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1. Introduction

The models containing partial differential equations
(PDE models) for designing production lines have been
developed in recent decades [1-7]. PDE models provide an
opportunity to consider the impact of internal production
factors and technological constraints of a production system.
An essential advantage of this class of models is that they
allow describing the motion of objects of labor from one op-
eration to another, enable a closed form solution and do not
require significant computational resources. The emergence
of new types of models is due to trends of modern industrial
production, the main of which is the trend to a continuous
reduction of the product life cycle. This trend leads to the
fact that, on the one hand, production lines operate for a con-
siderable time in transient unsteady conditions, [3—7], on
the other hand, the time for searching for the control mode
of technological sites of the production line, therefore, is re-
duced [9]. This reduction has resulted in the need to develop
fundamentally new types of models of production lines [3],
as well as control programs and algorithms. Publications on

the use of PDE models of production lines have appeared in
2003 [3, 5]. However, the issue of justification of a method of
constructing closed equations that define the model requires
further development and now determines the relevance of
the chosen direction of research and its practical significance
for modern flow production.

2. Literature review and problem statement

The papers [1, 3-8] deal with a new class of models
of production systems with the flow production method,
widely used at present for developing effective production
management systems. The review of the publications on the
most common PDE models of production lines is made. The
factors that have given rise to a class of PDE models are
shown. The history of their development is presented. The
description of the PDE model, containing the Graves’ equa-
tion; nonlinear Lighthill-Whitham PDE model; quasi-static
PDE model using the nonlinear Karmarkar’s equation of
state; two-moment PDE model with the Burgers” equation;




diffusion PDE model is given. Special attention is paid to the
closed multi-moment PDE model for transient unsteady con-
ditions. Historically, construction of a new type of models of
production lines involves the application of two approaches —
phenomenological approach [6—8] and statistical approach
[1, 3, 4]. The phenomenological approach has provided an
opportunity to construct a number of models of produc-
tion lines by complementing the transfer equation with the
equation of state in the form of a clearing function. This has
allowed to write down the equations of the PDE model of
production lines for the most basic cases of operation. The
validity of application was determined by comparative anal-
ysis of the results obtained using a discrete-event simulation
model (DES model) and the PDE model under study. It is
clearly shown that the PDE models constructed using the
phenomenological approach are limited. The limitation is
due to the following fact. All the main patterns of behav-
ior of a production system are determined experimentally
(phenomenologically). The description of the production
phenomena abandons the extra details of the manufacturing
process. Abandonment of strict description of patterns of be-
havior of the individual elements constituting a production
system allows constructing a production system model with
a small number of macroscopic quantities. Most often such
macroscopic quantities are the rate of movement of objects
of labor from one technological operation to another and
the size of the operational reserves between them. The phe-
nomenological model provides satisfactory accuracy when
the production process is quasi-stationary. However, it is
not suitable to describe transient production processes. The
lifetime of these processes is constantly growing and has
reached a half of the life cycle for many leading companies
at present. The quasi-stationary conditions of production
allowed determining phenomenological patterns between
the key production parameters, while these patterns almost
cannot be determined for transient processes owing to con-
stant changes of external and internal production factors
over time. Attempts to create pilot laboratories (simulating
the production process on certain sites) at a manufacturing
enterprise for predicting changes in phenomenological pat-
terns between the key production parameters were unsuc-
cessful. Researchers are forced to look for new approaches
to constructing production system models with the required
description accuracy.

The statistical approach [3], based on accounting the
laws of interaction of objects of labor with manufacturing
equipment and with each other during processing has been
proposed for the construction of production system models.
The papers [1, 3] consider the evaluation of the calculation
accuracy of flow line parameters. Attention is given to the
models of statistical dynamics of flow production control
systems. Their relation to the class of PDE models is demon-
strated. The focus is on the fact that the current methods of
statistical dynamics of control systems provide a powerful
apparatus that can be used to construct PDE models of
control and stabilization systems of the production line
parameters.

The review of publications presented in [1, 3, 4, 6, 9,
10] demonstrates that further development and use of PDE
models of production lines requires the solution of the fol-
lowing issues:

1) derivation of non-stationary equations of state based
on a detailed processing technology of the object of labor
considering the arrangement of equipment;

2) construction of multi-moment closed balance equa-
tions for steady-state and transient non-stationary operation
conditions of the production line;

3) construction of two-level control models of the pro-
duction line parameters for steady-state and transient con-
ditions considering the parameters and arrangement of
equipment, and movement priorities of objects of labor.

3. Goals and objectives

The goal of the research is to develop a method of con-
structing multi-moment closed balance equations for steady-
state and transient non-stationary operation conditions of
the production line.

The following objective was set to achieve the goal: to
construct and substantiate the system of equations of flow
parameters for the production system model in the one-,
two-, three-moment description of the production process
followed by a generalization of the results for the models in a
multi-moment description:

4. The kinetic equation of the production process

The production process state is determined by the states
of the total number N of objects of labor [1, 4, 5]. Upon tran-
sition of the object of labor from one state to another, there
is a transformation of resources (raw materials, human labor)
into a finished product as a result of the targeted impact of
equipment.

The state of the j-th object of labor in the phase space can
be described by state parameters

§j =(Sjy1,..,Sjva,..,SjA), ;j =(ujv1,..,ujya,..,ujA),

where S;, (UAH) is the cost of the transferred a-th tech-
nological resource or its part on the j-th object of labor,
1, (UAH/hour) is the transfer rate of the cost of the a-th
resource on the j-th subject of labor, 0<j<N, O<a<A [4].
The state of the production process parameters at some point
in time will be determined if the state parameters of objects
of labor
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and the objective function
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are determined, and at any other time point found from the
equations of state of objects of labor [3, 4]. As the number
of objects of labor N is much greater than unity, we use
appropriately normalized distribution function yx(t, S, W)
of the number N of objects of labor in the phase space
(t, S, u), that satisfies the kinetic equation of the produc-
tion process instead of solving the system of N second-order
equations [4]:
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where the product x(t,S,i)-dQ is the number of objects of
labor in the cell dQ of the phase space with coordinates
S, e[S,S+dS[, i e[u,u+du[ (Sq = cost of products). The
integration over the volume Q of the phase space (S, u)
gives the total number N of objects of labor in progress
[1, 8-10]:
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The function f(t, S) determines the law of changes in the
state of the object of labor for the regulatory manufacturing
process. It is based on the data on the use of technological
resources when performing the production operation. The
stochastic process of the impact of equipment on the object
of labor is described by the distribution density ¢(t, S, i, 1)
of the random variable p, where i and p are the transfer
rate of resources on the object of labor before and after the
impact [1, 3]:

[oct.S imdu=1 ©)

A detailed derivation of the kinetic equation of the pro-
duction process (1) has been given in [1, 4].

Production process macroparameters. Let us introduce
the numerical characteristics that reflect the essential
features of the distribution of objects of labor in progress
over states

Juae S wdu=[x],. “4)

which we define as the k-th order moments for the distri-
bution function y(t,S,i). The variation of the distribution
function y(t,S,u) of objects of labor over states is due to
the stochastic nature of interaction of objects of labor with
equipment and each other [7]. In most interesting cases from
a practical point of view, the distribution density o(t,S,fi,1)
does not depend on the state of objects of labor until testing
the impact of the manufacturing equipment. Then, integra-
tion in the right part of (1) leads to simplification of the
integral-differential equation:
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The kinetic equation (5) is used to derive balance
equations of the PDE model of the production process. Its
solution makes it possible to obtain the law of distribution
of the objects of labor over states. The law of distribution ex-
haustively describes the distribution of objects of labor over
states, allows determining numerical characteristics (4).
Among them, two numerical characteristics — distribution
density of objects of labor in progress over manufacturing

positions [x] , (£,S) and the rate of processing of objects of la-
bor [Xl (t,S) in operations along the flow route are of par-
ticular importance [3-5, 7]. Often it is required to solve the
problem, leaving aside the laws of distribution, operating
with the numerical characteristics only [x]o t,S), [xl t,S).
The flow parameters [x]o (t,S), [xl t,S), [x]z (t,S) and
the related method of moments play an important role in the
construction of the general theory of production line control
systems. If you managed to identify the characteristics of the
state parameters of objects of labor, the flow parameters that
describe the production process state are determined by the
moments of the distribution function of objects of labor over
states x=yx(t,S,)). In this case, the parameters introduced
shall match the production process parameters used [2]. The
k-th order balance equation with respect to the moments
of the distribution function y=yx(t,S,) of objects of labor
over states means the balance equation aggregated over the
entire variation range of the value p
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The conditions (7) indicate that the number of objects
of labor in the state with an infinitely small and infinitely
large processing time is equal to zero. The initial moments
[x]k are connected by the balance relations (6). The con-
nection of the micro- and macro-level of description of the
production process under a given distribution law of objects
of labor over states is performed through the kinetic equa-
tion in the form of a self-consistent problem [1]. To determine
the distribution function of objects of labor over states, it
is necessary to know the behavior of its first moments that
define the form of the function f (t, S). On the other hand,
to determine the values of the first moments, you need to get
the form of the distribution function y(t, S, u) by solving
the kinetic equation (5). The law of distribution of objects of
labor over states is determined by the manufacturing process
features by solving the kinetic equation (5), namely, the pro-
duction technology of the object of labor. Certain forms of
the engineering-production function f (t, S) and the transfer
function of technological resources on the object of labor
o(t, S, fi, w). correspond to each manufacturing process.

5. The balance equation for the zero moment. The law
of conservation of the number of objects of labor in the
production process

Let us integrate the terms of the balance equation (6)
when k=0:

oY T ooy Tox
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Using the notations for the initial moments (4), we
obtain
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By substituting (9)—(12) into (8), we obtain the equa-
tion of the production line model in the one-moment descrip-
tion [4-6, 8].

ou,, olx, _,

ot s

(13)

representing the law of conservation of the number of objects
of labor in the production process. The equation (13), used to
simulate the behavior of the state of the production line pa-
rameters in the one-moment description is not closed. There
are a number of models using different approaches to close
the equation (13). Let us consider one of them in detail. The
approximate PDE model, containing the equation (13) and
the closing Graves equation of state [Xl = (x~[x]0 -¢, where
a=const is the technological constant, c=const (m/h) is the
assembly line speed is used for description of assembly lines:

a[x]o (t’S)L B[Xl (t’S) —
ot as

[x], =0 [x],c

By substituting the second equation into the first, we
obtain

(14)

i, e,
ot oS
a=a-c=0. 15)

Let us supplement (15) with initial and boundary con-
ditions

[x],0.9)=6(S),
[x], (£0)=o(v), (16)

the form of which determines the initial distribution of ob-
jects of labor along the production line and the inflow rate of
objects of labor, defined by the order book at the beginning
of the production line, where

[x],(0,0)=6(0) =[], (0,0) /a= (0)/a.

Let us write down the characteristic system of equations
and the corresponding first integral of movement for (15):

—:—S, S—gt=const.
a

7)

In view of (17), the solution of the equation (15) has the
form
[x],(tS)=W(R), R=S-at. 18)

By substituting the solution (18) into the equation (15),
we obtain the identity

dW(R)IR _dW(R)IR

dR ot = dR oS

dW®R)(9R oR) dW(R)

_ OR IR} —a-1)=0. 19
dR (at as) R ma)=0 19

Using the initial condition (16) and the boundary condi-
tion (16) for the equation (15), we write down the solution

[x],(t:S)=6(R)H(R)+¢(R /a)H(-R),

0, if R<O;
H(R)=10.5if R=0; (20)
1, if R>0,

where H(R) is the Heaviside function. In general, the model
shall be supplemented with the equations of constraints that
impose limitations on the equipment performance and the
use of technological resources.

6. The balance equation for the first moment. The law of
conservation of the rate of movement of objects of labor
on the flow route

Let us integrate the terms of the balance equation (6)
when k=1:

Tu M+Ju2 Xdu+Tuafxf(tS)du=
0 o oK
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Using the notations for the initial moments (4), we ob-
tain by analogy with (9)—(12)

Toox(esw) 9,
!” o M=o
tox(tSw) Lo 9x]
du = 2 22
! S W=, (22)

If(t S) ( ’ ’H)udu=

(.S,
={(t,S) j [[u”)]—x(t,s, u)]du =—f(t,9)[x], (23)
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By substituting (22)—(24) into (21), we write down
the first-order balance equation with respect to the initial
moments (6)

a[;i] [X]z —~£(t,9)[x], =

~ [x]w
[[ )t J)

By supplementing the equation (25) by the equa-
tion (13), we obtain a system of equations of the two-moment
description of the production line:

Ix], 9[X] oul, , [XJ
ot ot

(24)

(25)

2-£(t,9)[x],=

r

[x],,
M[[X] -1}

The system of equations (26) is not closed. By supple-
menting it with the equations

[[);]]1: [x],-[x],=0. [X]w =[], f@ws)=0

(26)

27

we obtain a system of equations to describe the production
line, known as two-moment PDE model using the Burgers’
equation:
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The system of equations (28) is closed. We will not dwell
on the study of this model in the present work.

7. The balance equation for the second moment.
The general system of balance equations for the flow
parameters

Let us integrate the terms of the balance equation (6)
when k=2:

oxl,, ol _
ot 9s

oxl, , [x] [x],,
Jat

— = f.S)[x],= 7»%{ 2, [x], —[X]QJ-(29)

Using the notations for the initial moments (4), we ob-
tain by analogy with (9)—(12)
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By substituting (30)—(32) into (29), we write down the
balance equation

Wt AL o) -

_ [x],
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By combining (13), (25), (33), we write down the general
system of equations for the flow parameters of the produc-
tion process:

xl, olxl, _

ot aS

[x].,
Plant[[ ] [X] [ ]z]’

(33)

o[x], , o]

5 " as T eSl=

a[)i]k [X]k+1 +ki[x], =

= [ X {f[tb(t S, XS, 1) | dii - ux}

Note that the production line models in the three-mo-
ment description are not given in the literature.

8. Discussion of the results of constructing a system of
equations for the multi-moment model of
the production-line

The research justified the use of the kinetic equation
in the development of a method for constructing a system
of equations for the multi-moment model of the produc-
tion line, which is based on the statistical approach to the
description of the production system. The basic observed
macroscopic flow quantities, determining the state of the
production line are formalized. The use of the integral-dif-
ferential kinetic equation of the production process, con-
sidering the processing of objects of labor as they move on
the flow route has allowed obtaining the balance equations
for the two-level description of the production line. This
opportunity to construct a closed system of equations is



based on the methods of closure of the self-linking chain
of balance equations by the small-parameter methods or
by setting the equations of state for higher-order moments.
It should be noted that the equation of state in the form of
a clearing function for the balance equation closure with
respect to the zero moment is widely used in foreign litera-
ture. In this regard, the limitations related to this method
of constructing a closed system of equations are examined
in detail. Another important factor is that the description
of production lines does not involve the use of the initial
moments [y ] (4) higher than the second due to both the
complexity of construction of high-order balance equations
using the phenomenological approach and definition of
conditions for their closure. Due to this fact, the proposed
construction method is of practical interest.

9. Conclusions

The statistical approach based on accounting the laws
of interaction of objects of labor with manufacturing equip-
ment and with each other during processing is used when
constructing a system of equations for the flow parameters
of the production line.

The method of constructing multi-moment balance equa-
tions, allowing, unlike the known methods based on the phe-
nomenological approach, to write down the system of equa-
tions containing the required amount of flow parameters is
given. The results are a continuation of the research carried
out in [1, 3, 4] and are of scientific and practical interest to
the design of control systems for modern production lines
operating in transient conditions.
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