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1. Introduction

CRC-check belongs to the most commonly used methods
of check in different information systems. From the time
of its appearance in 1961 [1], this method has gained wide
acceptance in the systems for data transmission, storage and
compression. CRC is the method for detecting errors, which
has very simple software and hardware implementation. But
this advantage manifests itself only at the serial entering
of input data, which was characteristic in the early years of
development of information systems.

However, in contemporary high-speed data transmis-
sion, especially in the multichannel communication sys-
tems, large delays occur in the realization of procedures
of searching for errors with the aid of traditional CRC. A
basic direction of modern studies for solving the indicat-
ed problem is the parallelization of computations. At the
engineering level, it was possible to partially accelerate
the CRC computations. But the attempts to apply parallel
processing to the traditional CRC cannot provide for the
effective solution of the problem as a whole. On the other
hand, new methods of CRC computation proposed over
recent years require a strict mathematical substantiation of
their ability to search for the assigned type of errors. That
is why it is absolutely relevant to simultaneously solve the
problems on the provision of high performance speed of
CRC codes and on the detection of the maximum number
of various data distortions by them.

2. Literature review and problem statement

CRC codes are a variety of the binary cyclic codes [2].
If for the traditional, that is, serial, CRC, it was sufficient
to have a general theoretical base of cyclic codes, then for
the high-speed parallel CRC there appeared a pressing need
in adequate theory. Several directions of studies have been
outlined over recent years.

In the hardware implementation of parallel CRC, high
productivity of computations is achieved most frequently
due to the use of the known parallel architectures (for
example, pipelinability [3]). For accelerating the computa-
tions, data stream M is frequently split into the h-bit tuples
(blocks), whose all bits are processed simultaneously, and
the entire structure operates in the pipelining [4]. An
increase in the performance speed may be also achieved
through the optimization of structure of the field program-
mable gate array (FPGA), on which the coders and decoders
of these encoders are realized [5].

A useful property of parallel CRC is the possibility of
rapid replacement of the generator polynomial of code, that
is, reprogrammability either with the aid of FPGA [5], or
with the help of additional gates [6].

A basic method for accelerating the computations in the
CRC software implementation is decreasing the size of the
lookup tables [7, 8].

The use of special forms of polynomials in the hardware
[6, 9] and software [8] implementation is one of the interest-
ing directions for the acceleration of computations.

However, researchers frequently ignore the need for a
strict mathematical substantiation of the approaches pro-
posed by them. For example, authors in [6, 9] propose special
OZO-polynomials. They are conveniently calculated, but
they cannot be applied in practice because of the short peri-
od of code generation.

It is equally important to check swiftly and to have a
guarantee for the detection of the assigned type of errors.
A lack of comprehensive approach to provide, with the aid
of the CRC method, for both high speed operation and the
detection of maximum number of errors in data streams,
presents a problem in this area of information technologies,
not resolved as yet.

A key factor for the solution of this problem is the opti-
mum choice of mathematical tools.

In recent years, new methods of describing CRC —
z-transform [10] and automaton theory [4—6] have been




explored. Encoders and decoders of the CRC code are rep-
resented in the form finite automaton on the basis of the
so-called F matrix. The matrix representation of automaton
in the Galois fields is the basis of linear systems, proposed in
[11] for the first time for the CRC codes.

Despite certain positive aspects (replacement of slow op-
erations of dividing the polynomials into more rapid opera-
tions of computing the internal states of linear systems), this
theory does not make it possible to give a strict and vivid in-
terpretation of the both specified problems (high speed and
check) in a complex. A theory of linear finite-state machine
(LFSM), which is further examined in paper, demonstrates
better possibilities in this regard.

3. The aim and tasks of the study

The aim of present work is to devise highly productive
methods for the CRC computation with high detecting capa-
bility based on the mathematical tools of LFSM, and to solve
relevant tasks of practical application of CRC.

To achieve the set aim, the following tasks are to be
solved:

—to demonstrate the essence of the CRC codes from
the positions of LFSM theory in the binary and non-binary
Galois fields;

—to propose different methods for the parallel compu-
tation of the CRC codes with the aid of bit and symbolic
LFSM;

— to demonstrate the peculiarities of highly productive
CRC hardware and software implementation;

—to propose parallel CRC codes and to substantiate
their detectivity capabilities based on LFSM theory.

4. CRC computation methods

Let us first note that there are two known interpreta-
tions of the abbreviation CRC: Cyclic Redundancy Code and
Cyclic Redundancy Check [2].

Assume that data stream M of w bits length and pre-com-
puted check parameter X, representing the compressed rep-
resentation of M, is transmitted by certain data transmission
channel.

By the first interpretation of CRC, parameter X is con-
sidered as the check word of (n-k) length of the shortened cy-
clic code (k>w) and the evidence of error-free transfer is the
equality to zero of the calculated error syndrome X, of this
code. By the second interpretation of CRC, for the obtained
data stream M, on the side of the receiver, checksum X, is
calculated and it is compared to the checksum X, calculated
on the side of the transmitter.

In both cases, the method for computing check sum and
check word may be identical, but the duration of computa-
tion can differ: k or n cycles in the first case and k cycles in
the second case. And one more important difference in the
first interpretation of CRC: capability not only to detect
errors, but to correct them as well.

Historically, the first method of CRC computation was
polynomial: sequence M was considered as the row of binary
coefficients of a certain polynomial f(x), which was divided into
the assigned generator polynomial g(x), and the remainder of
this division was the required CRC [1]. Naturally, the sequence
of performing w operations of division requires too much time.

Usually they distinguish the methods of CRC compu-
tation depending on the means of realization of the com-
putational algorithm — software or hardware (with the aid
of the linear feedback shift register (LFSR)). In this case,
the essence of the algorithm for computations has remained
practically constant over many decades: the bit-wise division
of polynomial.

Let us examine the methods for CRC computation de-
pending on the following two factors:

— the method of arrival of data stream M;

— the ratio of arrival rate of data stream M and produc-
tivity of the means of CRC computation.

Therefore, it is possible to distinguish between four
methods of the CRC computation:

1) serial;

2) tuple-parallel;

3) symbolic-parallel;

4) symbolic-tuple-parallel.

The easiest method is the bit-wise arrival of input data
and the equality between their arrival speed and perfor-
mance efficiency of the means of data processing. In other
words, duration tg, of bit-wise shift in LFSR of encoder and
decoder (duration of cycle step in the software cycles) is
equal to period t;, of arrival of the next bit of data stream M:

In this case, general duration of time Ty of the CRC
serial computation will be determined by length w of data
stream M:

T =wt,.

It is this foundation that the traditional approach to the
CRC computation (Fig. 1) is based on.
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Fig. 1. Serial method of the CRC computation

In practice, however, the speed of receipt of input data
can by many times exceed the operating speed of the soft-
ware-hardware tools of code conversion, which creates a
large reserve for the acceleration of CRC computation. Pro-
vided the condition is satisfied

h=-=h
t,’

then it is possible to process simultaneously the h-bit tuple of
input information before arrival of the next portion of data
(Fig. 2). Converter in Fig. 2 is the h-bit shift register, which
converts serial binary code of h bits at the input into the par-
allel code (h-bit tuple) at the output. General duration of time
T, of the tuple-parallel CRC computation will amount to:

w
IT2 :Ftb'

Parallel CRC on the basis by fragment processing of data
has already been proposed by some authors [4, 11].



5. Theoretical basis of the CRC-codes
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Fig. 2. Tuple-parallel method of the CRC computation

In the contemporary multichannel data-transmission
systems, the parallel transmission of data is realized: bits
of one byte or word (2, 4, 8 bytes) arrive simultaneously.
Each byte or word may be interpreted as one h-digit symbol
(h=8,16,32,64).

In the symbolic-parallel CRC computation, m symbols
enter alternately (Fig. 3), and the symbolic-tuple-parallel
method is a simultaneous processing of z symbolic tuples
(Fig. 4). The converter in Fig. 4 is intended for convert-
ing the serial symbolic code into the parallel symbolic
code.

If period t;, of symbols arrival is equal to the duration of
data processing in the encoder and decoder, then total dura-
tion of time T, of the CRC symbolic-parallel computation
will amount to.
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Fig. 3. Symbolic-parallel method of the CRC computation

T,=mt, = %tb.

If a symbol’s bit capacity is equal to length h of tuple
at the tuple-parallel method of CRC computation, then the
duration of time T, will be nearly equal to the duration of
time T5. (Let us note that here we are abstracted from the
details of technical implementation and we examine only
mathematical time). The symbolic-tuple-parallel method of
CRC computation makes it possible to reach minimum time
T, of the computations:
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Fig. 4. Symbolic-tuple-parallel method of CRC computation

All examined methods of CRC computation can be
realized on the uniform mathematical tools — the LFSM
theory. In all variants of the computations, which are
represented in Fig. 1-4, different variants of hard-
ware implementation of LFSM as the encoders and de-
coders.

In order to comprehend the essence of CRC-codes, it is
necessary to return to basics of the cyclic codes. Tradition-
al methods for the representation of cyclic codes (matrix,
polynomial, algebraic) have played an important role in the
formation of this class of the error correcting codes. Practice,
however, presents new problems and new approaches are
required for their solution.

A number of authors proposed to use for the CRC-codes
the theory of linear systems [11] while others focused atten-
tion on the theory of finite automaton [4]. It is expedient to
combine these directions. Then we shall obtain a new type of
the finite automaton, which one may call the linear automa-
ton or, to be more precise, by LFSM.

According to [12, 13] LFSM with | inputs, m outputs and
r memory elements in the discrete time clock t over GF(2)
(binary LFSM) is defined by the transition (state) function

S(t+1)= AxS(t)+BxU(t), GF(2) 1)

and output function

Y(t)=CxS(t)+ Dx U(t), GF(2), 2
where
Aslagf o B=[bi| [ C=le] | D=ld

are the characteristic LFSM matrices; S(t) =|s].|r is the word
of state; U(t)= |ui|l is the input word; Y(t)= |yi|m is the out-
put word.

The dimensionalities of LFSM matrices and parameters
of cyclic (n, k)-code Q are connected through coefficient r,
which for the code is equal to the number of the check bits of
check word at systematic coding.

The simplest hardware implementation of r-bit LSC
LFSM is LFSR, which consists of r flip-flops and certain
quantity of gates XOR.

Different types of LFSM and corresponding charac-
teristic LFSM matrices are possible [13]. Binary LFSM
with one input and one output can be recursive (for sys-
tematic encoding) and non-recursive (for unsystematic
encoding). In the direct (inversable) LFSM, the direction
of data shift in the flip-flops coincides (oppositely) with
the numeration of flip-flops. Depending on the interrela-
tion between flip-flops and gates XOR, there are LESM of
different types. The following ones are the most common
of them:

— LFSM of type 1 (Galois type according to terminology
[13], two-input gates XOR in them are located between the
flip-flops);

— LFSM of type 2 (F type according to terminology
(6, 11]);

— LFSM of type 3 (Fibonacci type, according to termi-
nology [13], one multi-input gate XOR in them is located
before one flip-flop).

To cyclic (n, k)-code Q with the generator polynomial

g(x)=g,+gx+--+g_x"+gx', GF(q), (3)

correspond to the recursive LFSM of type 1 with the char-
acteristic matrices



0 0 0 g
1.0 0 g 0
A=[0 1 0 g |, B=[0]
00 0 1 g, 0
c=[0 0 0 t],D=[0], )

or recursive LFSM of type 2 with the characteristic matrices

g 1 0 .. 0 g
g 0 1 .. 0 g,
A={ ... ... .. ... .. B=|g,|
g, 0 0 ... 1
g, 0 0 ... 0 g
Cc=[0 0 0 1], D=[0], 5)

or recursive LFSM of type 3 with the characteristic matrices

0 1 0 0 0
00 1 ... 0 0
A=|... ... ... ... .|, B=|...]
0 0 0 ... 1 0
g 8 & g 1
C=[1 0 0 0], D=[0]. (6)

The entries of the last column of matrix A from (4), the
entries of matrix B and of the first column of matrix A from
(5), and entries of the last row of matrix A from (6), are the
constant coefficients of the generator polynomial (3).

The automaton representation of cyclic codes has two
models: automaton-analytical and automaton-graphical [13].
Automaton-analytical model, examined above, based on the
characteristic LFSM matrices, is used for developing the
algorithms of encoding and decoding. Automaton-graphical
model is convenient for the visual representation of the es-
sence of the code transformations procedures.

As an automaton-graphical model, it is possible to select
the state diagram of LFSM as automaton. For r-dimensional
LFSM above field GF(2), this state diagram is the directed
graph Gpa(VEa, Era), in which 27 vertices from the set of
vertices Vs correspond to 2 internal states of automaton,
while zero and unity edges from the set of edges Epy show
the directions of transitions between internal states. The
separate vertices of graph Ggs with the aid of zero edges
are combined in the zero cycles (ZC). We shall distinguish
trivial ZC, which consist of one vertex, and full ZC, which
consist of n vertices.

The states of LFSM correspond to vertices of graph G,
therefore they create their ZC of the same structure.

The LFSM under consideration over the Galois field
GF(2) are applied at the serial arrival of input data and
processing at each time cycle of only one input bit. But if
the input data arrive byte-by-byte or word-by-word (that
is, the groups of input bits enter simultaneously), then for
such methods of the CRC computation (symbolic-parallel
and symbolic-tuple-parallel, according to our terminolo-
gy), LFSM over the non-binary Galois fields are required.

Assume that in each clock cycle a group of h input bits
(h=8, 16, 32, 64) is entered. Then it is necessary to deter-
mine Galois field GF(q), where q=p". In practice, they usual-
ly use the case p=2, therefore, for computing the elements of
field GF(q), we shall use LFSM over field GF(2), which will
be named as binary. This LFSM is determined with the aid
of formulas (1) and (2). Matrix A of binary LFSM contains
coefficients of the primitive polynomial

g, () =1+ A X+AX +- -+ A, X2+ A, X" +x",

what is used for the construction of the field GF(2).

The zero element o? of field GF(22) will be correspond-
ed to by the word of zero state S(0) of binary LFSM. The
remaining elements of field GF(2") can be calculated by
formula:

al=Axo™ i=1,2,..,2" 1.

Now, over Galois field GF(q), it is possible to determine
LFSM (let us name it symbolic), which is defined by transi-
tion (state) function

S(t+1)=A, xS(t)+B, xU(t), GF(q), %)
and output function
Y(t)=C, xS(t)+D, xU(t), GF(q). 8)

In order to obtain characteristic matrices Aq, By, Cq, Dyq
of symbolic LFSM, it is necessary at first to define the gen-
erator polynomial of CRC-code.

Finally, upon definition of the Galois field GF(q), it is
possible to perform the operations of encoding and decod-
ing in relation to input symbols for the purpose of the CRC
computation.

The advantage of LFSM theory in comparison with the
theory of linear systems is its deeper and more comprehen-
sive development, which makes it possible to effectively use
it for the ground of different aspects of CRC.

6. Encoding the CRC-codes

The stage of encoding is necessary only at the interpreta-
tion of CRC as the shortened cyclic (n, k)-code. In this case,
data stream M of length w can be considered as the w-bit
information word J (w<k). After word J, r-bit check word ¥
is transmitted, calculated on the side of transmitter accord-
ing to the algorithm of systematic encoding (n=k+r) [14].

Without loss of generality, from now on we shall examine
cyclic (n, k)-code of full length, that is, w=k.

Words J and ¥ can be considered as a single code word
P, with which to perform on the side of receiver its usual
decoding, that is, to calculate at n-th cycle the syndrome of
error Serr. Zero syndrome Serr will testify to the error-free
transfer.

As already mentioned, CRC in the form of check word ¥
makes it possible both to detect errors and to correct some
of them. Additional charges are the price for this possibility:
complication of the CRC computation and certain increase
in the duration of its computation (not exceeding r cycles).
Under what conditions is it possible to minimize these ex-



penditures? An answer to this question is easy to obtain
within the framework of theory of LFSM.

From the positions of theory of LFSM, cyclic (n, k)-
code Q is a set of all sequences of length n, which transfer
LFSM from certain initial state Spg(t) back again to state
Sheg(t). Each such sequence is the code word P of code Q.
As the state Spq(t), we shall from now on examine the zero
state S(0).

It is known from the theory of LFSM [12] that under the
action of the assigned k-bit information word J, LFSM will
pass from initial state S(0) to a certain state S(k), which it is
determined from equation

S(k)=A*xS(0)+L, xJ, GF(2),
where

L =[ A¥'xB, A¥?xB, , AxB, B,

A, B are the characteristic matrices of LFSM.

For obtaining code word P, it is necessary to determine
the check word ¥ of length r, which will convert LESM from
the state S(k) back to the state S(0). Word ¥ is determined
from equation

S(m)=A"xS(k)+L x¥, GF(2), 9)
where

L =[ A”'xB, A™xB, , AxB, BJ.

Since S(n)=S(0), equality (9) may be written down as

L x¥ = A" xS(k). (10)

In equation (10), the only unknown is the word ¥, that
is, CRC. Complexity and duration of computing ¥ depends
on the structure of matrices A and L,. By selecting different
variants of characteristic matrices A and B, it is possible to
obtain the correspondent matrix L,. The only requirement to
matrix L, is that its rank must be equal to r, which ensures
r-controllability of corresponding LFSM and strong con-
nectedness of graph models.

It is proven in [13] that matrix L, for characteristic ma-
trices (4) takes the form:

0 0 0 1
00 .. 10

L=l e ]l (11)
0 1 0 0
1 0 0 0

As a result, systematic encoding of CRC (n, k)-code with
the aid of recursive LFSM of type 1, which is assigned by
characteristic matrices (4), can be performed either in k or in
n cycles. But in the first case, for finding word ¥, it will be re-
quired to solve a system of r linear equations over field GF(2).

It is also proven in [13] that the systematic encoding of
CRC (n, k)-code with the aid of recursive LFSM of type 3,
assigned by characteristic matrices (6), can be conducted
during k or n cycles after sending information word J to its
input. But, in contrast to LFSM of type 1, in both cases it is
necessary to solve the system of r linear equations.

The particularity of LFSM of type 2 is the equality of
matrices A" and L,. Then equation (10) can be written down as
¥ =S(k). (12)
Therefore, according to the state S(k), calculated in the
k-th cycle in (12), it is possible to immediately obtain the
components of word ¥. Thus, with the aid of LFSM of type 2,
it is possible to obtain the check word of the code most rapidly.
Maximum gain in time is not more than r cycles. In
practice, however, data streams have sufficiently large length
(n>>1, w>>T), therefore this gain will be insignificant.

The main problem in the CRC computation consists
in the acceleration of processing of the entire w-digit data
stream M independent of the interpretation of CRC. The
algorithm itself of the accelerated CRC computation will be
the same both on the side of transmitter and on the side of
receiver.

7. Tuple-parallel method of the CRC computation

We shall from now on consider the value of h tuple to be
equal to dimensionality r of LFSM because this variant is
the most convenient for practical realization.

Let there be r-controlled LFSM, which is in certain state
S(i). The property of r-controllability guarantees the exist-
ence of input sequence uj; of length not exceeding r, which
provides for the possibility of transfer of LFSM in r cycles
from state S(i) into any assigned state S(j). We shall name
an iteration the time interval, necessary for the transfer from
state S(i) to state S(j).

In the automaton-graphical model of r-controlled LFSM
(in graph Gp,) there is a directed path from r zero and unity
edges from vertex v; that corresponds to state S(i) to vertex
vj, corresponding to state S(j).

Therefore, it is possible to pass from certain initial vertex
Vheg Of graph Gyy to the assigned final vertex veyq by indicat-
ing only each r-th vertex of the path. In the automaton-ana-
lytical model of LFSM, which is examined below, only each
its r-th state will be computed.

Let there be k-bit information word J. Let us separate

word J into r-bit tuples u(i) (u(i)e J,i=0+ A 1|: where ]x[
r

is the rounding to the nearest whole towards the larger side).
We shall assume that symbols enter communication channel
from the left side. If length of the first left tuple u(0) will be
less than r, then it is possible to complement it from the left
to r by insignificant zeros, which will increase length k of
the information word to k”.

Theorem 1. A tuple-parallel method of the CRC compu-
tation as the checksum of information word J of length k”
with the aid of r-input recursive LFSM of type 1, assigned

by characteristic matrices (4), can be performed in - sin-

gle-cycle iterations.

Proof. It is known from the theory of LFSM [12] that if the
r-input LFSM in the i-th cycle was found in state S(i), then,
after applying to its inputs r-bit tuple u(j), it will pass into state

S(i+1)=A"xS(i)+L, xu(i), GF(2). (13)

Since LFSM with characteristic matrices (4) has identi-
ty matrix L, (11), then equation (13) can be written down as



S(ixr)=A"xS(@i)+u’(i), GF(2),

(14)

where u’(i) is the tuple u(i) with the mutual transposition
between the high-order digits and low-order digits:

0=, .0, y@ew) u,_,0eud.

Expression (14) differs from transition function (1) of
single-input LFSM by the presence of matrix A" instead of
matrix A. Matrix A’ can be prepared in advance; which is
why state S(i+r) can be computed in one automaton cycle.

Therefore, final state S(n”), that is, CRC, will be reached in
k’/

automaton cycles of the LFSM operation.

Example 1. For the cyclic (15,11)-code with the generator
polynomial g(x)=1+x*+x" and LFSM of type 1, to calcu-
late CRC for information word:

J=[t1011001010] 15)

For the assigned g(x), characteristic matrices of LFSM
and its initial state are equal to:

» B=] |, S(0)=

S O = O
S = O O
-0 O O
—_— O = =
—_ S S
O = = =
(=R
=l e=]

We shall form 3 tuples for the assigned word J (with re-
gard to the transposition of digits):

0 0 0

1 0 1
D=, |, wu@)=| | = |

=l = =]

0 1 1

In accordance with (14), we shall alternately form states
S(3), S(7), and S(11).

1 1 1 1] [o] [o] o
s@=a‘xs@+uty=|" L O <)
= u(l)= =,
o0 1 1Mol
t 11 0| |o| [o] lo
t 11 1] [o] [o] [o
o1 1 1] 1] lo] |o
S(7)= A" xS(3)+u(2) = -0
(D=ADSE+u@= 00 KMo
111 0] |o| [1] |1
1 11 1] [o] Jo] [1
o 11 1| lo| [1] lo
S 1)= A*xS(7)+u(3) = A0
AD=ASDHG=10 o 1 1[%o[To]7]1
11 0| 1] [1] |1

The computed state S(11) for the assigned type of
LFSM appears to be CRC as the checksum, it took three
iterations and three automaton cycles for its computation.
For obtaining CRC as the check word for the information
word (15) of the cyclic code, one additional iteration is
necessary:

S(15)= A" xS(11)=

(16)

_ 0 O -
_ O = =
_ = = =

As we already mentioned in the previous chapter, it
would be possible to find the check word for LFSM of
type 1 without computations (16), but in order to achieve
this, it would be necessary to solve a system of four equa-
tions above field GF(2).

Theorem 2. A tuple-parallel method of the CRC compu-
tation as the checksum of information word J of length k”
with the aid of r-input recursive LFSM of type 2, assigned

by characteristic matrices (5), can be performed in e dou-

ble-cycle iterations.

Proof. Similar to the preceding case, word ¥ and state
S(k) are connected by equation (13).

Let us examine in more detail the process of forming
the matrices A" and L,. It is easy to note that matrix Al
contains the first columns of matrices A, AZ,..., Ai! re-
spectively, in the i-th place, in the (i —1)-th place,..., in the
2nd place (i=2+r1). On the other hand, the product A'B is
equal to the value of the first column of matrix A™*!. As a
result, for the matrices of form (5), the L, and A" matrices
will be equal. Therefore, equation (13) can be written
down as

S(i+1)=A"xS(1)+ A" xu(i)= A" x(S(i)+ u(i)),
GF(2). A7)
Expression (17) can be computed in 2 automaton cycles
only:
1) computation of the intermediate state:
S”(i)=S(i)+u(i), GF(2),
2) computation of the desired state:

S(i+1)=A"xS"(i), GF(2).

Therefore, the final state, that is, CRC will be reached

”

in iterations, each duration for two cycles of the LFSM

operation.

Theorem 3. The tuple-parallel method of the CRC com-
putation as the checksum of information word J of length k”
with the aid of r-input recursive LFSM of type 3, assigned
by characteristic matrices (6), can be performed in -

three-cycle iterations.
Proof. For computing the equation (13), in a general case,
three cycles are necessary:

a) §'=A"xS(>), GF(2),
b) $”=L xu(i), GF(2),

o) S(i+1)=S"+S", GF(2).

”

Then CRC will be calculated in

iterations, each du-

ration three automaton cycles of the LFSM operation. But if



we simultaneously compute intermediate values S” and S”,
then - double-cycle iterations are required.

Thus, for the tuple-parallel method of the CRC com-
putation with the aid of r-input LFSM of type 1, there will
be required two times less time in comparison with r-input
LFSM of type 2 or three times less time than for the LFSM
of type 3.

The CRC value, calculated with the aid of LFSM of
different types for one and the same information word J, will
be identical.

8. Symbolic-parallel method of the CRC computation

A symbolic-parallel method of the CRC computation can
be used when the input data enter in the form of symbols,
which consist of h bits (h=2+64). Usually, such symbolic
data are converted into binary format and then the check-
sum is calculated in the traditional binary form.

Let us examine of CRC computation in the symbolic
format over Galois field GF(2") according to (7) and (8). As
already mentioned, solving of these tasks is possible with the
aid of two LFSM: binary LFSM for computing the elements
of field GF(2") and symbolic LFSM for the formation of
CRC over field GF(2").

For the computations over field GF(2), it is necessary to
select the appropriate generator polynomial. In the binary
Galois field, the best choice for the computation of CRC is
the generator polynomials of the Hamming codes and the
Abramson codes [2]. Analogous approach can be applied also
to the non-binary Galois fields.

It is known that in the non-binary Galois fields, the
codes with primitive generator polynomial gs(x) have maxi-
mum length and make it possible to correct single symbolic
errors; therefore, by analogy with field GF(2), we shall name
them the non-binary Hamming codes. Let us note that [14]
gives another definition for the non-binary Hamming codes.

In order to detect the maximum number of errors, let us
multiply polynomial gy(x) by term (a’+0'x):

£,00=g.(x)(0 +a'x), GE(2"), (18)
where o is the element of field GF(2").

As a result of multiplication by term (a’+a%x), the num-
ber of ZC of the corresponding length increases by 2h times
in the graphical model of the code, which considerably im-
proves the correcting and detecting capability of the code.
Taking into account similar approach to the formation of
generator polynomial of the Abramson code, we shall name a
code with polynomial (18) over field GF(2") the non-binary
Abramson code.

Example 2. Let us assume that two-bit symbols are
transmitted by the channel, that is, 2 bits of information
are transmitted in parallel. Let us examine the CRC com-
putation for such input stream. The computations will be
carried out with the aid of symbolic LESM over Galois
field GF(4).

We shall consider field GF(4) as the extension field
GF(2%) of field GF(2). Let us determine the elements of
field GF(2%) with the aid of primitive generator polynomial
g(x)=1+x+x" of the binary field. For the specified gener-
ator polynomial, characteristic matrices of binary LFSM of
type 1 take the form:

el

Let us determine the states of binary LFSM according
to (1):

0 1
S(O):[O], S(1):[0],
0 1
5(2)=A><S(1)=[1]; S(3)=A><S(2):H,

The obtained results can be presented in the form of the
elements of field GF(22): 0, o, o', o or 0, 1,2, 3.

Let us select the primitive generator polynomial over
field GF(4)

g.(x)=a'+a’x+a’x’, GF(2%), 19)
to which such characteristic matrices of symbolic LFSM of
type 1 correspond:

0 o o’
A = , B.= .

The property of the primitiveness of polynomial can be
confirmed analytically: if in the (n+1)-th iteration of com-
putations according to formulas (1) at U(t)=0 we obtain
S(n+1)=S(1), then this generator polynomial of the (n, k)-
code is primitive |2, 15].

A cyclic code with polynomial (19) can be considered as
the non-binary Hamming (15,13)-code. From it, according
to (18), it is possible to obtain the non-binary Abramson
(15,12)-code with generator polynomial

g.(x)=(a'+a’x+a'x*) (o’ +a'x) = o' + o’ x + 0 "x,

GF(2%). (20)

The following characteristic matrices of symbolic LFSM
of type 1 correspond to polynomial (20):

0 0
A =|a’
0

0

a a

(X1
0 o?|, B=|0]
o 0 0

In order to evaluate the correcting and detecting capa-
bilities of the examined codes, it is sufficient to analyze the
graphical models of LFSM of these codes [16].

The graphical model of the non-binary Hamming code
with generator polynomial (19) consists of one full ZC of
length 15 and trivial ZC of length 1. This code makes it
possible to correct the single symbolic errors (two-bit bursts
errors of length 2) and to detect a larger number of errors of
larger multiplicity.

The graphical model of the non-binary Abramson code
with generator polynomial (20) consists of four full ZC of
length 15 and four trivial ZC of length 1. This code makes it
possible to correct the single symbolic errors (bursts errors
of length 2 bits), the bursts symbolic errors of length two
(bursts errors of length 4 bits) and to detect all symbolic
errors of the double and odd multiplicity [16].

Let us remind that the serial entering of symbols from
the channel has been assumed until now, and parallelism is



provided for by processing the symbols, not separate bits.
But at rapid arrival of symbols, it is possible to organize
double parallelism, that is, to process the tuples of symbols.

The principle of symbolic-tuple-parallel method of the
CRC computation is no different from the tuple-parallel
method of the CRC computation, with the exception of the
fact that instead of the binary cyclic codes, their non binary
analogs are used.

9. Hardware implementation of accelerating
the CRC computation

Hardware implementation of LFSM over Galois field
GF(2) includes only two types of the basic elements:

— delay elements (flip-flops);

— the adders of the field elements (gates of logical oper-
ation XOR).

There is a mutually one-one mapping between the char-
acteristic matrices of LFSM (4)—(6) and its hardware imple-
mentation [12]. Matrix A determines the interconnections
of flip-flops. If the entry aj; of the matrix A is equal to unity,
then there must exist a connection between the output of the
j-th flip-flop and the input of the i-th flip-flop, but if a;;=0,
then the connection between the specified flip-flops is ab-
sent. Matrix B determines the structure of LFSM inputs: if
the entry b of the matrix B is equal to unity, then there must
exist a connection between the j-th input of LFSM and the
input of the i-th flip-flop, but if b;=0, then this connection
is absent.

As was analytically shown in the previous section, the
fast-speed encoders and decoders use not a usual charac-
teristic matrix A, but its r-th degree A" (it is possible to
take a lower degree, but then the performance will decrease
proportionally).

The principle of the hardware implementation of matrix
A" is no different from the described principle of the hard-
ware implementation of matrix A. Additional difficulties
may arise only in the implementation of increased quantity
of gates XOR. In fact, this is an usual task of optimal syn-
thesis of the switching circuit (SC) from the gates XOR. It
is possible to select either a variant with a minimal delay
in the transmission of signals in SC or the variant with the
minimum number of gates XOR.

A basic difference between r-input LESM (LFSM based
on matrix A’) and usual single-inputLFSM is in the simul-
taneous. receipt of the r-bit tuple u(j) on its inputs. Table 1
shows the LFSM structures, which are used as the encoders
and decoders according to Fig. 1-4.

We shall analyze below particularity of the practical im-
plementation of encoders and decoders based on fast speed
LFSM of types 1, 2 and 3.

Fig. 5 shows a generalized circuit of r-input LFSM
of type 1. Its functioning is described according to equa-
tion (14).

During one cycle of the LFSM operation, the next state
S(i+r) of LFSM is formed on the basis of the preceding state
S(i) and parallel input tuple u(i). According to theorem 1,

LFSM of type 1 may require . cycles of automaton time

for CRC computation. For this LFSM, automaton cycle is
realized by one hardware clock pulse.

Fig. 6 shows a generalized circuit of r-input LFSM of
type 2. Its functioning is described according to equa-

tion (17). For the hardware formation of the next state
S(i+r), two clock pulses from the current state S(i) should be
transmitted to LFSM: by the first clock pulse, with the aid of
shift register and gates XOR1, intermediate word S(i)+u(i)
is formed, while by the second — with the aid of shift register
and gates XOR2, the new state S(i+r) is calculated.

Table 1
LSC structures for 4 methods of the CRC computation
Computation Encoder Decoder
methods
Serial binary LFSM, 1=output | binary LFSM, 1-input

Tuple-parallel | binary LFSM, 1-output | binary LFSM, h-input

Sgg;zﬁlcl]c | symbolic LFSM, h-output syml;lo_lilgplalt:SM,
Symbolic- . symbolic LFSM,
tuple-parallel symbolic LFSM, h-output 2xheinput
Input data
u(j) CRC
r

XOR r
gates

o

Shifting
Register

Fig. 5. Generalized circuit of r-input LFSM of type 1

Input data
u(j)

r# XOR CRC
gates
! Multi- | Shifting
XOR plexer Register
gates
2

Fig. 6. Generalized circuit of r-input LFSM of type 2

The generalized circuit of r-input LFSM of type 3 is
shown in Fig. 7. Its functioning is described according to
Theorem 3. For the hardware formation of the next state
S(i+r), it is necessary to feed three clock pulses from the
current state S(i) to LFSM.

Shifting onc
Input galtes = Reg]ister ;(::el:
data u(j .
» r 3 #
XOR Shifting
gates = Register
2

Fig. 7. Generalized circuit of r-input LFSM of type 3

By the first clock pulse, shift register 1 and gate XOR1,
the computation of expression S"=A"xS(i), GF(2) is per-
formed. By the second clock pulse, with the aid of shift reg-
ister 2 and gate XOR2, the expression S”=L, xu(i), GF(2)
is calculated. By the third clock pulse, with the aid of gates
XOR3, state S(i+r) is formed.



Thus, mathematical acceleration of the procedures for
encoding and decoding is differently realized in practice.
More preferable are the fast speed LFSM of type 1.

The principles of hardware implementation of LFSM
over field GF(2") are analogous to the above-presented
principles in the binary Galois field, but there are two
basic differences. At first, the elements of multiplica-
tion by the constant are added, secondly, all three basic
elements are more difficult to realize in the non-binary
Galois field.

10. Software implementation of accelerating
the CRC computation

A hardware method of the CRC computation is the fast-
est; however, it cannot be always realized in practice. That
is why a software method for the CRC computation is used
more frequently.

The software method is slower and it is of course rel-
evant to accelerate the process of computations. Solving
this problem is possible on the basis of the automaton
representation of the CRC-codes. The principle of ac-
celeration is the same as with the hardware implemen-
tation — the computation of LFSM states with a certain
interval, avoiding intermediate states. For the generator
polynomial (3), it is possible to compute states only with
interval r:

S(i), S(i+1), SG + 2r)...

The theoretical substantiation of this method of compu-
tation has been already presented in theorems 1—3. But what
is the peculiarity of software implementation?

An analysis of formula (13) reveals that for the transfer
from state S(i) to next S(i+r), the computation of term

A" xS(i), GF(2) 1)
is the most difficult part of this formula.

In the hardware CRC implementation, matrix AT is
realized by a change in quantity and connections of gates
XOR, which causes almost no influence on the speed of
computations. In order not to waste time on each iteration
for the complicated computation of matrix A’ it is possible
to calculate in advance and to store in the memory the values
of term (21) for all possible values of state S(i). This is ba-
sically a popular method for the software CRC computation
based on the tables lookup [7, 8]. With the aid of this table,
it is possible to form the corresponding state S(i+r) for each
address (state S(i)).

It is necessary to note the difference in the work with
tables lookup for LFSM of different types. For LFSM of
type 1, it is sufficient to have one table, formed with the
aid of matrix A". As follows from Theorem 2, for LFSM of
type 2, also one table lookup is used based on the matrix A,
but it is approached twice in each iteration. As follows from
Theorem 3, for LFSM of type 3, it is necessary to have two
tables lookup, one based on matrix A*, and the second one —
formed with the aid of matrix L,.

Let us examine the algorithms for the CRC computation
as the checksum by the tuple-parallel method with the aid of
the tables lookup for different types of LFSM (both on the
side of transmitter and on the side of receiver).

Algorithm 1. CRC computation for LFSM of type 1

Initial data:

— characteristic matrices A, B and initial state S(0) of
LFSM;

— table lookup;

— data stream M of length k” split into r-bit tuples u(i).

1. Assign the number of iteration i=0.

2. By the tabular address, equal to S(ixr), to find tab-
ular value o(i).

3. To compute the following state of LESM:

S((i+D)r)=o()+u'(i), GF(2),

where u'(i) is the tuple u(i) with the mutual transposition
between the low-order and high-order digits:

u(i)=u,_, (i), u(i)e u’(i), u,_, (D eu(d),

”

4. Assign i=i+1. If iSk then go to 2.

r
5. S((i+1)r) — CRC as the checksum.
6. End.

Algorithm 2. CRC computation for LFSM of type 2.

Initial data:

— characteristic matrices A, B and the initial state S(0)
of LFSM;

— table lookup;

— data stream M of length k”, split into r-bit tuples.

1. Assign the number of iteration i=0.

2. By the tabular address, equal to S(ixr), to find tab-
ular value o4(i).

3. By the tabular address, equal to u(i), to find tabular
value 65(i).

4. To compute the following state of LFSM:

S(A+Dr)=0,(1)+0,(1), GF(2),

”

5. Assign i=i+1. If iSk
r

6. S((i+1)r) — CRC as the checksum.
7. End.

, then go to 2.

Algorithm 3. CRC computation for LFSM of type 3.

Initial data:

— characteristic matrices A, B and the initial state S(0)
of LFSM;

— two tables lookup;

— data stream M of length k”, split into r-bit tuples.

1. Assign the number of iteration i=0.

2. In the first table, by the address, equal to S(ixr), to
find tabular value o1(i).

3. In the second table, by the address, equal to u(i), to
find tabular value o5(i).

4. To compute the following state of LFSM:

S(A+Dr)=0,(1)+0,(1), GF(2),

”

5. Assign i=i+1. If isk—, then go to 2.
T

6. S((i+1)r) — CRC as the checksum.
7. End.

Let us note that the principles of the software imple-
mentation of accelerating the CRC computation over field



GF(2P) are analogous to the above-presented principles in
the binary Galois field. The difference is in the more complex
representation of the elements of field GF(2P); the memory
size for their storage increases in p times, accordingly.

11. Discussion of results

More than 60 years have passed since the time the his-
torical papers were published by K. Shannon that marked
the beginning of development of the theory of error cor-
rection coding. The predictions of certain specialists about
the completion of creating the foundation of this theory, at
least for classic codes, proved to be premature. If we speak
only about the cyclic codes, then only one stage of their de-
velopment was completed, which was based on classic radio
engineering and electrical communication.

Practice posed new problems, which traditional theory
cannot solve. For example, the selection of complex gener-
ator polynomials of the CRC codes has remained almost
the art until now. For the majority of the codes, it has been
impossible to obtain accurate estimations of their correcting
capability.

To solve these, and other, problems will become possible
if the new theory of cyclic codes will be based not usual
signal-code constructions, described in the textbooks on
coding, but on the theory of finite automaton in the Galois
fields, that is, on the theory of LFSM. The fundamentals of
the new theory of cyclic codes are presented in the Author’s
monograph [13]. Present paper demonstrates special features
of its application to the parallel CRC codes. Primary atten-
tion here is paid to the binary CRC codes and the ways are

outlined for the consequent development of the nonbinary
CRC codes, which will be very useful in the high speed mul-
tichannel communication systems.

12. Conclusions

We examined a method for the CRC codes representa-
tion on the basis of mathematical apparatus of LFSM and
conducted comparative theoretical analysis of the LFSM
properties of three types. It is demonstrated that the peculi-
arities of LFSM architecture, its performance efficiency and
error detection capability are determined by the structure of
its characteristic matrices.

Three methods of parallel computation of the CRC codes
are proposed (tuple- parallel, symbolic-parallel and symbol-
ic-tuple-parallel) with the aid of bit and symbolic LFSM. It
is theoretically proven that different types of LFSM have
different productivity.

Three variants of hardware implementation and three
algorithms of software implementation are presented, as
well as mathematical substantiation of the popular method
of computations by the tables lookup, and special features
of application of different types of LFSM are demonstrated.

For the parallel LSC we proposed the non-binary Ham-
ming and Abramson codes, which provides for the high de-
tection and correction capability for the CRC on their basis.

Thus, for the parallel CRC codes within the framework
of one mathematical apparatus (theory of LFSM), the two
problems are solved simultaneously: we conducted theoreti-
cal substantiation of the computational speed and the degree
of detection capability.
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1. Introduction

The inability of classic methods of the theory of automat-
ic control to effectively resolve the problems of automation
of enterprises and their management has been paid more
and more attention to in the technical literature [1-3]. An
analysis of negative results and the reasons that caused them
indicates that the coordination, coordinational control [1],
as the main principle of functioning in the overall manage-
ment system, plays a role of a subsystem in the stabilization
process in relation to the predetermined strategy [4]. When
defining the role of coordination in the process of control, it
should be noted that for any intellectual, industrial, social
and everyday human activity, mandatory is a typical proce-
dure for making a decision [1-3, 5, 6]. At present, scientists,
based on the study and systematization of technologies [7—
28], including underwater technology [4, 7-15, 29, 30], de-
termined and formed a generalized structure of underwater
technological complex and generalized models of the tech-
nological process (TP) automation control system (ACS). In
addition, an analysis of the methods of control over complex
automated systems was carried out [4, 7, 13—15, 17-20]. As
evidenced by the results of analysis, structural constituents

of such systems are mostly designed with automatic or au-
tomated control systems [15, 17]. It is established that the
application of methods of designing control system processes
that are suitable for the functioning in the surface marine
technologies, is complicated in the underwater technology
[30]. The latter is due to the fact that the magnitude of time
of the transition process in the executive mechanisms is
comparable to the magnitude of the system transition from
one state to another and to the magnitude of time necessary
for decision making [7, 30]. In addition, it is predetermined
by nonlinearity of the processes of interaction with the en-
vironment and complexity of the adequate modeling, which
is caused by insufficient exploration of dynamics of under-
water apparatus, manipulators and technological equipment
[8]. A significant obstacle is also the problem of changing the
angular position of the device, as the carrier of technological
equipment in space, which occurs when implementing the
control algorithms and is caused by a change in the centers
of mass and the moments of inertia [7]. Another obstacle is
the unknown features of the implementation of technologies
and a lack of methods that enable the prediction of possible
changes, while under design, in the functional purpose of the
entire complex [30]. This particularly, concerns individual






