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Pozensdaemvcs nouwamxoea 3adaua npo posno-

HiliH020 NAPAGONIUH020 PIBHAHHA OpPY2020 NOPAOKY,
wo Micmumo unen nozaunanns. IlIpoeodumvcsa ananis
noeedinxu nocisa poze’asxy sadaui Kowi ona 3asnaue-
H020 euue Oupepenyuianviozo pieHANHA 6 UACMUHHUX
noxionux. /loeedeno, wo npu ne6HUX ymoeax Ha napa-
Mempu 3a0aui cnocmepizaemoCsi CMUCHEHHA HOCLA

Kmouosi cnosa: pose’asox, sadaua Kowi, ougepen-
uianvHe PieHAHHIA 8 YACMUHHUX NOXIOHUX, HOCTU

T u |

Paccmampusaemcs nauanvnas 3adaua o pacnpeoe-
JleHuu memnepamypol Ha 6eCKOHeUHOCIMU 0N NOJYAU-
Heln020 napaboau1eckozo YpasHeHus 6mMopozo nopso-
Ka, Komopoe cooepicum uaen noznowenus. Ilposodumcs
anaaus noeedenus Hocumeas pewenus 3adauu Kowu
05 yKazanmnozo éviue ouddepenyuanviiozo ypasrnenus
6 uacmnolx npouseoonstx. /loxazano, wmo npu onpede-
JIEHHBIX YCNOBUAX HA napamempsvl 3a0a4u Hadaooaem-
¢ corcamue HoCumes

Knioueevte cnosa: pewenue, 3adaua Kowu, ougp-
Qepenyuanvioe ypasnenue 8 HACMHLIX NPOU3BOOHDLX,
HoCUumeJIb
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1. Introduction

Partial differential equations of the second order of para-
bolic type are more common in the study of processes of heat

conduction and diffusion. As you know, the process of heat  for

distribution in space can be fully described by temperature
u(x, t), where xeR". If the temperature is not constant, then
there are heat flows which are directed from places with
higher temperature to places with the lowest temperature.
We consider thermal processes in a fairly large range of
temperature changes, leading to quasi-linear heat equations.
So let’s write divergent parabolic equations in general form:

u, =div(k(u,ux) Vu)+F(x,t),

where

Vu=gradu=

a o
0in memnepamypu Ha HeckinuenHOCMi 07 HANIGi- |DOI: 10.15587/1729—4061.2016.80788|
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k(u,u,) — the coefficient of the thermal diffusivity;

Ju

0X,..0X ;

F(x,t) — the density of the heat sources (flows).




An actual and interesting problem is solutions’ proper-
ties investigation of the initial problem (Cauchy problem)
about distribution of temperature at infinity: find a solution
of the heat equation

u, = div(k(u,ux) Vu)+F(x,t)

in the domain xéR", t>0, which satisfies the condition:

u(x,O):

The issue of existence and uniqueness of the solution for
the given problem has been studied by many authors and
successfully solved (for instance, in [1, 2]). Moreover, in the
case of a particular coefficient of the thermal diffusivity and
certain heat flux density, we deal with the process

UFZ

i= 1

u(x,0)=

u, (x), xeR™,

(|V |p1 auJ—|u|“u, x€R", t>0,

u, (x), xER".

2. Literature review and problem statement

Today it is known [3—6], that for the above-mentioned
initial problem, the phenomenon of instantaneous compac-
tification of the carrier of solution holds, when despite the
fact that the carrier of the initial function may coincide with
the whole space R®, the support of solution becomes compact
in an arbitrarily small time t>0 and shrinks in the initial
moments. The research is devoted to the study and investi-
gation of this phenomenon.

The paper [7] was the first, where the property of instan-
taneous shrinking was systematically investigated for the
semilinear heat equation

u, =Au+b(u), b(0)=0, b(s)>0 Vs>0.

In [7] the conditions on the behavior of the function
b(u) in the neighborhood of zero that guarantee the prop-
erty of instantaneous compactification for nonnegative,
continuous, bounded initial function that tends to zero at
infinity have been found.

For variational inequalities, the property of instanta-
neous shrinking was investigated in [8]. In the papers [9, 10]
for the one-dimensional equation

=(o), -8

the method, based on the comparison principle was ap-
plied. It was found, for instance, that if

g(x)z c (1+|x|)7B,

m=>1,pe(0,1),p>0,7>0,¢,>0,

u,<c, (1+|x|)77,

then the given problem has the property of instantaneous
shrinking.

We have to note that a similar phenomenon may occur in
other important physical models. So, in [11] for the equation

ul=(u‘“)xx+(u“)x,0<n<1, m=>1

the following result was proved:

if uo(x) ~cx ' as x — oo, then

u(x,t)>0, te(O, 1(:1'“), x2x,>0

n

and the solution u(x, t) has compact support for

1 1-n
t>—c .
n

Hence, the effect of instantaneous shrinking holds under
condition:

1
- =Y
u, —o[x “J.

Similar results were obtained in [12]. For the sec-
ond-order quasi-linear parabolic equations of the diver-
gent type with the initial data from Lq see [13].

In [14] the class of parabolic diffusion equations
with inhomogeneous source were considered. Two classes
are highlighted, the radius of the carrier of the solu-
tion depends and does not depend on the geometry of
the domain.

But, note here, that the majority of the above-men-
tioned results have been obtained for non-negative solutions
and with the assumption on the initial function: either
u, =0, [x| > e, or it has a majorant. The main tool in get-
ting the results was the maximum principle. It turns out that
if the initial function has no monotone majorant for example
as in the case

u, (+k) =1, keZ u, (x) >0, XEeR,
then even for the simplest equation

u=u_-u’, 0<p<i

there are no results, as the comparison principle here is
inadequate. For higher order equations, we have no such
principles. Hence, there is an actual problem — to find a
new approach that will enable to analyze the behavior of the
solution in more complex and general situations, which do
not impose additional conditions on the function from the
Cauchy condition.

So, let us consider the problem:

uL—i [|V |p1au )+| [Tu=0, xeR"t>0, (1)

u(x,0)=u,(x), xER", 2)

where Vu denotes, as is customary in the literature, the
gradient, i. e.:

Vu=gradu =87u;
0X,...0X

where p and A — positive real numbers;
the initial function from the Cauchy condition (2) such
that u0(x)€Ly(R™); n — space dimensions, n>1.



3. The purpose and objectives of research

The goal of the work is to study the solutions’ behavior
for a wide class of nonlinear partial differential equations
through the use of a new approach that has been proposed
in [3]. Specifically, we are interested in a phenomenon called
“compactification” (or “instantaneous shrinking”) of the
solutions’ support supp u(x, t), where

supp u(x,t): clos{x eR": u(x,t) # O}.

The mathematical formulation of the problem of the giv-
en work: to prove that the Cauchy problem (2) for parabolic
equations (1) has the shrinking property of support of the
solutions. This is an important problem in terms of applied
mathematics and mathematical physics.

In order to achieve this goal the following tasks were
solved:

—to get integral estimates linking different norms of
solution;

—to reduce integral relationships to non-differential
inequality and to analyze this inequality;

— to establish the property of shrinking of the support.

4. The method of solving the problem

The method of investigation is the result of evolution of
ideas coming from the theory of linear parabolic and ellip-
tic equations. It can be applied for different purposes and
different equations. The essence of this approach consists in
getting and analyzing special (non-differential) inequality
linking different energy norms of the solution.

5. The result of an investigation of behavior of the carrier
of solution for the equation (1)

First of all, we introduce here a definition, it will
enable to present the obtained result on a strict mathe-
matical level.

Definition. The Cauchy problem (1), (2) has the in-
stantaneous compactification property, if for any t>0 the
support of the solution u(x, t) is bounded even if it is un-
bounded for t=0.

The main result of the research is the following theorem.

Theorem. In both of the cases:

- 0<A<1, p=yf;

- 0<A<p,

—if

n-2 <p<1, when n>2;
n+2
—if 0<p<1, when n<2,
the problem (1), (2) has the “instantaneous compactifica-
tion” property.

6. The proof of compactification property of the carrier of
solution

In order to prove the Theorem about compactification of
solutions’” support of the problem (1), (2) we need the well-
known Gagliardo-Nirenberg interpolation inequality, which

will be given below, and the following lemma that is not a triv-
ial fact and, therefore, requires a strict mathematical proof.
Lemma 1. If {(z, s) is positive, increasing function, which
satisfies the inequality
f(t+f°‘(t, s), s+f°(, s))é&f(r, s); 3)
— for each t>1,, s>s,, 6>1, >0, >0, then:

f(t,5)=0;

— for all (x, s) such that:

1 . 1
’C>T0+17f (TO,SO), S>50+Wfﬁ(’co,so).

-9¢

Proof of Lemma 1.
Define the sequences as follows:

T =T +1(1,s), su=s, +1P(1,8), i=12,..
Then from (3) we have

(s <0155,

After iteration, we obtain

f(Tj+1ij+1)5 f(t,,5,)

for each jeN. Then:
Ty =T, +f¢ (Ij,sj) =T, +f“ (’Cj_1,Sj_1) =f¢ ('cj,sj) =

=TO+2f’x(Ti,Si)ST0+fu(’CO,SO)X

i=0

i 1
xy 8 <1, +f*(1,,5,) ——.
go, 0 ( 0 So) 1—8"

Similarly, it is possible to obtain the inequality:

1
Sj+1 SSO +fB(TO’SO).W'
From the fact that
limf(tj,sj)zo, jooo

and as the sequences are uniformly bounded, the necessary
result follows. Thus, the lemma is proved.

Proof of Theorem.
For any numbers

0<1,<1,<T, 0<s,<s,<oo,
we define by

Q(s,)={xeR": [x|>s,} — exterior of sphere;

G2 (s,)=Q(s,)x(t,,7,) — exterior of cylinder;

Kzf (51, S, —51) = Gif (51)\G;2 (52).



Now let us fix

>0, s>0, At>0, As>0
and introduce n(x,t) and m, (x)

n=1in G’ (S+AS); n=0 in RnX(O’T)\G:‘(S)’

T+AT

n,=1in Q(s+As), n,=0 in R"\Q(s).

Suppose that
c c c
0<n, <—, M. |[£—, <—.
M As s As T As

Here 1, =0 if T+At<t<T and Vn=0 if [x|>s+As.

Definition. An energy solution of (1), (2) is the function
such that
u(x,t) € C((O,T);L2 (R“))m

L, ((0 T); W;H(R“))mLM (R"x(0,T))
and satisfies the integral identity:

Ty
J u(x,TO)V(X,TO)dX— _[ _[ u(x,t)vt(x,t)dxdt+
R" 0 R
Ty

+I I [|Vu|p_1 U +|u|H uV:Idth = j u, (x)v(x,0)dx
0 R R
where

veL,, (R"x(0.T))n WL, (R x(0,T)).

Note here, that the existence of solutions in the above
sense is well known if 1<p and 0<A<p — see [2—4].
Let

E.(ts)= _[

G (5)

u’dxdt, I(ts)= [ [u]"" dxdt.
Gi(5)

If we show that for Vt>0 3 S(T) <oo

s)=E;(t.s)+ 1 (t,s

then (thanks to Lemma 1) we will obtain the Theorem.
Thus, it is enough to show:

H=H,(t )=0,

H.(0,5) >0, s> oo,
H(I+H“,S+HB)£;1H, o>0, >0, O<p<t.

p+

Let us substitute v=un®" into the integral identity and

integrate by parts
2 [

T
+J‘ I I:lvulpﬂ + |ulx+1:|nl7+1dxdt _
0R®

P” x T)dx+

T
=+ [ @ v +[Vu[" u, un, n’dxdt. )
OR

For the right-hand side of (4) we apply the Young’s in-
equality with &:

ju%“ﬂx+_[ﬂv|w
Qs) Gl (s)

<c[I;+E; ]=cR,. (5)

“ )n"“dxdt <

Let us apply the Gagliardo-Nirenberg inequality:

1@)

IVl S 9Vl

Bs) 7

which used standard notations of norm and indicators

11

o Vi
Ma=( 5] £-0(3-2)+t1-0)t yo121

under au=2, B=p+1, y=A+1 and involve the Young’s in-
equality:

1-v
[ J’ uzdx} (|Vu|p+1 +|u|k+1)dx S>s,>0,
) afs)
where

(p+1)(1-2)

B 2(p+1)+n(p—7\,)<1.

Integration leads to the inequality:
1-v
T;ﬁ—w:f{fuﬂ% desc [ ([Vuf™+[ul pixdt.
) Gi()

We return back to the integral identity with the test
function

1
t
v=un""y, (t), 1>0, x(t I[ J. u n"“dx} de, t>0
o d)

and obtain

X1t (T) =

njﬁw@+fpr”w
Qs) GI(s)

+ J‘ [2|Vu|p—1uxy (unp+1)x ]Xl (t)dxdt,

6l

:X1(

(ﬂ””)L]% (t)dxdt+

from which and (5) we have:

X1 (T) scx (T)R1-

By the Holder inequality and integrating the latter in-
equality:
x(T)<cxs (T)R? for some 1>8>0.

According to the definition of n(x, t) and previous
computations, we obtain several inequalities, which are
crucial:

‘PI+A‘E.S+AS (1) < XI (T) < \PIS (1)’

W1 (1-v)<cR,(s,As,1,A1), (6)



% (T)<cxy (T)RY (s, 48,1, A1), @)
X (T)S WL (1-v). ®)
Now by the definition of the energy function E:

Wy

T+AT,S+AS

(1)=E;(t+At,s+As) <y, (T). )

Substitute (7) into (9) and using (8) and (6) we
obtain that

E; (T+At,s+As)<cR}™ (s,A5,1,A1). (10)

Note here, starting from this point we should distinguish
three possible cases:

p=1
p>1;
0<p<{,

as further (and final) proof course depends precisely on the
value of the parameter p.

Case p=1.
If p=1, then

I (t,s)=E.(t,s).

So, the proof is trivial, because it immediately fol-
lows that:

V1>03s(1)<eo: H=H(1,5):=
=E(1,8)+1;(1,5)=2-E(1,5),

Thus, by (10) and thanks to Lemma 1 we have the result
of Theorem.

Case p>1.

Now let us a consider nontrivial case, when the param-
eter is greater than 1, i. e. p>1. Put in the integral identity

oa=p+1, B=p+1, y=2.

After integrating in t, using the Holder inequality

IT(T+AT,S+AS)S

6 1-6,
<c J. |V11| w dxdt (lylm,sms (w)] ) an
Gl (s+2) 2

where

_ n(p-1)
Y 2(p+D)+n(p-1)

Inequalities (6)—(8) under

I:HTP and 6=1-v

lead to the following correlation

T+AT,S+AS

1+p
w! (p;) <c¥T (1-v)RZH.

Using the result of (10) to the last estimate we obtain

14p
gl (1);’1) <CcRZ.

THAT,S+AS
If we apply the latter inequality to the ratio (11), then

L. (r +AT,5+As) S cR™,

v, =(1—61)(1H+v)= vip-h)

2 1-2 12

Add (10) and (12), use the definition of the function R,

H, (t+AT,s+As)<

(A[ET(r,s))v (AJ*:T(T'S))V1
TE R

(AL (rs)) (AL ()"

( AS)(1+p)(1+v) + ( AS)(1+p)(1+v1)

<coAEL(t9)

+¢oA L (1,9)

where

Af(ts)=1(t,s)-f(t+Ats),

Af(ts)=1f(ts)—f(t,5+As).

Now let us fix

v

As= (I (T,))0 00, Ar=(E, (r,s))ﬁ
As E and I are monotone, we come to the inequality

v

H, | 14 HEY (1), 54 HEOO (9) [<H (ns). (13)

In case 0<p<{ it is easy (using the same approach) to
obtain an inequality similar to (13), which is to complete
a series of computations of our proof, but, of course, with
another index, namely,

vV, = Vgp__x}‘) <V.

7. The discussion of the result about the behavior of
the carrier of solution

The results, for example, [7, 8, 11] have been obtained for
non-negative solutions and with the assumption on the ini-
tial function: either this function tends to zero when |x| — oo,
or has a majorant. To sum up, note here, that if the initial
function does not have a monotone majorant, then even for
the simplest equation such as

— p
u =u_-u’, O<p<1

we cannot give an answer about the behavior of the solution.
This fact prompted the author to continue earlier research.
Furthermore, we emphasize here that the authors [5, 10] and
others applied the maximum principle for investigations.



But, unfortunately, for equations of higher order, we have no
such principles. Thus, an actual problem arises, which was
solved in this work — to adapt a more universal approach to
the study of (1), (2), which allows to analyze the behavior of
the solution in more complex and common situations.

8. Conclusions

As a result of the research:

— relationships, which contain Ly, Lq+1 and Lj+4 norms of
solution were found;

— the functional dependence of the kind of (3) by apply-
ing the Young’s, Holder, Gagliardo-Nirenberg inequalities

to integral estimates was obtained; analysis of the ratios (3),
(10), (13) was done;

— it was proved that a carrier of the solution of the prob-
lem (1), (2) is bounded for t>0.

Note here that an interesting and important (but sepa-
rate) problem that has not been realized in this investigation
is to estimate the size of the support. On the issue of finding
the estimates of a carrier of solution, see the works [15-17].
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