
Mathematics and cybernetics – applied aspects

17

 O. Pihnastyi, 2016

1. Introduction

The models containing partial differential equations 
(PDE models) for designing production lines have been 
developed in recent decades [1–7]. PDE models provide an 
opportunity to consider the impact of internal production 
factors and technological constraints of a production system. 
An essential advantage of this class of models is that they 
allow describing the motion of objects of labor from one op-
eration to another, enable a closed form solution and do not 
require significant computational resources. The emergence 
of new types of models is due to trends of modern industrial 
production, the main of which is the trend to a continuous 
reduction of the product life cycle. This trend leads to the 
fact that, on the one hand, production lines operate for a con-
siderable time in transient unsteady conditions, [3–7], on 
the other hand, the time for searching for the control mode 
of technological sites of the production line, therefore, is re-
duced [9]. This reduction has resulted in the need to develop 
fundamentally new types of models of production lines [3], 
as well as control programs and algorithms. Publications on 

the use of PDE models of production lines have appeared in 
2003 [3, 5]. However, the issue of justification of a method of 
constructing closed equations that define the model requires 
further development and now determines the relevance of 
the chosen direction of research and its practical significance 
for modern flow production.

2. Literature review and problem statement 

The papers [1, 3–8] deal with a new class of models 
of production systems with the flow production method, 
widely used at present for developing effective production 
management systems. The review of the publications on the 
most common PDE models of production lines is made. The 
factors that have given rise to a class of PDE models are 
shown. The history of their development is presented. The 
description of the PDE model, containing the Graves’ equa-
tion; nonlinear Lighthill-Whitham PDE model; quasi-static 
PDE model using the nonlinear Karmarkar’s equation of 
state; two-moment PDE model with the Burgers’ equation; 
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diffusion PDE model is given. Special attention is paid to the 
closed multi-moment PDE model for transient unsteady con-
ditions. Historically, construction of a new type of models of 
production lines involves the application of two approaches –  
phenomenological approach [6–8] and statistical approach 
[1, 3, 4]. The phenomenological approach has provided an 
opportunity to construct a number of models of produc-
tion lines by complementing the transfer equation with the 
equation of state in the form of a clearing function. This has 
allowed to write down the equations of the PDE model of 
production lines for the most basic cases of operation. The 
validity of application was determined by comparative anal-
ysis of the results obtained using a discrete-event simulation 
model (DES model) and the PDE model under study. It is 
clearly shown that the PDE models constructed using the 
phenomenological approach are limited. The limitation is 
due to the following fact. All the main patterns of behav-
ior of a production system are determined experimentally 
(phenomenologically). The description of the production 
phenomena abandons the extra details of the manufacturing 
process. Abandonment of strict description of patterns of be-
havior of the individual elements constituting a production 
system allows constructing a production system model with 
a small number of macroscopic quantities. Most often such 
macroscopic quantities are the rate of movement of objects 
of labor from one technological operation to another and 
the size of the operational reserves between them. The phe-
nomenological model provides satisfactory accuracy when 
the production process is quasi-stationary. However, it is 
not suitable to describe transient production processes. The 
lifetime of these processes is constantly growing and has 
reached a half of the life cycle for many leading companies 
at present. The quasi-stationary conditions of production 
allowed determining phenomenological patterns between 
the key production parameters, while these patterns almost 
cannot be determined for transient processes owing to con-
stant changes of external and internal production factors 
over time. Attempts to create pilot laboratories (simulating 
the production process on certain sites) at a manufacturing 
enterprise for predicting changes in phenomenological pat-
terns between the key production parameters were unsuc-
cessful. Researchers are forced to look for new approaches 
to constructing production system models with the required 
description accuracy.

The statistical approach [3], based on accounting the 
laws of interaction of objects of labor with manufacturing 
equipment and with each other during processing has been 
proposed for the construction of production system models. 
The papers [1, 3] consider the evaluation of the calculation 
accuracy of flow line parameters. Attention is given to the 
models of statistical dynamics of flow production control 
systems. Their relation to the class of PDE models is demon-
strated. The focus is on the fact that the current methods of 
statistical dynamics of control systems provide a powerful 
apparatus that can be used to construct PDE models of 
control and stabilization systems of the production line 
parameters.

The review of publications presented in [1, 3, 4, 6, 9, 
10] demonstrates that further development and use of PDE 
models of production lines requires the solution of the fol-
lowing issues:

1) derivation of non-stationary equations of state based 
on a detailed processing technology of the object of labor 
considering the arrangement of equipment;

2) construction of multi-moment closed balance equa-
tions for steady-state and transient non-stationary operation 
conditions of the production line;

3) construction of two-level control models of the pro-
duction line parameters for steady-state and transient con-
ditions considering the parameters and arrangement of 
equipment, and movement priorities of objects of labor.

3. Goals and objectives 

The goal of the research is to develop a method of con-
structing multi-moment closed balance equations for steady-
state and transient non-stationary operation conditions of 
the production line.

The following objective was set to achieve the goal: to 
construct and substantiate the system of equations of flow 
parameters for the production system model in the one-, 
two-, three-moment description of the production process 
followed by a generalization of the results for the models in a 
multi-moment description: 

4. The kinetic equation of the production process

The production process state is determined by the states 
of the total number N of objects of labor [1, 4, 5]. Upon tran-
sition of the object of labor from one state to another, there 
is a transformation of resources (raw materials, human labor) 
into a finished product as a result of the targeted impact of 
equipment.

The state of the j-th object of labor in the phase space can 
be described by state parameters

( )→

a Α=j j,1 j, jS S ,..,S ,..,S ,  ( )→

a Αµ = µ µ µj,1 j, jj ,.., ,.., ,  

where aj,S  (UAH) is the cost of the transferred a-th tech-
nological resource or its part on the j-th object of labor, 

aµ j,  (UAH/hour) is the transfer rate of the cost of the a-th 
resource on the j-th subject of labor, < ≤0 j N,  < a ≤0 A  [4]. 
The state of the production process parameters at some point 
in time will be determined if the state parameters of objects 
of labor 

→ → → → µ µ  1 N1 NS , ....S ,  

and the objective function 

→ → µ  j jJ t,S , ,  

are determined, and at any other time point found from the 
equations of state of objects of labor [3, 4]. As the number 
of objects of labor N  is much greater than unity, we use 
appropriately normalized distribution function χ µ(t, S, )  
of the number N of objects of labor in the phase space 
( )µt, S, ,  that satisfies the kinetic equation of the produc-
tion process instead of solving the system of N second-order 
equations [4]:

∞

∂χ ∂χ ∂χ
+ ⋅µ+ ⋅ =

∂ ∂ ∂µ

  = λ ⋅ φ µ µ ⋅µ ⋅χ µ ⋅ µ − µ⋅χ   
  
∫    

Plant
0

f
t S

(t,S, , ) (t,S, ) d ,
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µ
=

d
f(t,S) ,

dt
	 (1)

where the product χ µ ⋅ Ω(t,S, ) d  is the number of objects of 
labor in the cell Ωd  of the phase space with coordinates 

∈ +  jS S,S dS ,  µ ∈ µ µ + µ  j , d  (Sd – cost of products). The 
integration over the volume Ω  of the phase space ( )µS,  
gives the total number N of objects of labor in progress 
[1, 8–10]:

( )
∞

χ µ µ =∫ ∫
dS

0 0

t,S, d dS N,

∞

Ω = µ∫ ∫
dS

0 0

d dS. 			   (2)

The function f(t, S) determines the law of changes in the 
state of the object of labor for the regulatory manufacturing 
process. It is based on the data on the use of technological 
resources when performing the production operation. The 
stochastic process of the impact of equipment on the object 
of labor is described by the distribution density φ µ µ(t, S, , ) 
of the random variable μ, where µ  and μ are the transfer 
rate of resources on the object of labor before and after the 
impact [1, 3]:

∞

φ µ µ µ =∫ 
0

(t,S, , )d 1. 				    (3)

A detailed derivation of the kinetic equation of the pro-
duction process (1) has been given in [1, 4].

Production process macroparameters. Let us introduce 
the numerical characteristics that reflect the essential 
features of the distribution of objects of labor in progress 
over states

∞

µ ⋅χ µ µ = χ  ∫ k

k
0

(t,S, )d , 				    (4)

which we define as the k-th order moments for the distri-
bution function χ µ(t,S, ) . The variation of the distribution 
function χ µ(t,S, )  of objects of labor over states is due to 
the stochastic nature of interaction of objects of labor with 
equipment and each other [7]. In most interesting cases from 
a practical point of view, the distribution density φ µ µ(t,S, , ) 
does not depend on the state of objects of labor until testing 
the impact of the manufacturing equipment. Then, integra-
tion in the right part of (1) leads to simplification of the 
integral-differential equation:

{ }∂χ ∂χ ∂χ
+ ⋅µ+ ⋅ = λ ⋅ φ µ ⋅ χ − µ⋅χ  ∂ ∂ ∂µ Plant 1

f (t,S, ) ,
t S

µ
=

d
f(t,S).

dt
		  (5)

The kinetic equation (5) is used to derive balance 
equations of the PDE model of the production process. Its 
solution makes it possible to obtain the law of distribution 
of the objects of labor over states. The law of distribution ex-
haustively describes the distribution of objects of labor over 
states, allows determining numerical characteristics (4). 
Among them, two numerical characteristics – distribution 
density of objects of labor in progress over manufacturing 

positions χ  0
(t,S) and the rate of processing of objects of la- 

bor χ  1
(t,S)  in operations along the flow route are of par-

ticular importance [3–5, 7]. Often it is required to solve the 
problem, leaving aside the laws of distribution, operating 
with the numerical characteristics only χ  0

(t,S),  χ  1
(t,S).  

The flow parameters χ  0
(t,S),  χ  1

(t,S),  χ  2
(t,S)  and 

the related method of moments play an important role in the 
construction of the general theory of production line control 
systems. If you managed to identify the characteristics of the 
state parameters of objects of labor, the flow parameters that 
describe the production process state are determined by the 
moments of the distribution function of objects of labor over 
states χ = χ µ(t,S, ). In this case, the parameters introduced 
shall match the production process parameters used [2]. The 
k-th order balance equation with respect to the moments 
of the distribution function χ = χ µ(t,S, )  of objects of labor 
over states means the balance equation aggregated over the 
entire variation range of the value µ

{ }

∞ ∞ ∞
+

∞

∂χ ∂χ ∂χ
µ µ + µ µ + µ µ =

∂ ∂ ∂µ

= λ µ φ µ µ χ − µχ µ  

∫ ∫ ∫

∫ 

k k 1 k

0 0 0

k
Plant 1

0

d d fd
t S

(t,S, , ) d , 		  (6)

( ) ( )χ ∞ = χ ∞ =t,S, t,S, 0. 			   (7) 

The conditions (7) indicate that the number of objects 
of labor in the state with an infinitely small and infinitely 
large processing time is equal to zero. The initial moments 
χ  k

 are connected by the balance relations (6). The con-
nection of the micro- and macro-level of description of the 
production process under a given distribution law of objects 
of labor over states is performed through the kinetic equa-
tion in the form of a self-consistent problem [1]. To determine 
the distribution function of objects of labor over states, it 
is necessary to know the behavior of its first moments that 
define the form of the function f (t, S). On the other hand, 
to determine the values of the first moments, you need to get 
the form of the distribution function χ µ(t, S, )  by solving 
the kinetic equation (5). The law of distribution of objects of 
labor over states is determined by the manufacturing process 
features by solving the kinetic equation (5), namely, the pro-
duction technology of the object of labor. Certain forms of 
the engineering-production function f (t, S) and the transfer 
function of technological resources on the object of labor 
φ µ µ(t, S, , ).  correspond to each manufacturing process.

5. The balance equation for the zero moment. The law 
of conservation of the number of objects of labor in the 

production process

Let us integrate the terms of the balance equation (6) 
when k=0:

∞ ∞ ∞

∞ ∞

∂χ ∂χ ∂χ
µ + µ µ + µ =

∂ ∂ ∂µ

  = λ φ µ µ µ⋅χ µ µ − µχ µ µ 
  

∫ ∫ ∫

∫ ∫    

0 0 0

Plant
0 0

d d f(t,S)d
t S

(t,S, , ) (t,S, )d (t,S, ) d . 	 (8)

Using the notations for the initial moments (4), we 
obtain
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( ) ( )
∞ ∞ ∂ χ ∂χ µ ∂  µ = χ µ µ =

∂ ∂ ∂∫ ∫ 0

0 0

t,S,
d t,S, d ,

t t t
	  (9)

( ) ( )
∞ ∞ ∂ χ ∂χ µ ∂  ⋅µ µ = µ⋅χ µ µ =

∂ ∂ ∂∫ ∫ 1

0 0

t,S,
d t,S, d ,

S S S
	 (10)

( ) ( )
∞ ∞∂χ µ

⋅ µ = ⋅ χ µ =
∂µ∫ ∫

0 0

t,S,
f(t,S) d f(t,S) d t,S, 0, 	  (11)

∞ ∞

∞ ∞

  φ µ µ µχ µ µ − µχ µ µ =   
  

= µχ µ µ − µχ µ µ =

∫ ∫

∫ ∫

   

  

0 0

0 0

(t,S, , ) (t,S, ) d (t,S, ) d

(t,S, )d (t,S, )d 0.  	 (12)

By substituting (9)–(12) into (8), we obtain the equa-
tion of the production line model in the one-moment descrip-
tion [4–6, 8]. 

∂ χ ∂ χ      + =
∂ ∂

0 1 0,
t S

			    (13)

representing the law of conservation of the number of objects 
of labor in the production process. The equation (13), used to 
simulate the behavior of the state of the production line pa-
rameters in the one-moment description is not closed. There 
are a number of models using different approaches to close 
the equation (13). Let us consider one of them in detail. The 
approximate PDE model, containing the equation (13) and 
the closing Graves equation of state χ = a ⋅ χ ⋅      1 0

с, where 
a=const is the technological constant, с=const (m/h) is the 
assembly line speed is used for description of assembly lines:

∂ χ ∂ χ      + =
∂ ∂

0 1
(t,S) (t,S)

0,
t S

χ = a ⋅ χ ⋅      1 0
с. 			    (14)

By substituting the second equation into the first, we 
obtain

∂ χ ∂ χ      + =
∂ ∂

0 0
(t,S)

g 0,
t S

= a ⋅ =a c 0. 			    (15)

Let us supplement (15) with initial and boundary con-
ditions

χ = θ  0
(0,S) (S),

χ = ϕ  1
(t,0) (t), 		  (16)

the form of which determines the initial distribution of ob-
jects of labor along the production line and the inflow rate of 
objects of labor, defined by the order book at the beginning 
of the production line, where

χ = θ = χ = ϕ      0 1
(0,0) (0) (0,0) a (0) a.

Let us write down the characteristic system of equations 
and the corresponding first integral of movement for (15):

=
dt dS

,
1 a

 − =S gt const. 			   (17)

In view of (17), the solution of the equation (15) has the 
form

χ =  0
(t,S) W(R),  = − R S at. 			   (18)

By substituting the solution (18) into the equation (15), 
we obtain the identity

( )

∂ ∂
+ =

∂ ∂
∂ ∂ = − = − ⋅ ≡  ∂ ∂

dW(R) R dW(R) R
a

dR t dR S
dW(R) R R dW(R)

a a a 1 0.
dR t S dR

 	 (19)

Using the initial condition (16) and the boundary condi-
tion (16) for the equation (15), we write down the solution

( ) ( )χ = θ + ϕ −  0
(t,S) (R)H R (R / a)H R ,

( )
<

= =
 >

0,    if   R 0;

H R 0.5, if    R 0;

1,    if    R 0,

	 (20)

where H(R) is the Heaviside function. In general, the model 
shall be supplemented with the equations of constraints that 
impose limitations on the equipment performance and the 
use of technological resources.

6. The balance equation for the first moment. The law of 
conservation of the rate of movement of objects of labor 

on the flow route

Let us integrate the terms of the balance equation (6) 
when k=1:

∞ ∞ ∞

∞ ∞

∂χ ∂χ ∂χ
µ µ + µ µ + µ µ =

∂ ∂ ∂µ

  = λ φ µ µ µχ µ µ − µχ µ µ 
  

∫ ∫ ∫

∫ ∫    

2

0 0 0

Plant
0 0

d d f(t,S)d
t S

(t,S, , ) (t,S, )d d . 	 (21)

Using the notations for the initial moments (4), we ob-
tain by analogy with (9)–(12)

( )∞ ∂ χ ∂χ µ  µ µ =
∂ ∂∫ 1

0

t,S,
d ,

t t
 

( )∞ ∂ χ ∂χ µ  µ µ =
∂ ∂∫ 2 2

0

t,S,
d ,

S S
		   (22)

( )

( ) ( )

∞

∞

∂χ µ
µ µ =

∂µ

  ∂ µχ µ = − χ µ µ = − χ     ∂µ 

∫

∫

0

0
0

t,S,
f(t,S) d

t,S,
f(t,S) t,S, d f(t,S) , (23)
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∞ ∞

ψ

  φ µ µ µ⋅χ µ µ − µχ µ µ µ =   
  
 χ  = χ − χ        χ   

∫ ∫    
0 0

1

1 2
0

(t,S, , ) (t,S, ) d (t,S, ) d

. 	 (24)

By substituting (22)–(24) into (21), we write down 
the first-order balance equation with respect to the initial 
moments (6)

ψ

∂ χ ∂ χ      + − χ =  ∂ ∂
 χ  = λ χ − χ        χ   

1 2
0

1
Plant 1 2

0

f(t,S)
t S

. 	 (25)

By supplementing the equation (25) by the equa- 
tion (13), we obtain a system of equations of the two-moment 
description of the production line:

ψ

∂ χ ∂ χ ∂ χ ∂ χ              + = + − χ =  ∂ ∂ ∂ ∂
 χ  = λ χ − χ        χ   

0 1 1 2
0

1
Plant 1 2

0

0,      f(t,S)
t S t S

. 	 (26)

The system of equations (26) is not closed. By supple-
menting it with the equations

ψ
χ   χ − χ =      χ  

1

1 2
0

0,  
ψ

χ = χ      1 1
,  =f(t,S) 0,  	 (27)

we obtain a system of equations to describe the production 
line, known as two-moment PDE model using the Burgers’ 
equation:

∂ χ ∂ χ      + =
∂ ∂

0 1 0,
t S

 
∂ χ ∂ χ      + χ =  ∂ ∂

1 1
1

0.
t S

	 (28)

The system of equations (28) is closed. We will not dwell 
on the study of this model in the present work.

7. The balance equation for the second moment.  
The general system of balance equations for the flow 

parameters

Let us integrate the terms of the balance equation (6) 
when k=2:

∂ χ ∂ χ      + =
∂ ∂

0 1 0,     
t S

ψ
 χ ∂ χ ∂ χ        + − χ = λ χ − χ            ∂ ∂ χ   

11 2
Plant0 1 2

0

f(t,S) .
t S

(29)

Using the notations for the initial moments (4), we ob-
tain by analogy with (9)–(12)

( )∞ ∂ χ ∂χ µ  µ µ =
∂ ∂∫ 2 2

0

t,S,
d ,

t t
 

( )∞ ∂ χ ∂χ µ  µ µ =
∂ ∂∫ 3 3

0

t,S,
d ,

S S
(30)

( )

( ) ( )

∞

∞

∂χ µ
µ µ =

∂µ

  ∂ µ ⋅χ µ = − µχ µ µ = 
 ∂µ 

= − χ  

∫

∫

2

0

0

1

t,S,
f(t,S) d

t,S,
f(t,S) 2 t,S, d

2f(t,S) , 	 (31)

∞ ∞

ψ ψ

ψ

  φ µ µ µχ µ µ − µχ µ µ µ =   
  
   χ  σ   = + χ − χ            χ   µ    

∫ ∫     2

0 0

2
2

1  
2 1 3

0  

(t,S, , ) (t,S, ) d (t,S, ) d

1 , 	 (32)

By substituting (30)–(32) into (29), we write down the 
balance equation

ψ ψ

ψ

∂ χ ∂ χ      + − χ =  ∂ ∂
   χ  σ   = λ + χ − χ            χ   µ    

2 3
1

2
2

1  
Plant 2 1 3

0  

2f
t S

1 . 	 	 (33)

By combining (13), (25), (33), we write down the general 
system of equations for the flow parameters of the produc-
tion process:

ψ

∂ χ ∂ χ ∂ χ ∂ χ              + = + − χ =  ∂ ∂ ∂ ∂
 χ  = λ χ − χ        χ   

0 1 1 2
0

1
Plant 1 2

0

0,      f(t,S)
t S t S

,

+
−

∞ ∞

∂ χ ∂ χ      + + χ =  ∂ ∂
  = µ λ φ µ µ µχ µ µ − µχ   
  

∫ ∫    

k k 1
k 1

k
Plant

0 0

kf
t S

(t,S, , ) (t,S, ) d .

Note that the production line models in the three-mo-
ment description are not given in the literature.

8. Discussion of the results of constructing a system of 
equations for the multi-moment model of  

the production-line

The research justified the use of the kinetic equation 
in the development of a method for constructing a system 
of equations for the multi-moment model of the produc-
tion line, which is based on the statistical approach to the 
description of the production system. The basic observed 
macroscopic flow quantities, determining the state of the 
production line are formalized. The use of the integral-dif-
ferential kinetic equation of the production process, con-
sidering the processing of objects of labor as they move on 
the flow route has allowed obtaining the balance equations 
for the two-level description of the production line. This 
opportunity to construct a closed system of equations is 
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based on the methods of closure of the self-linking chain 
of balance equations by the small-parameter methods or 
by setting the equations of state for higher-order moments. 
It should be noted that the equation of state in the form of 
a clearing function for the balance equation closure with 
respect to the zero moment is widely used in foreign litera-
ture. In this regard, the limitations related to this method 
of constructing a closed system of equations are examined 
in detail. Another important factor is that the description 
of production lines does not involve the use of the initial 
moments χ  k

 (4) higher than the second due to both the 
complexity of construction of high-order balance equations 
using the phenomenological approach and definition of 
conditions for their closure. Due to this fact, the proposed 
construction method is of practical interest.

9. Conclusions

The statistical approach based on accounting the laws 
of interaction of objects of labor with manufacturing equip-
ment and with each other during processing is used when 
constructing a system of equations for the flow parameters 
of the production line.

The method of constructing multi-moment balance equa-
tions, allowing, unlike the known methods based on the phe-
nomenological approach, to write down the system of equa-
tions containing the required amount of flow parameters is 
given. The results are a continuation of the research carried 
out in [1, 3, 4] and are of scientific and practical interest to 
the design of control systems for modern production lines 
operating in transient conditions.
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