conclusion in example 4 (Table 3).
. . . Sample 4 is close to cluster 1 by all parameters except one
- — (radon concentration, 219 Bq/dm?). Since the tested meth-
4 | 5 | 5 | 3,36 | insufficient Y . .
, od does not have any capabilities for including other factors
into consideration, except for Euclidean distance between

3. 3. Type-2 fuzzy set based model and aggregated
result

The experiment was repeated for the type-2 fuzzy set
based model, partial results are shown in Table 6.

points in a feature space, sample 4 was assigned to cluster 1
(High), although in truth water with such parameters is
unsuitable for use. That is why a decision support system in
the current application requires corrections introduced with
expert knowledge, which is impossible to achieve with the

capabilities of cluster analysis as an unsupervised

Table 6 learning technology. In other cases the result pro-

Results of type-2 FLS operation on uncertain input data duced by the system matches the expert’s decision

1 stage 2 stage 3 stage for the respective sample; intervalv width may be

(18 features) (35 features) (84 features) Expert’s regarded as a measure of uncertainty .cau.sc;d by

Ne X lack of expert knowledge. It is fairly significant,

System Int?r"al System Int_er"al System Int_erval evaluation as is to be expected for such a complex research
output width output | width | output | width object as a hydrogeological system.

1[[1,39; 4,511 3,12 [[0,24;627]| 6,03 |[3,49;897]| 548 |insufficient As for the results received by the type-1 FLS,

the high rate of erroneous outputs on early stages
of the research, when input vectors contain a sig-

4|[1,18;5,22]| 4,04 |[1,69;3,76]| ;,07 |[1,86; 10]| 8,14 |insufficient

nificant amount of gaps, confirms once more that

the type-1 fuzzy inference engine is unfit for appli-
cations allowing for gaps in the input data. As to

The model operation result for one input vector of
the test data set after feature set reduction is shown in
Table 7.

Human expert 1 defined 39 informative features,
expert 2 defined 41 features. The automated feature ex-
traction method [11] allowed to define 32 informative fea-
tures. Apart from the FLS interval output, the results also
include outputs of two alternative models. Alternative
model 1 is an interval cluster analysis decision making
model. Alternative model 2 is a decision taken based on
threshold values of the parameters regulated by the laws
of Ukraine.

the errors on the third stage, when the input data
are fully defined, the type-1 fuzzy set mechanisms
do not allow to determine their source.

The type-2 fuzzy set based model enables quantitative
assessment of the uncertainty associated with the obtained
results. On the final stage of the research, when all parameter
values are known, the uncertainty zone in many cases fills the
entire domain of the output parameter, or most of it. However,
on earlier stages, when the number of available input features
is lower, the uncertainty interval is usually lower, which does
not make sense from the information theory point of view
[38]. This fact allows to conclude that high input feature
space dimensionality complicates the system’s work.

Table 7
Results of the aggregated model operation on uncertain input data
HGE Expert 1 Expert 2 Automated method Full vector
A ated
stage . Def. Model Def. Model Def. Model Def. Model Altern. Altern. ggrsgdte
No |features/ output features/ output features/ output features/ output model 1 model 2 outpu
total total total total output output
1| 9739 (11,391,511 8/41 [[0.43;045]] 9/32 [[1,37;1,42]] 18/84 |[[1,39;4,51] x x [1,39; 1,51]
2 16/39 |[0,24,0,27]| 19/41 |[0,01;0,01]| 16/32 |[0,09;0,03]| 35/84 |[0,24;6,27] X X [0,24; 0,27]
3 | 39/39 [0,09:397]| 41/41 |[0,43;0,69]| 32/32 |[0,23,0,33]| 84/84 |[349;8,7] | 1:[0,62;0,92] | insufficient |[3,49;3,97]




Uncertainty associated with results from Table 6 was also
present in the experiments with the type-1 fuzzy set model, but
outputs represented with a single number did not make it pos-
sible to explain the mismatches between actual and expected
results. Considering the results of the interval fuzzy set based
mode, we conclude that the errors received during type-1 model
testing are also the result of the input feature set redundancy.

Implementing a single aggregated model for decision
making on a natural system’s condition has following advan-
tages compared to other existing approaches:

— generalization and reuse of computation methods uti-
lized for receiving outputs of individual models;

— reducing the amount of time required for decision mak-
ing in such areas as natural resources, rational exploration
and environment protection;

— providing timely decisions in the dynamics of a natural
process, and sufficient credibility of the decision taken.

The results of this research can potentially be applied
in long-term natural processes study programs in order to
shorten time required for decision making and to save re-
sources necessary for it. This work in particular shows an
application of the research results on intermediate stages of
hydrogeological exploration for approximate evaluation of
groundwater extraction perspective.

The present work was conducted in continuation of re-
search [4, 11, 15, 37] in areas of fuzzy cluster analysis and
fuzzy inference, and consists in bringing the results of all the
previous work together to form a complete system ready for
end-to-end application.

7. Conclusions

1. An interval type-2 fuzzy set based decision support
system is proposed. Unlike systems based on type-1 fuzzy
sets, the result of which is a membership grade represented as
a single number, type-2 fuzzy sets allow to get an interval of
the output linguistic variable’s possible values as the system
outcome. This interval appears as a result of uncertainties
related to the way the expert knowledge is represented.

These features allow the interval fuzzy system to function
under conditions of incomplete input data, when type-1
fuzzy logic systems functioning is impossible.

2. Multiple models were built, which differ at the level of
the input feature set defined by experts in the subject area as
mandatory. While examining an input feature space every
expert eliminates some of them as redundant, irrelevant, or
such as introduce noise. As a result, a subset of the universal
feature set is created. Individual features in this set make
inputs of an interval fuzzy logic system and antecedents
of fuzzy inference rules. This way every feature set defined
by an expert generates a separate model with an interval
output, which enables incorporating experts’ experience in
the decision making process, along with the information
accumulated in the experimental data set. The multitude of
models also allows to expand the concept of an expert and
use automatic or automated informative feature extraction
procedures alongside human experts.

3. A rule for constructing an aggregated output of the
system is introduced, which allows to consolidate the results
multiple models in a single interval. The aggregated criterion
considers the result of system’s operation over the full input
vector, as well as the results of all models generated by reduc-
ing the input feature set. The latter procedure is normally
performed by experts. As a result, the aggregated criterion
is a generalized interval estimation of the system’s status
based on data available at the moment, and allows to get an
idea of the uncertainty associated with the decision taken.
Intermediate results, i.e. outputs of individual submodels,
present value in terms of input feature set analysis. They may
help determine the relation between the final decision and
whether a particular parameter is considered or dismissed.

4. A way to integrate third-party models based on other
decision taking methods and technologies is proposed. An al-
ternative model is introduced, which is based on the modified
PCM clustering method with interval membership grades.
Presenting membership grades in interval form allows to
consider and model uncertainties related to the lack of expert
knowledge. The latter is especially important in the context of
cluster analysis as an unsupervised learning technology.
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Poszensanymo onepauito dodasamuna Oinapuux xoodie 6es
nepenecenns. Busegneno, wo memoo pexypcii saéesneuye cumn-
me3 cucmemu Ginapnux xKo00ie 3 Kilbyegor0 CMPYKmMypoio npu
0YO0b-aK0MY NOUAMK060MY K00i NOBHOT KOMOIHAMOPHOT cucme-
MU 3 NOBMOPEHHAM, WO 1 00380AE BUKOPUCMOBYBAMU 00pay
cucmemy Ginapnux Kooie 0 onepauii dooasanmns 6es nepene-
cenns. Bcmanoenena oyinka 3azanvioi ckaaonocmi o6uucaio-
8abHO20 ANZOpUMMY cymamopa oinaprux Kooie

Kniouogi cnoea: cymamop, kombinamopmna cucmema 3 noe-
mopennam, 6inapiui xoou, dooasanns oinapnux Koois, xackao-
Ha cxeMma, KaAC KOMOIHAMOPHUX CUCMeEM, eK3eMRAAP KIAACY,
mesaypyc, r0zapudminna ckaaonicmo

=, u|

Paccmompena onepauus cymmuposanus dunapmvix K000
0e3 nepenoca. Boiagneno, umo memoo pexypcuu obecneuueaem
cunmes cucmemot GUHAPHBIX KOO08 C KOJILUEBOU CMPYKmMypPou
npu 1060M HAMATLHOM K00e NOJHOU KOMOUHAMOPHOU cucme-
MbL C nO6MoOpenueMm, *mo u N0360Jiem UCnO0ab308aMms 6blOpa-
HY10 cucmemy OUHAPHBIX K0008 O ONEPAUUU CYMMUPOBA-
Hus 6e3 nepenoca. Yemanoenena ouenka oéueil caoicHocmu
BLIMUCTUMENBHOZ0 ANZOPUMMA CYMMAMOPA GUHAPHBIX K0OOB

Kniouesvte cnosa: cymmamop, xombunamopuas cucmema
¢ noemopenuem, ounapmuvie K0obl, CYMMuUposanue OUHAPHBIX
K0008, KACKaoHas cxema, KAACC KOMOUHAMOPHBIX cucmem,
IKIEMNAAP KAACCa, me3aypyc, 102apumunecKas Ca0HCHOCMs
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Binary code is a general designation of the code, by which
messages can be transmitted in sequences that have two

characters (for example, “0” and “1”). In general, the number 0

of combinations (codes) of n-digit binary code is equal to the

number of locations with repetition of n elements by m

P(n,m)=n". 1)

For a binary code, the number of combinations equals:

P(2n)=2", (2)

Table 1
4-bit binary codes in lexicographical order
(litljg?)ezlflue Binary code (litI\eI;l;l)eSaclue Binary code

0000 8 1000
1 0001 9 1001
2 0010 A 1010
3 0011 B 1011
4 0100 C 1100
5 0101 D 1101
6 0110 E 1110
7 0111 F 1111

where n is the digit capacity of a binary code.

The minimum possible number that can be written down
by such a binary code equals 0. The maximum possible
number that can be written down by such a binary code is
determined by the formula

M=2"—1. (3)

These two numbers fully determine the range of numbers
that can be presented by a binary code (2). For example,
for an 8-digit binary without a signed integer, the range
of numbers is 0..255. For a 16-bit code, the range equals
0..65535.

The examples of binary codes are the code of Gray, Bau-
dot code, Hamming code, ASCII, etc.




