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1. Introduction

CRC-check belongs to the most commonly used methods 
of check in different information systems. From the time 
of its appearance in 1961 [1], this method has gained wide 
acceptance in the systems for data transmission, storage and 
compression. CRC is the method for detecting errors, which 
has very simple software and hardware implementation. But 
this advantage manifests itself only at the serial entering 
of input data, which was characteristic in the early years of 
development of information systems.

However, in contemporary high-speed data transmis-
sion, especially in the multichannel communication sys-
tems, large delays occur in the realization of procedures 
of searching for errors with the aid of traditional CRC. A 
basic direction of modern studies for solving the indicat-
ed problem is the parallelization of computations. At the 
engineering level, it was possible to partially accelerate 
the CRC computations. But the attempts to apply parallel 
processing to the traditional CRC cannot provide for the 
effective solution of the problem as a whole. On the other 
hand, new methods of CRC computation proposed over 
recent years require a strict mathematical substantiation of 
their ability to search for the assigned type of errors. That 
is why it is absolutely relevant to simultaneously solve the 
problems on the provision of high performance speed of 
CRC codes and on the detection of the maximum number 
of various data distortions by them.

2. Literature review and problem statement

CRC codes are a variety of the binary cyclic codes [2]. 
If for the traditional, that is, serial, CRC, it was sufficient 
to have a general theoretical base of cyclic codes, then for 
the high-speed parallel CRC there appeared a pressing need 
in adequate theory. Several directions of studies have been 
outlined over recent years.

In the hardware implementation of parallel CRC, high 
productivity of computations is achieved most frequently 
due to the use of the known parallel architectures (for 
example, pipelinability [3]). For accelerating the computa-
tions, data stream M is frequently split into the h-bit tuples 
(blocks), whose all bits are processed simultaneously, and  
the entire structure operates in the pipelining [4]. An 
increase in the performance speed may be also achieved 
through the optimization of structure of the field program-
mable gate array (FPGA), on which the coders and decoders 
of these encoders are realized [5].

A useful property of parallel CRC is the possibility of 
rapid replacement of the generator polynomial of code, that 
is, reprogrammability either with the aid of FPGA [5], or 
with the help of additional gates [6].

A basic method for accelerating the computations in the 
CRC software implementation is decreasing the size of the 
lookup tables [7, 8].

The use of special forms of polynomials in the hardware 
[6, 9] and software [8] implementation is one of the interest-
ing directions for the acceleration of computations. 

However, researchers frequently ignore the need for a 
strict mathematical substantiation of the approaches pro-
posed by them. For example, authors in [6, 9] propose special 
OZO-polynomials. They are conveniently calculated, but 
they cannot be applied in practice because of the short peri-
od of code generation.

It is equally important to check swiftly and to have a 
guarantee for the detection of the assigned type of errors. 
A lack of comprehensive approach to provide, with the aid 
of the CRC method, for both high speed operation and the 
detection of maximum number of errors in data streams, 
presents a problem in this area of information technologies, 
not resolved as yet. 

A key factor for the solution of this problem is the opti-
mum choice of mathematical tools. 

In recent years, new methods of describing CRC – 
z-transform [10] and automaton theory [4–6] have been 
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explored. Encoders and decoders of the CRC code are rep-
resented in the form finite automaton on the basis of the 
so-called F matrix. The matrix representation of automaton 
in the Galois fields is the basis of linear systems, proposed in 
[11] for the first time for the CRC codes.

Despite certain positive aspects (replacement of slow op-
erations of dividing the polynomials into more rapid opera-
tions of computing the internal states of linear systems), this 
theory does not make it possible to give a strict and vivid in-
terpretation of the both specified problems (high speed and 
check) in a complex. A theory of linear finite-state machine 
(LFSM), which is further examined in paper, demonstrates 
better possibilities in this regard.

3. The aim and tasks of the study

The aim of present work is to devise highly productive 
methods for the CRC computation with high detecting capa-
bility based on the mathematical tools of LFSM, and to solve 
relevant tasks of practical application of CRC.

To achieve the set aim, the following tasks are to be 
solved:

– to demonstrate the essence of the CRC codes from 
the positions of LFSM theory in the binary and non-binary 
Galois fields;

– to propose different methods for the parallel compu-
tation of the CRC codes with the aid of bit and symbolic 
LFSM;

– to demonstrate the peculiarities of highly productive 
CRC hardware and software implementation;

– to propose parallel CRC codes and to substantiate 
their detectivity capabilities based on LFSM theory.

4. CRC computation methods

Let us first note that there are two known interpreta-
tions of the abbreviation CRC: Cyclic Redundancy Code and 
Cyclic Redundancy Check [2]. 

Assume that data stream M of w bits length and pre-com-
puted check  parameter Σs, representing the compressed rep-
resentation of M, is transmitted by certain data transmission 
channel.

By the first interpretation of CRC, parameter Σs is con-
sidered as the check word of (n-k) length of the shortened cy-
clic code (k≥w) and the evidence of error-free transfer is the 
equality to zero of the calculated error syndrome Σr of this 
code. By the second interpretation of CRC, for the obtained 
data stream M, on the side of the receiver, checksum Σr is 
calculated and it is compared to the checksum Σs, calculated 
on the side of the transmitter.

In both cases, the method for computing check sum and 
check word may be identical, but the duration of computa-
tion can differ: k or n cycles in the first case and k cycles in 
the second case. And one more important difference in the 
first interpretation of CRC: capability not only to detect 
errors, but to correct them as well. 

Historically, the first method of CRC computation was 
polynomial: sequence M was considered as the row of binary 
coefficients of a certain polynomial f(x), which was divided into 
the assigned generator polynomial g(x), and the remainder of 
this division was the required CRC [1]. Naturally, the sequence 
of performing w operations of division requires too much time.

Usually they distinguish the methods of CRC compu-
tation depending on the means of realization of the com-
putational algorithm – software or hardware (with the aid 
of the linear feedback shift register (LFSR)). In this case, 
the essence of the algorithm for computations has remained 
practically constant over many decades: the bit-wise division 
of polynomial. 

Let us examine the methods for CRC computation de-
pending on the following two factors:

– the method of arrival of data stream M;
– the ratio of arrival rate of data stream M and produc-

tivity of the means of CRC computation.
Therefore, it is possible to distinguish between four 

methods of the CRC computation:
1) serial;
2) tuple-parallel;
3) symbolic-parallel;
4) symbolic-tuple-parallel.
The easiest method is the bit-wise arrival of input data 

and the equality between their arrival speed and perfor-
mance efficiency of the means of data processing. In other 
words, duration tsh of bit-wise shift in LFSR of encoder and 
decoder (duration of cycle step in the software cycles) is 
equal to period tb of arrival of the next bit of data stream M:

≈sh bt t .  

In this case, general duration of time T1 of the CRC 
serial computation will be determined by length w of data 
stream M:

=1 bT w t .

It is this foundation that the traditional approach to the 
CRC computation (Fig. 1) is based on.

Fig. 1. Serial method of the CRC computation

In practice, however, the speed of receipt of input data 
can by many times exceed the operating speed of the soft-
ware-hardware tools of code conversion, which creates a 
large reserve for the acceleration of CRC computation. Pro-
vided the condition is satisfied

= sh

b

t
h ,

t

then it is possible to process simultaneously the h-bit tuple of 
input information before arrival of the next portion of data  
(Fig. 2). Converter in Fig. 2 is the h-bit shift register, which 
converts serial binary code of h bits at the input into the par-
allel code (h-bit tuple) at the output. General duration of time 
T2 of the tuple-parallel CRC computation will amount to:

 

=2 b

w
T t .

h

Parallel CRC on the basis by fragment processing of data 
has already been proposed by some authors [4, 11].
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Fig. 2. Tuple-parallel method of the CRC computation

In the contemporary multichannel data-transmission 
systems, the parallel transmission of data is realized: bits 
of one byte or word (2, 4, 8 bytes) arrive simultaneously. 
Each byte or word may be interpreted as one h-digit symbol 
(h=8,16,32,64).

In the symbolic-parallel CRC computation, m symbols 
enter alternately (Fig. 3), and the symbolic-tuple-parallel 
method is a simultaneous processing of z symbolic tuples 
(Fig. 4). The converter in Fig. 4 is intended for convert-
ing the serial symbolic code into the parallel symbolic  
code.

If period tb of symbols arrival is equal to the duration of 
data processing in the encoder and decoder, then total dura-
tion of time 3T  of the CRC symbolic-parallel computation 
will amount to.

Fig. 3. Symbolic-parallel method of the CRC computation

= =3 b b

w
T m t t .

h

If a symbol’s bit capacity is equal to length h of tuple 
at the tuple-parallel method of CRC computation, then the 
duration of time 3T  will be nearly equal to the duration of 
time T2. (Let us note that here we are abstracted from the 
details of technical implementation and we examine only 
mathematical time). The symbolic-tuple-parallel method of 
CRC computation makes it possible to reach minimum time 

4T  of the computations:

=4 b

w
T t .

zh

Fig. 4. Symbolic-tuple-parallel method of CRC computation

All examined methods of CRC computation can be 
realized on the uniform mathematical tools – the LFSM 
theory. In all variants of the computations, which are 
represented in Fig. 1–4, different variants of hard-
ware implementation of LFSM as the encoders and de- 
coders. 

5. Theoretical basis of the CRC-codes

In order to comprehend the essence of CRC-codes, it is 
necessary to return to basics of the cyclic codes. Tradition-
al methods for the representation of cyclic codes (matrix, 
polynomial, algebraic) have played an important role in the 
formation of this class of the error correcting codes. Practice, 
however, presents new problems and new approaches are 
required for their solution.

A number of authors proposed to use for the CRC-codes 
the theory of linear systems [11] while others focused atten-
tion on the theory of finite automaton [4]. It is expedient to 
combine these directions. Then we shall obtain a new type of 
the finite automaton, which one may call the linear automa-
ton or, to be more precise, by LFSM. 

According to [12, 13] LFSM with l inputs, m outputs and 
r memory elements in the discrete time clock t over GF(2)  
(binary LFSM) is defined by the transition (state) function 

+ = × + ×S(t 1) A S(t) B U(t),  GF(2) 		   (1)

and output function

= × + ×Y(t) C S(t) D U(t), GF(2), 		   (2) 

where 

×
= ij r r

A a ,
×

= ij r l
B b ,

×
= ij m r

C c ,
×

= ij m l
D d  

are the characteristic LFSM matrices; = i r
S(t) s  is the word 

of state; = i l
U(t) u  is the input word; = i m

Y(t) y  is the out-
put word. 

The dimensionalities of LFSM matrices and parameters 
of cyclic (n, k)-code Ω are connected through coefficient r, 
which for the code is equal to the number of the check bits of 
check word at systematic coding. 

The simplest hardware implementation of r-bit LSC 
LFSM is LFSR, which consists of r flip-flops and certain 
quantity of gates XOR.

Different types of LFSM and corresponding charac-
teristic LFSM matrices are possible [13]. Binary LFSM 
with one input and one output can be recursive (for sys-
tematic encoding) and non-recursive (for unsystematic 
encoding). In the direct (inversable) LFSM, the direction 
of data shift in the flip-flops coincides (oppositely) with 
the numeration of flip-flops. Depending on the interrela-
tion between flip-flops and gates XOR, there are LFSM of 
different types. The following ones are the most common 
of them: 

– LFSM of type 1 (Galois type according to terminology 
[13], two-input gates XOR in them are located between the 
flip-flops);

– LFSM of type 2 (F type according to terminology  
[6, 11]);

– LFSM of type 3 (Fibonacci type, according to termi-
nology [13], one multi-input gate XOR in them is located 
before one flip-flop).

To cyclic (n, k)-code Ω with the generator polynomial

−
−= + + + + r 1 r

0 1 r 1 rg(x) g g x g x g x ,  GF(q), 	  (3)

correspond to the recursive LFSM of type 1 with the char-
acteristic matrices 
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or recursive LFSM of type 2 with the characteristic matrices
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=   C 0 0 0 1 , =   D 0 , 		   	  (5)

or recursive LFSM of type 3 with the characteristic matrices

−
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  



0

0

B ,

0

1

 

=   C 1 0 0 0 , =   D 0 . 		   (6)

The entries of the last column of matrix A from (4), the 
entries of matrix B and of the first column of matrix A from 
(5), and entries of the last row of matrix A from (6), are the 
constant coefficients of the generator polynomial (3). 

The automaton representation of cyclic codes has two 
models: automaton-analytical and automaton-graphical [13]. 
Automaton-analytical model, examined above, based on the 
characteristic LFSM matrices, is used for developing the 
algorithms of encoding and decoding. Automaton-graphical 
model is convenient for the visual representation of the es-
sence of the code transformations procedures.

As an automaton-graphical model, it is possible to select 
the state diagram of LFSM as automaton. For r-dimensional 
LFSM above field GF(2), this state diagram is the directed 
graph GFA(VFA, EFA), in which 2r vertices from the set of 
vertices VFA correspond to 2r internal states of automaton, 
while zero and unity edges from the set of edges EFA show 
the directions of transitions between internal states. The 
separate vertices of graph GFA with the aid of zero edges 
are combined in the zero cycles (ZC). We shall distinguish 
trivial ZC, which consist of one vertex, and full ZC, which 
consist of n vertices.

The states of LFSM correspond to vertices of graph FAG  
therefore they create their ZC of the same structure.

The LFSM under consideration over the Galois field 
GF(2) are applied at the serial arrival of input data and 
processing at each time cycle of only one input bit. But if 
the input data arrive byte-by-byte or word-by-word (that 
is, the groups of input bits enter simultaneously), then for 
such methods of the CRC computation (symbolic-parallel 
and symbolic-tuple-parallel, according to our terminolo-
gy), LFSM over the non-binary Galois fields are required.

Assume that in each clock cycle a group of h input bits 
(h=8, 16, 32, 64) is entered. Then it is necessary to deter-
mine Galois field GF(q), where q=ph. In practice, they usual-
ly use the case p=2, therefore, for computing the elements of 
field GF(q), we shall use LFSM over field GF(2), which will 
be named as binary. This LFSM is determined with the aid 
of formulas (1) and (2). Matrix A of binary LFSM contains 
coefficients of the primitive polynomial

− −
− −= + λ + λ + + λ + λ +2 h 2 h 1 h

b 1 2 h 2 h 1g (x) 1 x x x x x ,

what is used for the construction of the field GF(2) .
The zero element α0 of field GF(2h) will be correspond-

ed to by the word of zero state S(0) of binary LFSM. The 
remaining elements of field GF(2h) can be calculated by 
formula:

−α = × αi i 1A ,  = −hi 1,2, ... ,2 1.

Now, over Galois field GF(q), it is possible to determine 
LFSM (let us name it symbolic), which is defined by transi-
tion (state) function

+ = × + ×q qS(t 1) A S(t) B U(t),  GF(q), 		   (7) 

and output function

= × + ×q qY(t) C S(t) D U(t),  GF(q). 	  	  (8)

In order to obtain characteristic matrices Aq, Bq, Cq, Dq 
of symbolic LFSM, it is necessary at first to define the gen-
erator polynomial of CRC-code. 

Finally, upon definition of the Galois field GF(q), it is 
possible to perform the operations of encoding and decod-
ing in relation to input symbols for the purpose of the CRC 
computation. 

The advantage of LFSM theory in comparison with the 
theory of linear systems is its deeper and more comprehen-
sive development, which makes it possible to effectively use 
it for the ground of different aspects of CRC.

6. Encoding the CRC-codes

The stage of encoding is necessary only at the interpreta-
tion of CRC as the shortened cyclic (n, k)-code. In this case, 
data stream M of length w can be considered as the w-bit 
information word J (w≤k). After word J, r-bit check word Ψ  
is transmitted, calculated on the side of transmitter accord-
ing to the algorithm of systematic encoding (n=k+r) [14].  

Without loss of generality, from now on we shall examine 
cyclic (n, k)-code of full length, that is, w=k.

Words J and Ψ can be considered as a single code word 
P, with which to perform on the side of receiver its usual 
decoding, that is, to calculate at n-th cycle the syndrome of 
error Serr. Zero syndrome Serr will testify to the error-free 
transfer.

As already mentioned, CRC in the form of check word Ψ 
makes it possible both to detect errors and to correct some 
of them. Additional charges are the price for this possibility: 
complication of the CRC computation and certain increase 
in the duration of its computation (not exceeding r cycles). 
Under what conditions is it possible to minimize these ex-



Information and controlling systems

49

penditures? An answer to this question is easy to obtain 
within the framework of theory of LFSM.

From the positions of theory of LFSM, cyclic (n, k)-
code Ω is a set of all sequences of length n, which transfer 
LFSM from certain initial state Sbeg(t) back again to state 
Sbeg(t). Each such sequence is the code word P of code Ω. 
As the state Sbeg(t), we shall from now on examine the zero 
state S(0). 

It is known from the theory of LFSM [12] that under the 
action of the assigned k-bit information word J, LFSM will 
pass from initial state S(0) to a certain state S(k), which it is 
determined from equation

= × + ×k
kS(k) A S(0) L J,  GF(2),

where 

− − = × × × k 1 k 2
kL A B, A B, , A B, B ,  

A, B are the characteristic matrices of LFSM. 
For obtaining code word P, it is necessary to determine 

the check word Ψ of length r, which will convert LFSM from 
the state S(k) back to the state S(0). Word Ψ is determined 
from equation

= × + × Ψr
rS(n) A S(k) L ,  GF(2), 		   (9)

where 

− − = × × × r 1 r 2
rL A B, A B, , A B, B .

Since S(n)=S(0), equality (9) may be written down as

× Ψ = ×r
rL A S(k). 			    (10)

In equation (10), the only unknown is the word Ψ, that 
is, CRC. Complexity and duration of computing Ψ depends 
on the structure of matrices A and Lr. By selecting different 
variants of characteristic matrices A and B, it is possible to 
obtain the correspondent matrix Lr. The only requirement to 
matrix Lr is that its rank must be equal to r, which ensures 
r-controllability of corresponding LFSM and strong con-
nectedness of graph models. 

It is proven in [13] that matrix Lr for characteristic ma-
trices (4) takes the form:

 
 
 
 =
 
 
  





    





r

0 0 0 1

0 0 1 0

L .

0 1 0 0

1 0 0 0

		   (11)

As a result, systematic encoding of CRC (n, k)-code with 
the aid of recursive LFSM of type 1, which is assigned by 
characteristic matrices (4), can be performed either in k or in 
n cycles. But in the first case, for finding word Ψ, it will be re-
quired to solve a system of r linear equations over field GF(2).

It is also proven in [13] that the systematic encoding of 
CRC (n, k)-code with the aid of recursive LFSM of type 3, 
assigned by characteristic matrices (6), can be conducted 
during k or n cycles after sending information word J to its 
input. But, in contrast to LFSM of type 1, in both cases it is 
necessary to solve the system of r linear equations. 

The particularity of LFSM of type 2 is the equality of 
matrices Ar and Lr. Then equation (10) can be written down as

Ψ = S(k). 				     (12)

Therefore, according to the state S(k), calculated in the 
k-th cycle in (12), it is possible to immediately obtain the 
components of word Ψ. Thus, with the aid of LFSM of type 2, 
it is possible to obtain the check word of the code most rapidly. 

Maximum gain in time is not more than r cycles. In 
practice, however, data streams have sufficiently large length 
(n>>r, w>>r), therefore this gain will be insignificant.

The main problem in the CRC computation consists 
in the acceleration of processing of the entire w-digit data 
stream M independent of the interpretation of CRC. The 
algorithm itself of the accelerated CRC computation will be 
the same both on the side of transmitter and on the side of 
receiver.

7. Tuple-parallel method of the CRC computation

We shall from now on consider the value of h tuple to be 
equal to dimensionality r of LFSM because this variant is 
the most convenient for practical realization.

Let there be r-controlled LFSM, which is in certain state 
S(i). The property of r-controllability guarantees the exist-
ence of input sequence uij of length not exceeding r, which 
provides for the possibility of transfer of LFSM in r cycles 
from state S(i) into any assigned state S(j). We shall name 
an iteration the time interval, necessary for the transfer from 
state S(i) to state S(j).

In the automaton-graphical model of r-controlled LFSM 
(in graph GFA) there is a directed path from r zero and unity 
edges from vertex vi that corresponds to state S(i) to vertex 
vj, corresponding to state S(j). 

Therefore, it is possible to pass from certain initial vertex 
vbeg of graph GFA to the assigned final vertex vend by indicat-
ing only each r-th vertex of the path. In the automaton-ana-
lytical model of LFSM, which is examined below, only each 
its r-th state will be computed.

Let there be k-bit information word J. Let us separate  
 word J into r-bit tuples u(i) (

 ∈ = ÷ −  
w

u(i) J, i 0 1
r

 where   x  

is the rounding to the nearest whole towards the larger side). 
We shall assume that symbols enter communication channel 
from the left side. If length of the first left tuple u(0) will be 
less than r, then it is possible to complement it from the left 
to r by insignificant zeros, which will increase length k  of 
the information word to ′′k .

Theorem 1. A tuple-parallel method of the CRC compu-
tation as the checksum of information word J of length ′′k  
with the aid of r-input recursive LFSM of type 1, assigned 
 
by characteristic matrices (4), can be performed in 

′′k
r

 sin-

gle-cycle iterations.
Proof. It is known from the theory of LFSM [12] that if the 

r-input LFSM in the i-th cycle was found in state S(i), then, 
after applying to its inputs r-bit tuple u(j), it will pass into state

 GF(2). 		  (13)

Since LFSM with characteristic matrices (4) has identi-
ty matrix Lr (11), then equation (13) can be written down as

+ = × + ×r
rS(i r) A S(i) L u(i),
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× = × + ′rS(i r) A S(i) u (i),  GF(2), 		   (14)
 

where ′u (i)  is the tuple u(i) with the mutual transposition 
between the high-order digits and low-order digits:

− +=j r j 1u (i) u (i),  ∈ ′ju (i) u (i),  − + ∈r j 1u (i) u(i).

Expression (14) differs from transition function (1) of 
single-input LFSM by the presence of matrix Ar instead of 
matrix A. Matrix Ar can be prepared in advance; which is 
why state S(i+r) can be computed in one automaton cycle. 
Therefore, final state ′′S(n ), that is, CRC, will be reached in  
 ′′k
r

 automaton cycles of the LFSM operation. 

Example 1. For the cyclic (15,11)-code with the generator 
polynomial = + +3 4g(x) 1 x x  and LFSM of type 1, to calcu-
late CRC for information word:

=   J 1 1 0 1 1 0 0 1 0 1 0 . 	  (15)

For the assigned g(x), characteristic matrices of LFSM 
and its initial state are equal to:

 
 
 =  
 
 

0 0 0 1

1 0 0 0
A ,

0 1 0 0

0 0 1 1

 

 
 
 =  
 
 

4

1 1 1 1

0 1 1 1
A ,

0 0 1 1

1 1 1 0

 

 
 
 =  
 
 

1

0
B ,

0

0

 

 
 
 =  
 
 

0

0
S(0) .

0

0

We shall form 3 tuples for the assigned word J (with re-
gard to the transposition of digits):

 
 
 =  
 
 

0

1
u(1) ;

1

0
 

 
 
 =  
 
 

0

0
u(2) ;

1

1
 

 
 
 =  
 
 

0

1
u(3) .

0

1

In accordance with (14), we shall alternately form states 
S(3), S(7), and S(11). 

       
       
       = × + = × + =       
       
       

4

1 1 1 1 0 0 0

0 1 1 1 0 1 1
S(3) A S(0) u(1) ,

0 0 1 1 0 1 1

1 1 1 0 0 0 0

       
       
       = × + = × + =       
       
       

4

1 1 1 1 0 0 0

0 1 1 1 1 0 0
S(7) A S(3) u(2) ,

0 0 1 1 1 1 0

1 1 1 0 0 1 1

       
       
       = × + = × + =       
       
       

4

1 1 1 1 0 0 1

0 1 1 1 0 1 0
S(11) A S(7) u(3) .

0 0 1 1 0 0 1

1 1 1 0 1 1 1

The computed state S(11) for the assigned type of 
LFSM appears to be CRC as the checksum, it took three 
iterations and three automaton cycles for its computation. 
For obtaining CRC as the check word for the information 
word (15) of the cyclic code, one additional iteration is 
necessary:

 

     
     
     = × = × =     
     
     

4

1 1 1 1 1 1

0 1 1 1 0 0
S(15) A S(11) .

0 0 1 1 1 0

1 1 1 0 1 0

	 (16)

As we already mentioned in the previous chapter, it 
would be possible to find the check word for LFSM of  
type 1 without computations (16), but in order to achieve 
this, it would be necessary to solve a system of four equa-
tions above field GF(2). 

Theorem 2. A tuple-parallel method of the CRC compu-
tation as the checksum of information word J of length ′′k  
with the aid of r-input recursive LFSM of type 2, assigned  
 
by characteristic matrices (5), can be performed in 

′′k
r

 dou-

ble-cycle iterations.
Proof. Similar to the preceding case, word Ψ and state 

S(k) are connected by equation (13). 
Let us examine in more detail the process of forming 

the matrices Ar and Lr. It is easy to note that matrix Ai 
contains the first columns of matrices A, A2,…, Ai–1, re-
spectively, in the i-th place, in the (i –1)-th place,…, in the 
2nd place (i=2÷r). On the other hand, the product AiВ is 
equal to the value of the first column of matrix Ai+1. As a 
result, for the matrices of form (5), the Lr and Ar matrices 
will be equal. Therefore, equation (13) can be written 
down as

 

GF(2).  				     (17)

Expression (17) can be computed in 2 automaton cycles 
only:

1) computation of the intermediate state: 

GF(2),

2) computation of the desired state: 

+ = × ′′rS(i r) A S (i),  GF(2),

Therefore, the final state, that is, CRC will be reached  
 
in 

′′k
r

 iterations, each duration for two cycles of the LFSM 

operation.
Theorem 3. The tuple-parallel method of the CRC com-

putation as the checksum of information word J of length ′′k  
with the aid of r-input recursive LFSM of type 3, assigned 

by characteristic matrices (6), can be performed in 
′′k

r
 

 three-cycle iterations.
Proof. For computing the equation (13), in a general case, 

three cycles are necessary:

a)  = ×′ rS A S(i),  GF(2),

b)   GF(2),

c)  + = +′ ′′S(i r) S S ,  GF(2).

Then CRC will be calculated in 
′′k

r
 iterations, each du- 

 
ration three automaton cycles of the LFSM operation. But if 

+ = × + × = × +r r rS(i r) A S(i) A u(i) A (S(i) u(i)),

= +′′S (i) S(i) u(i),

= ×′′ rS L u(i),
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we simultaneously compute intermediate values ′S  and ′′S ,  
 then 

′′k
r

 double-cycle iterations are required. 

Thus, for the tuple-parallel method of the CRC com-
putation with the aid of r-input LFSM of type 1, there will 
be required two times less time in comparison with r-input 
LFSM of type 2 or three times less time than for the LFSM 
of type 3. 

The CRC value, calculated with the aid of LFSM of 
different types for one and the same information word J, will 
be identical.

8. Symbolic-parallel method of the CRC computation

A symbolic-parallel method of the CRC computation can 
be used when the input data enter in the form of symbols, 
which consist of h bits (h=2÷64). Usually, such symbolic 
data are converted into binary format and then the check-
sum is calculated in the traditional binary form. 

Let us examine of CRC computation in the symbolic 
format over Galois field GF(2h) according to (7) and (8). As 
already mentioned, solving of these tasks is possible with the 
aid of two LFSM: binary LFSM for computing the elements 
of field GF(2h) and symbolic LFSM for the formation of 
CRC over field GF(2h).

For the computations over field GF(2h), it is necessary to 
select the appropriate generator polynomial. In the binary 
Galois field, the best choice for the computation of CRC is 
the generator polynomials of the Hamming codes and the 
Abramson codes [2]. Analogous approach can be applied also 
to the non-binary Galois fields.

It is known that in the non-binary Galois fields, the 
codes with primitive generator polynomial gs(x) have maxi-
mum length and make it possible to correct single symbolic 
errors; therefore, by analogy with field GF(2), we shall name 
them the non-binary Hamming codes. Let us note that [14] 
gives another definition for the non-binary Hamming codes. 

In order to detect the maximum number of errors, let us 
multiply polynomial gs(x) by term (α0+α0x):

hGF(2 ), 		  (18)
 

where α0 is the element of field GF(2h). 
As a result of multiplication by term (α0+α0x), the num-

ber of ZC of the corresponding length increases by 2h times 
in the graphical model of the code, which considerably im-
proves the correcting and detecting capability of the code. 
Taking into account similar approach to the formation of 
generator polynomial of the Abramson code, we shall name a 
code with polynomial (18) over field GF(2h) the non-binary 
Abramson code.

Example 2. Let us assume that two-bit symbols are 
transmitted by the channel, that is, 2 bits of information 
are transmitted in parallel. Let us examine the CRC com-
putation for such input stream. The computations will be 
carried out with the aid of symbolic LFSM over Galois 
field GF(4). 

We shall consider field GF(4) as the extension field 
GF(22) of field GF(2). Let us determine the elements of 
field GF(22) with the aid of primitive generator polynomial 

= + + 2g(x) 1 x x  of the binary field. For the specified gener-
ator polynomial, characteristic matrices of binary LFSM of 
type 1 take the form:

 
=  

 
h

0 1
A ,

1 1
 

 
=  

 
h

1
B .

0

Let us determine the states of binary LFSM according 
to (1):

 
=  

 

0
S(0) ;

0  

 
=  

 

1
S(1) ;

0  

 
= × =  

 

0
S(2) A S(1) ;

1  

 
= × =  

 

1
S(3) A S(2) .

1

The obtained results can be presented in the form of the 
elements of field GF(22): 0, α0,  α1, α2  or 0, 1, 2, 3. 

Let us select the primitive generator polynomial over 
field GF(4)

= α + α + α1 0 0 2
sg (x) x x ,  2GF(2 ), 		  (19)

to which such characteristic matrices of symbolic LFSM of 
type 1 correspond:

 α
=  α α 

1

s 0 0

0
A ,

 

 α
=  

 

0

sB .
0

The property of the primitiveness of polynomial can be 
confirmed analytically: if in the (n+1)-th iteration of com-
putations according to formulas (1) at U(t)=0 we obtain 
S(n+1)=S(1), then this generator polynomial of the (n, k)-
code is primitive [2, 15]. 

A cyclic code with polynomial (19) can be considered as 
the non-binary Hamming (15,13)-code. From it, according 
to (18), it is possible to obtain the non-binary Abramson 
(15,12)-code with generator polynomial

 

2GF(2 ),  		   (20)

The following characteristic matrices of symbolic LFSM 
of type 1 correspond to polynomial (20):

 

In order to evaluate the correcting and detecting capa-
bilities of the examined codes, it is sufficient to analyze the 
graphical models of LFSM of these codes [16]. 

The graphical model of the non-binary Hamming code 
with generator polynomial (19) consists of one full ZC of 
length 15 and trivial ZC of length 1. This code makes it 
possible to correct the single symbolic errors (two-bit bursts 
errors of length 2) and to detect a larger number of errors of 
larger multiplicity.

The graphical model of the non-binary Abramson code 
with generator polynomial (20) consists of four full ZC of 
length 15 and four trivial ZC of length 1. This code makes it 
possible to correct the single symbolic errors (bursts errors 
of length 2 bits), the bursts symbolic errors of length two 
(bursts errors of length 4 bits) and to detect all symbolic 
errors of the double and odd multiplicity [16].

Let us remind that the serial entering of symbols from 
the channel has been assumed until now, and parallelism is 

= α + α0 0
a sg (x) g (x)( x),

= α + α + α α + α = α + α + α1 0 0 2 0 0 1 2 0 3
ag (x) ( x x )( x) x x ,

 α
 = α α 
 α 

1

0 2
a

0

0 0

A 0 ,

0 0

 α
 =  
  

0

aB 0 .

0
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provided for by processing the symbols, not separate bits. 
But at rapid arrival of symbols, it is possible to organize 
double parallelism, that is, to process the tuples of symbols. 

The principle of symbolic-tuple-parallel method of the 
CRC computation is no different from the tuple-parallel 
method of the CRC computation, with the exception of the 
fact that instead of the binary cyclic codes, their non binary 
analogs are used.

9. Hardware implementation of accelerating  
the CRC computation

Hardware implementation of LFSM over Galois field 
GF(2) includes only two types of the basic elements:

– delay elements (flip-flops);
– the adders of the field elements (gates of logical oper-

ation XOR).
There is a mutually one-one mapping between the char-

acteristic matrices of LFSM (4)–(6) and its hardware imple-
mentation [12]. Matrix A determines the interconnections 
of flip-flops. If the entry aij of the matrix A is equal to unity, 
then there must exist a connection between the output of the 
j-th flip-flop and the input of the i-th flip-flop, but if aij=0, 
then the connection between the specified flip-flops is ab-
sent. Matrix B  determines the structure of LFSM inputs: if 
the entry bij of the matrix B is equal to unity, then there must 
exist a connection between the j-th input of LFSM and the 
input of the i-th flip-flop, but if bij=0, then this connection 
is absent. 

As was analytically shown in the previous section, the 
fast-speed encoders and decoders use not a usual charac-
teristic matrix A, but its r-th degree Ar (it is possible to 
take a lower degree, but then the performance will decrease 
proportionally).

The principle of the hardware implementation of matrix 
Ar is no different from the described principle of the hard-
ware implementation of matrix A. Additional difficulties 
may arise only in the implementation of increased quantity 
of gates XOR. In fact, this is an usual task of optimal syn-
thesis of the switching circuit (SC) from the gates XOR. It 
is possible to select either a variant with a minimal delay 
in the transmission of signals in SC or the variant with the 
minimum number of gates XOR. 

A basic difference between r-input LFSM (LFSM based 
on matrix Ar) and usual single-inputLFSM is in the simul-
taneous. receipt of the r-bit tuple u(j) on its inputs. Table 1 
shows the LFSM structures, which are used as the encoders 
and decoders according to Fig. 1–4.

We shall analyze below particularity of the practical im-
plementation of encoders and decoders based on fast speed 
LFSM of types 1, 2 and 3. 

Fig. 5 shows a generalized circuit of r-input LFSM  
of type 1. Its functioning is described according to equa- 
tion (14).

During one cycle of the LFSM operation, the next state 
S(i+r) of LFSM is formed on the basis of the preceding state 
S(i) and parallel input tuple u(i). According to theorem 1, 
 
LFSM of type 1 may require 

′′k
r

 cycles of automaton time 

for CRC computation. For this LFSM, automaton cycle is 
realized by one hardware clock pulse.

Fig. 6 shows a generalized circuit of r-input LFSM of 
type 2. Its functioning is described according to equa- 

tion (17). For the hardware formation of the next state 
S(i+r), two clock pulses from the current state S(i) should be 
transmitted to LFSM: by the first clock pulse, with the aid of 
shift register and gates XOR1, intermediate word S(i)+u(i) 
is formed, while by the second – with the aid of shift register 
and gates XOR2, the new state S(i+r) is calculated.

Table 1 

LSC structures for 4 methods of the CRC computation

Computation  
methods 

Encoder Decoder

Serial binary LFSM, 1=output binary LFSM, 1-input

Tuple-parallel binary LFSM, 1-output binary LFSM, h-input

Symbolic- 
parallel

symbolic LFSM, h-output
symbolic LFSM, 

h-input

Symbolic- 
tuple-parallel

symbolic LFSM, h-output
symbolic LFSM, 

z×h-input

Fig. 5. Generalized circuit of r-input LFSM of type 1

Fig. 6. Generalized circuit of r-input LFSM of type 2

The generalized circuit of r-input LFSM of type 3 is 
shown in Fig. 7. Its functioning is described according to 
Theorem 3. For the hardware formation of the next state 
S(i+r), it is necessary to feed three clock pulses from the 
current state S(i) to LFSM.

Fig. 7. Generalized circuit of r-input LFSM of type 3

By the first clock pulse, shift register 1 and gate XOR1, 
the computation of expression = ×′ rS A S(i),  GF(2)  is per-
formed. By the second clock pulse, with the aid of shift reg-
ister 2 and gate XOR2, the expression  GF(2) 
is calculated. By the third clock pulse, with the aid of gates 
XOR3, state S(i+r) is formed.

r
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Thus, mathematical acceleration of the procedures for 
encoding and decoding is differently realized in practice. 
More preferable are the fast speed LFSM of type 1. 

The principles of hardware implementation of LFSM 
over field GF(2h) are analogous to the above-presented 
principles in the binary Galois field, but there are two 
basic differences. At first, the elements of multiplica-
tion by the constant are added, secondly, all three basic 
elements are more difficult to realize in the non-binary 
Galois field.

10. Software implementation of accelerating  
the CRC computation

A hardware method of the CRC computation is the fast-
est; however, it cannot be always realized in practice. That 
is why a software method for the CRC computation is used 
more frequently. 

The software method is slower and it is of course rel-
evant to accelerate the process of computations. Solving 
this problem is possible on the basis of the automaton 
representation of the CRC-codes. The principle of ac-
celeration is the same as with the hardware implemen-
tation – the computation of LFSM states with a certain 
interval, avoiding intermediate states. For the generator 
polynomial (3), it is possible to compute states only with 
interval r:

+ +S(i), S(i r), S(i 2r).... 

The theoretical substantiation of this method of compu-
tation has been already presented in theorems 1–3. But what 
is the peculiarity of software implementation? 

An analysis of formula (13) reveals that for the transfer 
from state S(i) to next S(i+r), the computation of term 

×rA S(i),  GF(2). 				    (21)

is the most difficult part of this formula.
In the hardware CRC implementation, matrix Ar is 

realized by a change in quantity and connections of gates 
XOR, which causes almost no influence on the speed of 
computations. In order not to waste time on each iteration 
for the complicated computation of matrix Ar, it is possible 
to calculate in advance and to store in the memory the values 
of term (21) for all possible values of state S(i). This is ba-
sically a popular method for the software CRC computation 
based on the tables lookup [7, 8]. With the aid of this table, 
it is possible to form the corresponding state S(i+r) for each 
address (state S(i)).

It is necessary to note the difference in the work with 
tables lookup for LFSM of different types. For LFSM of 
type 1, it is sufficient to have one table, formed with the 
aid of matrix Ar. As follows from Theorem 2, for LFSM of  
type 2, also one table lookup is used based on the matrix Ar, 
but it is approached twice in each iteration. As follows from 
Theorem 3, for LFSM of type 3, it is necessary to have two 
tables lookup, one based on matrix Ar, and the second one – 
formed with the aid of matrix Lr. 

Let us examine the algorithms for the CRC computation 
as the checksum by the tuple-parallel method with the aid of 
the tables lookup for different types of LFSM (both on the 
side of transmitter and on the side of receiver). 

Algorithm 1. CRC computation for LFSM of type 1 
Initial data:
– characteristic matrices A, B and initial state S(0) of 

LFSM; 
– table lookup;
– data stream M of length ′′k  split into r-bit tuples u(i). 
1. Assign the number of iteration i=0.
2. By the tabular address, equal to ×S(i r),  to find tab-

ular value σ(i).
3. To compute the following state of LFSM:

 + = σ + ′S((i 1)r) (i) u (i),  GF(2),

where u’(i) is the tuple u(i) with the mutual transposition 
between the low-order and high-order digits:

− +=j r j 1u (i) u (i),
 − +∈ ∈′j r j 1u (i) u (i), u (i) u(i),

4. Assign = +i i 1.  If 
′′≤

k
i

r
 then go to 2.

5.  +S((i 1)r)  – CRC as the checksum.
6. End.

Algorithm 2. CRC computation for LFSM of type 2. 
Initial data:
– characteristic matrices A, B and the initial state S(0) 

of LFSM;
– table lookup;
– data stream M of length ′′k , split into r-bit tuples. 
1. Assign the number of iteration i=0. 
2. By the tabular address, equal to ×S(i r),  to find tab-

ular value σ1(i). 
3. By the tabular address, equal to u(i), to find tabular 

value σ2(i). 
4. To compute the following state of LFSM:

+ = σ + σ1 2S((i 1)r) (i) (i),  GF(2),

5. Assign = +i i 1.  If 
′′≤

k
i ,

r
 then go to 2.

6.  +S((i 1)r)  – CRC as the checksum.
7. End.

Algorithm 3. CRC computation for LFSM of type 3. 
Initial data: 
– characteristic matrices A, B and the initial state S(0) 

of LFSM; 
– two tables lookup;
– data stream M of length ′′k ,  split into r-bit tuples.
1. Assign the number of iteration i=0. 
2. In the first table, by the address, equal to ×S(i r),  to 

find tabular value σ1(i). 
3. In the second table, by the address, equal to u(i), to 

find tabular value σ2(i).
4. To compute the following state of LFSM:

+ = σ + σ1 2S((i 1)r) (i) (i),  GF(2),

5. Assign = +i i 1.  If 
′′≤

k
i ,

r
 then go to 2.

6.  +S((i 1)r)  – CRC as the checksum.
7. End. 

Let us note that the principles of the software imple-
mentation of accelerating the CRC computation over field 



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 6/9 ( 84 ) 2016

54

GF(2p) are analogous to the above-presented principles in 
the binary Galois field. The difference is in the more complex 
representation of the elements of field GF(2p); the memory 
size for their storage increases in p times, accordingly.

11. Discussion of results 

More than 60 years have passed since the time the his-
torical papers were published by K. Shannon that marked 
the beginning of development of the theory of error cor-
rection coding. The predictions of certain specialists about 
the completion of creating the foundation of this theory, at 
least for classic codes, proved to be premature. If we speak 
only about the cyclic codes, then only one stage of their de-
velopment was completed, which was based on classic radio 
engineering and electrical communication.

Practice posed new problems, which traditional theory 
cannot solve. For example, the selection of complex gener-
ator polynomials of the CRC codes has remained almost 
the art until now. For the majority of the codes, it has been 
impossible to obtain accurate estimations of their correcting 
capability.

To solve these, and other, problems will become possible 
if the new theory of cyclic codes will be based not usual 
signal-code constructions, described in the textbooks on 
coding, but on the theory of finite automaton in the Galois 
fields, that is, on the theory of LFSM. The fundamentals of 
the new theory of cyclic codes are presented in the Author’s 
monograph [13]. Present paper demonstrates special features 
of its application to the parallel CRC codes. Primary atten-
tion here is paid to the binary CRC codes and the ways are 

outlined for the consequent development of the nonbinary 
CRC codes, which will be very useful in the high speed mul-
tichannel communication systems.

12. Conclusions

We examined a method for the CRC codes representa-
tion on the basis of mathematical apparatus of LFSM and 
conducted comparative theoretical analysis of the LFSM 
properties of three types. It is demonstrated that the peculi-
arities of LFSM architecture, its performance efficiency and 
error detection capability are determined by the structure of 
its characteristic matrices. 

Three methods of parallel computation of the CRC codes 
are proposed (tuple- parallel, symbolic-parallel and symbol-
ic-tuple-parallel) with the aid of bit and symbolic LFSM. It 
is theoretically proven that different types of LFSM have 
different productivity.

Three variants of hardware implementation and three 
algorithms of software implementation are presented, as 
well as mathematical substantiation of the popular method 
of computations by the tables lookup, and special features 
of application of different types of LFSM are demonstrated. 

For the parallel LSC we proposed the non-binary Ham-
ming and Abramson codes, which provides for the high de-
tection and correction capability for the CRC on their basis. 

Thus, for the parallel CRC codes within the framework 
of one mathematical apparatus (theory of LFSM), the two 
problems are solved simultaneously: we conducted theoreti-
cal substantiation of the computational speed and the degree 
of detection capability.
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1. Introduction

The inability of classic methods of the theory of automat-
ic control to effectively resolve the problems of automation 
of enterprises and their management has been paid more 
and more attention to in the technical literature [1–3]. An 
analysis of negative results and the reasons that caused them 
indicates that the coordination, coordinational control [1], 
as the main principle of functioning in the overall manage-
ment system, plays a role of a subsystem in the stabilization 
process in relation to the predetermined strategy [4]. When 
defining the role of coordination in the process of control, it 
should be noted that for any intellectual, industrial, social 
and everyday human activity, mandatory is a typical proce-
dure for making a decision [1–3, 5, 6]. At present, scientists, 
based on the study and systematization of technologies [7–
28], including underwater technology [4, 7–15, 29, 30], de-
termined and formed a generalized structure of underwater 
technological complex and generalized models of the tech-
nological process (TP) automation control system (ACS). In 
addition, an analysis of the methods of control over complex 
automated systems was carried out [4, 7, 13–15, 17–20]. As 
evidenced by the results of analysis, structural constituents 

of such systems are mostly designed with automatic or au-
tomated control systems [15, 17]. It is established that the 
application of methods of designing control system processes 
that are suitable for the functioning in the surface marine 
technologies, is complicated in the underwater technology 
[30]. The latter is due to the fact that the magnitude of time 
of the transition process in the executive mechanisms is 
comparable to the magnitude of the system transition from 
one state to another and to the magnitude of time necessary 
for decision making [7, 30]. In addition, it is predetermined 
by nonlinearity of the processes of interaction with the en-
vironment and complexity of the adequate modeling, which 
is caused by insufficient exploration of dynamics of under-
water apparatus, manipulators and technological equipment 
[8]. A significant obstacle is also the problem of changing the 
angular position of the device, as the carrier of technological 
equipment in space, which occurs when implementing the 
control algorithms and is caused by a change in the centers 
of mass and the moments of inertia [7]. Another obstacle is 
the unknown features of the implementation of technologies 
and a lack of methods that enable the prediction of possible 
changes, while under design, in the functional purpose of the 
entire complex [30]. This particularly, concerns individual 
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На прикладах успішних реалізацій технологій у про-
ектах ненасалених привязних та автономних підводних 
апаратів (АПА) показано ефективність автоматизо-
ваних систем управління (АСУ) з гібридною системою 
підтримки прийняття рішень (СППР). Поставлена та 
розв’язана задача аналітичного визначення залежності 
похибки від властивостей АПА та параметрів проце-
су, як кількісного критерію вибору альтернатив моделі, 
алгоритму, керуючих правил у ході фукціюнування АСУ 
підводних технологій

Ключові слова: координаційне управління, оцінка 
похибки моделі, гібридна СППР, АСУ підводних техно-
логій

На примерах успепешных реализаций в проектах нео-
битаемых привязных и автономных подводных аппара-
тов (АПА) показана эффективность автоматизиро-
ванных систем управления (АСУ) с гибридной системой 
поддержки принятия решений (СППР). Поставлена и 
решена задача аналитического определения зависимо-
сти ошибки от свойств АПА и параметров процесса, 
как количественного критерия выбора альтернатив 
модели, алгоритма, управляющих правил в ходе функ-
ционирования АСУ подводних технологий

Ключевые слова: координационное управление, оцен-
ка ошибки модели, гибридная СППР, АСУ подводных 
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