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1. Introduction

The accuracy of implementation of curvilinear sections 
of the program trajectory of a vessel’s motion depends on 
the degree of adequacy of the model of the vessel’s turning 
ability to the actual process of its turning and correctness 
of selection of maneuver parameters. In the situations of 
different constraint, the models of the vessel’s turning ability 
of different degree of adequacy are required; moreover, with 
an increase in the level of adequacy, procedure for the calcu-
lation of maneuver parameters becomes more complicated. 

Therefore, an analysis of mathematical models of the pro-
cess of a vessel’s turn with a different degree of calculation 
of its inertness and corresponding procedures of calculation 
of maneuver parameters is a relevant direction of scientific 
studies on providing the navigation safety.

2. Literature review and problem statement

Papers [1–3] are devoted to the problems of studying 
the curvilinear motion of a vessel at turning. Formation of 
the transfer trajectory of a vessel’s turn, taking into account 
experimental data of the vessel’s turning ability, is examined 
in article [1], and paper [2] gives the results of experimen-
tal research into the models of the vessel’s turning ability. 
Article [4] gives the characteristics of turning ability of the 
container carrier “Oxford” and explores the imitation simu-
lation of its turning.

Paper [6] examines the problems of considering the ves-
sel’s dynamics in the calculation of parameters of divergence 
strategy in case of a dangerous rapprochement, and article 
[7] proposes the model of rotary motion of a vessel con-

sidering the duration of putting the rudder blade over. The 
estimation of roughness of the mathematical model, accepted 
for the study, by means of exploring the influence of addi-
tional nonlinear terms on the motion modes of a vessel was 
carried out in paper [8]. The ineffectiveness of standard au-
tomatic steering device in case of wind was established. An 
introduction of the intelligent component into the algorithm 
of automatic steering device made it possible not only to 
substantially increase its effectiveness, but also to overcome 
a certain degree of uncontrollability. The concept of coeffi-
cients of parameters influence of mathematical model of a 
vessel on its maneuverability characteristics is introduced in 
article [9]. As an example, influence coefficients for a num-
ber of the maneuverability characteristics were calculated: 
a radius of the steady circulation of a vessel, advance in the 
evolutionary circulation period, initial vessel’s turning abil-
ity and all characteristics of checking helm. However, the 
problem of calculation of maneuver parameters of a vessel’s 
turn for the implementation of program curvilinear trajecto-
ry was not examined.

In paper [10], it is indicated that for controlling a vessel 
under extreme conditions, it is necessary to calculate the 
influence of all external forces, which contribute or compli-
cate control under difficult conditions. The work presents 
the basic principles of the estimation of external forces in 
controlling a vessel and possibility to use these forces under 
extreme conditions, taking into account the existence or ab-
sence of tugs. The proposed approach does not make it possi-
ble to reveal the dependence of the maneuver parameters of 
a vessel on its inertial characteristics. Article [11] is devoted 
to the problems of developing automatic steering systems of 
controlling the course of a vessel using the principles of fuzzy 
logic. Problems of the system’s adaptation are considered, 
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taking into account the complex dynamics and nonlinearity 
of mathematical model of a vessel as an object of control un-
der randomly changing conditions of the system’s operation.

In article [12], it is noted that in the majority of contem-
porary systems of controlling complex dynamic objects, the 
model of a controlled object is used for forming controlling 
influences. The use of neural networks is one of the ap-
proaches to obtaining the model. Marine mobile objects and, 
in particular, sea vessels belong to the class of the so-called 
indeterminate objects. A special feature of such objects is 
that, as a rule, their mathematical model at the stage of de-
veloping a control system is known with accuracy to some 
unknown characteristics.

In paper [16], it is noted that an increase in the load ca-
pacity of contemporary vessels causes the need for applying 
improved computer systems for their safe navigation. Such 
systems use the forecast tools of the vessels’ motion, which 
have been successfully applied for a long time. However, 
simplification of the existing forecasts restricts their use for 
immediate mapping of the vessel’s motion with a change in 
the rudder position and in engine revolutions. The required 
accuracy of implementation of the curvilinear trajectory of 
the vessel’s motion can be provided with the more improved 
forecast models of the vessel’s motion.

At present, as it is indicated in article [17], an informa-
tion system of imitative simulation of the vessels’ motion 
with complex dynamic models is being developed, depending 
on the rudder angle and engine revolutions. This system 
will make it possible to provide a new type of planning the 
vessel’s maneuvers and control of implementation of the 
assigned maneuver. The assigned maneuvering is supposed 
to be mapped in the process of maneuvering simultaneously 
with the actual vessel’s motion and with indication of the 
forecasted trajectory, which is determined by real input 
data from the vessel’s sensors. It should be noted that this 
system solves a direct problem of mapping of the forecasted 
trajectory by the assigned maneuver parameters, although 
relevant is the inverse problem of determining the forthcom-
ing maneuver parameters along with the assigned program 
of the motion trajectory. In other words, it is necessary to 
calculate the starting moment of turning and its duration for 
the assigned rudder blade angle, after providing the vessel’s 
entrance to the assigned point.

Paper [18] is devoted to the problems of identification of 
the ship models maneuvering, which are the key to studying 
the vessel’s maneuverability, designing control systems of 
the vessel’s motion and development of systems of con-
trolling ship trainers. In this work, the nonlinear model of 
the vessel’s maneuvering is formed on the basis of an analysis 
of vessel’s hydrodynamics. The theory of the systems identi-
fication is used for evaluating the parameters of the model, 
which can be calculated with the proposed algorithm, based 
on the extended filter theory of Kalman. For obtaining in-
put and output data of the systems, which are necessary for 
identification of parameters of experiment, the circulation 
and the zigzag maneuver were used, which are carried out 
on the imitator of the vessel control. The errors, introduced 
during the process of measurement, are removed with the 
help of this algorithm.

In work [19], author examines the intelligent system of 
prediction of the vessel’s motion, which imitates the process 
of training the autonomous control unit, created with the help 
of the artificial neural network. A control unit observes input 

signals and calculates the values of the required maneuvering 
parameters of the vessel in confined waters. The basic task of 
the system is continuous inspection of navigation parameters 
of a vessel and the prediction of their values after a particular 
time interval. The result of prognostication can be used as a 
warning to a navigator about the appearing threat.

In the process of vessel’s turning, the characteristics of 
its turning ability are considered approximately, which de-
creases the accuracy of vessel’s entering the next section of 
the program motion and leads to an increase in probability of 
navigation emergency. That is why there is a necessity for the 
development of the procedure of calculation of maneuvering 
parameters of the vessel’s turn, which include the starting 
time of turning and its duration, depending considerably 
on the selected model of a vessel’s turning ability that takes 
into account its inertia. Despite its relevance, this problem 
was not examined in the above analyzed works. Moreover, 
at present there are navigation information systems on the 
vessels, in which it is expedient to develop the function of 
calculation of parameters of a vessel’s turn for the assigned 
initial data. This circumstance requires comparison and 
analysis of different models of the vessel’s rotary motion 
and selection of the base model of a vessel’s turning ability, 
taking into account its inertial characteristics in connection 
with predominant navigating conditions. The indicated task 
requires its solution, and the examination of some of its as-
pects is proposed in this work.

3. The aim and tasks of the study

The purpose of the study is the examination of mathe-
matical models of the vessel’s turning ability, the estimation 
of the degree of their adequacy to experimental field obser-
vations with the purpose of selecting the most acceptable for 
describing the rotary motion of a vessel

To achieve the set goal, the following tasks were to be 
solved:

– to examine the simplest kinematic model of the rotary 
motion of a vessel with a constant angular velocity; 

– to analyze dynamic models of the vessel’s turn taking 
into account its inertia; 

– to present procedures for the calculation of the dura-
tion of a vessel’s turn by numerical methods for each model; 

– to substantiate the selection of the most acceptable 
model of the vessel’s rotary motion on the basis of the field 
observations data.

4. Kinematic model of a change in the vessel’s course 
when turning

The turn of a vessel consists of two phases. At the first 
phase of a turn, at the initial moment of time tn the rudder 
is put over to the angle tn and the rudder is retained in this 
position during the time interval Δtk. Then, at the second 
phase of a turn, the rudder is put over to the opposite hard 
to the same value and the inertia of vessel’s turn is dissipated 
during the time interval Δt. When it is over, the vessel sets 
the predetermined course, the angular velocity of a turn 
becomes zero, the rudder blade is put into the center-line 
plane of a vessel, and a vessel from the initial course Kо sets 
course Ky (Fig. 1)
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Fig. 1. Vessel’s turn

To describe a vessel’s turn, we will consider the following 
models of rotary motion [5–7]: the first model is simplified, 
which describes a vessel’s turn at unchanged angular veloc-
ity, the second and the third models consider existence of 
time variables, characterizing the vessel’s dynamics. We will 
note that the first model serves as an initial rapprochement 
in irrational solution of expressions, obtained by the more 
complex models of a vessel’s turn.

The first kinematic model of the vessel’s motion, which 
characterizes a change in the course of vessel K under the 
influence of the rudder blade, implies vessel’s turning with a 
constant angular velocity and is described by the differential 
equation, which takes the following form:

w= b
kK k ,

where kω is the coefficient of rudder effectiveness; βk is the 
angle of putting the rudder blade over.

Thus w= K,  initial equation may be written down in the 
form:

w ww = b =kk , a ,

by integrating which, we will obtain the expression for the 
current course of vessel K, as the time function, that is,

w= + w t = + t∫ ∫
t t

o o
0 0

K K d K a d .

Thus, in a general form we obtain expression for the 
course of a vessel in the time function t:

w= +oK K a t.

In this model the vessel’s turn is made without checking 
helm, i. e. a turn has only one phase and therefore Δtk=τ. 
Consequently, DK=aωt or t=DK/aω.

Increment of coordinates of an operating vessel within 
the period of maneuvering t is determined by the following 
expressions:

( )
t

 D = + ∫o o o
0

x V sin K K t dt,

( )
t

 D = +∫  o o o
0

y V cos K K t dt.

Substituting the expression for K(t), it is possible to 
write down:

( )
t

wD = +∫o o o
0

x V sin K a t dt,

( )
t

wD = +∫o o o
0

y V cos K a t dt ..

Let us consider the expression for Δxo:

( )

( ) ( )

t

w

t t

w w

D = + =∫

= +∫ ∫

o o o
0

o o o o
0 0

x V sin K a t dt

V sinK cos a t dt V cosK sin a t dt.

We will designate 

( )
t

wÁ = ∫
0
sin a t ts d  and ( )

t

wÁ = Á = ∫
0
cos a t dtс s .

Then the last expression for Δxo takes the following form: 

( )D = Á + Áo o o ox V sinK c cosK s .

We will find expressions for Ás and Áс:

( ) ( ) ( )
tt

w w w
w w

 Á = = − = − −∫  00

1 1
s sin a t dt cos a t cos a t 1 .

a a

( ) ( ) ( )
tt

w w w
w w

Á = = = t∫
00

1 1
c cos a t dt sin a t sin a .

a a

Taking into account the obtained expressions for the 
unknown integrals, we will write down increment in coordi-
nate Δxo in the following form: 

( ) ( ){ }w w
w

 D = t − t − 
o

o o o

V
x sinK sin a cosK cos a 1 .

a

We consider that DK=aωt, which is why the expression 
for Δxo takes the form: 

{ }

( )
w

w

D = D − D − =  

 = − + D 

o
o o o

o
o o

V
x sinK sin K cosK cos K 1

a

V
cosK cos K K .

a

We note that the relationship Ko+ΔK=Ky, where Ky is 
the course of the second section of a vessel’s program trajec-
tory, is correct; therefore it is possible to finally write down 
expression for Δxo:

( )
w

D = −o
o o y

V
x cosK cosK .

a

Now we will find the expression for increment for the 
second coordinate Δyo:

( )

( ) ( )

t

t t

w w

 D = + =∫  

= −∫ ∫

o o o
0

to o o o
0 0

y V cos K K t dt

V cosK cos a t dt V sinK sin a dt

or
( )D = Á − Áo o o oy V cosK c sinK s .

We substitute the values of integrals Áс and Ás, obtained 
earlier:

( )
( ) ( ){ }w w

w

D = Á − Á =

 = +t t − 

o o o o

o
o o

y V cosK c sinK s

V
cosK sin a sinK cos a 1 ,

a

similarly to the previous case for Δyo, we obtain:
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( )
w

 D = D D + −o
o o o

V
y cosK sin K 1sinK sin K

a

or

( )
w

D = −o
o y o

V
y sinK sinK .

a

Thus, summing up the obtained results, it is possible to 
note that the calculation of increments in coordinates Δxo 
and Δyo is performed according to the following formulas:

( )
w

D = −o
o o y

V
x cosK cosK ,

a

( )
w

D = −o
o y o

V
y sinK sinK .

a

The obtained expressions are used for initial assessment 
of the magnitude of correction for vessel’s inertia, as well as 
the initial approximation of solution by the method of simple 
iterations.

5. Dynamic models of a vessel’s turn,  
which consider its inertia

The second dynamic model of the vessel’s motion, which 
characterizes a change in the course of vessel K under the 
influence of rudder blade, is described by the non-homoge-
neous linear differential equation with constant coefficients, 
which takes the following form [5]

w+ = b 
1 kT K K k ,

where T1 is the constant of time, characterizing inertia prop-
erties of a vessel; kω is the coefficient of rudder effectiveness. 

Let us find the solution of the reduced differential equa-
tion, for which we will write it down relative to angular 
velocity w, taking into account that w= K ::

ww + w = b
1 kT k .

The equation in question is non-uniform; therefore, its 
general solution is the sum of the solution of corresponding 
homogeneous equation and particular solution [13], that is:

w = w + wod r , 				    (1)

where ωod and ωr are, respectively, the solution of similar 
homogeneous equation and the particular solution.

Let us find solution for ωod, writing down the appropriate 
homogeneous differential equation:

w + w =
1 od odT 0,

to which the following characteristic equation corresponds: 

+ =1T k 1 0,

with root k=–1/T1. Therefore [13], the solution of homoge-
neous differential equation is:

( )w = −od 1 1C exp t T .

That is why expression (1) takes the following form:

( )w = − + w1 1 rC exp t T .  				   (2)

We will find the integration constant C1 from the initial 
conditions at t=0. We will designate the initial value of an-
gular velocity with ωo and, substituting t=0 in (2), we will 
obtain expression for integration constant C1:

= w − w1 o rC . 					      (3)

Then, substituting (3) in (2), for w we will finally obtain 
the following expression: 

( ) ( )w = w − w − + wo r 1 rexp t T . 		   (4)

Integrating the last equation, we will obtain the expres-
sion for current course of vessel K, that is: 

( ) ( ) = + w − w −t + w t∫  
t

o o r 1 r
0

K K exp T d ,

We will introduce the following designation for definite 
integral in the previous interval: 

( ) ( ) = w − w −t + w t∫  
t

o o r 1 r
0

J exp T d ,

and find the expression for it. It is evident that: 

( ) ( )

( ) ( )

 = w − w −t + w t =∫  

 = w − w −t t + w t∫ ∫ 

t

o o r 1 r
0

t t

o r 1 r
0 0

J exp T d

exp T d d ,

or

( ) ( )= w − w −t t + w∫
t

o o r 1 r
0

J exp T d t.

Finally, we obtain the following expression for integral Jo: 

( ) ( ) = w − w − w − − o r 1 r o 1J t T 1 exp t T .

That is why expression for a vessel’s course has the fol-
lowing form: 

( ) ( ) = + w − w − w − − o r 1 r o 1K K t T 1 exp t T . 	  (5)

Let us find expressions for the current value of the ves-
sel’s course at the first and second phases of its turn, which 
are different by the position of the rudder blade relative to 
the center-line plane of a vessel. 

At the first phase of a turn, the duration of which makes 
the time interval Δtk, the initial ωo and steady-state ωr value 
of angular velocity are expressed as follows:

w =o 0  and w ww = b =
kr k a .

In this case, expression (5) takes the following form: 

( )w w  = + − − −t o 1 1K K a t T a 1 exp T

or

( ){ }w  = + − − − o 1 1K K a t T 1 exp t T . 		   (6)

At the second phase of a turn, in the moment of time 
tn+Δtk , the rudder is put over to the opposite hard to angle –
βk and, within time interval Dt, checking helm takes place. In 
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this case, the initial value of angular velocity in the moment 
of time Δtk is determined by the expression

( )w  w = − −D o k 1a 1 exp t T ,

and steady-state value of angular velocity ωr=–aω. We sub-
stitute the obtained values in (5):

( ){ } ( )
w

w w

= − −

   − − − − −D − −   



1 k 1 1

K K a t

T a a 1 exp t T 1 exp t T .

That is why the value of the current course is described 
by dependence: 

( ) ( ){ }w    = − − −D − − −   


1 k 1 1K K a T 2 exp t T 1 exp t T t . (7)

To calculate time intervals Δtk and Dt, it is necessary 
to make the system of equations, which in general case 
formalizes the requirements of the turn for the assigned 
increment in course DK, as well as the loss of angular ve-
locity by the moment of setting a new course, and takes the 
following form:

( ) ( )D = D + D


w D D =


k

k

K K t K t ,

( t , t) 0.
				   (8) 

We will write down the first equation of system (8) in ex-
plicit form, using expressions (6) and (7) for the components 
K(Δtk) and K (Dt):

( ){ }
( ) ( ){ }

w

w

 D = D − − −D + 

   + − −D − − − D   

k 1 k 1

1 k 1 1

K a t T 1 exp t T

a T 2 exp t T 1 exp t T t .

Let us divide both parts of the obtained equation by 
value aω and obtain:

( ){ }
( ) ( ){ }

w

w

D  = D − − −D + 

   + − −D − − − D   

k 1 k 1

1 k 1 1

K
t T 1 exp t T

a

a T 2 exp t T 1 exp t T t ,

hence, we find the expression for calculating Δtk by the 
method of simple iterations [14 ]:

( )
( ) ( )

w

 D = − −D + D − 
D   − − −D − − +   

k 1 k 1

1 k 1 1

t T 1 exp t T t

K
T 2 exp t T 1 exp t T

a

with initial approximation 

w

D
D =k

K
t .

a

In the reduced expression for simple iterations it is also 
necessary to find connection between variables Δtk и Dt, that 
is, value Dt must be expressed through Δtk. For this, we will 
use the second equation of system (8) and the initial values 
of angular velocity at the second phase of a turn

( )w w w = − −D w = − o k 1 ra 1 exp t T ,  a .

Substituting these values in (4), we will obtain:

( ){ } ( )w w w

w D D =

 = − −D + −D − = 

k

k 1 1

( t , t)

a 1 exp t T a exp t T a 0,

( ) ( )w w − −D + −D − = k 1 1a 1 exp t T 1 exp t T a 0,

( ) ( ){ }w  − −D −D − = k 1 1a 2 exp t T exp t T 1 0,

from this expression, it is possible to write down:

( ) ( ) − − −D  =k 1 12 exp t T exp t T 1,  
 

( ) ( )−
 − −D = −D 

1

k 1 12 exp t T exp t T ,

taking the logarithms of both parts of the last equation, we 
obtain:

( ) −D − −D = −1 k 1t T ln 2 exp t T ,

( ) D − −D = 1 k 1t T ln 2 exp t T .

The latter obtained equation makes it possible to con-
nect variables Δtk and Dt, which provides for iterative cal-
culation of the durations of each phase of the vessel’s turn, 
as well as turn duration t from one assigned vessel’s course 
to another one. 

To calculate corrections, which consider the inertia of a 
vessel, by the moments of its turn, it is necessary to calculate 
increment in coordinates Δxo and Δyo of the operating vessel 
over the time of turn t. It is obvious that:

( )
t

 D = +∫  o o o
0

x V sin K K t dt,

( )
t

 D = +∫  o o o
0

y V cos K K t dt.

If we take into account that a vessel’s turn consists of  
two phases, and in addition, the expression for the current 
course at the first and second phases takes different forms, 
the previous integrals for Δxo and Δyo take the follow- 
ing form:

( )t
 D = + +∫  


o o o

0
x V sin K K K dt,

( )t
 D = + +∫  


o o o

0
y V cos K K K dt.

Each of the reduced definite integrals is the sum of two 
others, describing increment in coordinates at the first and 
second phases of a vessel’s turn, that is:

( )
D D

 D = + + + D + ∫ ∫   


kt t

o o o o o k
0 0

x V sin K K dt V sin K K t K dt,

( )
D D

 D = + + + D + ∫ ∫   


kt t

o o o o o k
0 0

y V cos K K dt V cos K K t K dt.

Substituting expressions (6) and (7) in previous equa-
tions, first we will obtain expression for increment Δxo:

( ){ }
( ) ( ) ( ){ }

D

w

D

w

  D = + − − − +∫    

    + + D + − − − − −∫      

kt

o o o 1 1
0

t

o o k 1 k 1 1
0

x V sin K a t T 1 exp t T dt

V sin K K t a T 2 exp t T 1 exp t T t dt,
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or remove constant values from the integral sign:

( ){ }
( ){ }

( ) ( ) ( ){ }
( ) ( )

D

w

D

w

D

w

w

  D = − − − +∫    

  + − − − +∫    

      + + D − −D − − − +∫       

   + + D − −D −   

k

k

t

o o o 1 1
0

t

o o 1 1
0

t

o o k 1 k 1 1
0

o o k 1 k 1

x V sinK cos a t T 1 exp t T dt

V sinK sin a t T 1 exp t T dt

V sin K K t cos a T 2 exp t T 1 exp t T t dt

V cos K K t sin a T 2 exp t T 1 e ( ){ }D   − −∫    
t

1
0

xp t T t dt,

where 

( ) ( ){ }w  D = D − − −D k k 1 k 1K t a t T 1 exp t T .

We will find expression for increment in coordinate Δyo:

( ){ }
( ) ( ) ( ){ }

D

w

D

w

  D = + − − − +∫    

    + + D + − − − − −∫      

kt

o o o 1 1
0

t

o o k 1 k 1 1
0

y V cos K a t T 1 exp t T dt

V cos K K t a T 2 exp t T 1 exp t T t dt.

We remove constant values from the integral sign and 
obtain:

( ){ }
( ){ }

( ) ( ) ( ){ }
( ) ( )

D

w

D

w

D

w

w

  D = − − − −∫    

  − − − − +∫    
      + + D − −D − − − −∫       

   − + D − −D −   

k

o

k

0

t

o o 1 1
0

t

o o 1 1

t

o o k 1 k 1 1
0

o o k 1 k 1

y V cosK cos a t T 1 exp t T dt

V sinK sin a t T 1 exp t T dt

V cos K K t cos a T 2 exp t T 1 exp t T t dt

V sin K K t sin a T 2 exp t T 1 e ( ){ }D   − −∫    
t

1
0

xp t T t dt.

In this way the calculations of the necessary values of 
magnitudes Dt, Δtk, Δxo and Δyo are performed in case when 
the second dynamic model of the rotary motion of vessel is 
used. 

We note the circumstance that definite integrals, which 
are included in the expressions for Δxo and Δyo, are not ex-
pressed in elementary functions and their values are found 
by numerical methods, for example, we use the method of 
trapezoids or the Simpson method, which gives more accu-
rate results. 

The third dynamic model of a change in the course of 
vessel K with its turn is described by the non-homogeneous 
linear differential equation of the third order with constant 
coefficients, which takes the following form [5]:

( ) w+ + + = b  
1 2 1 2 kT T K T T K K K ,

where T1 and T2 are the time constants, characterizing iner-
tia properties of a vessel

 Let us find the solution for this differential equation, for 
which we will write it down depending on angular velocity 
w, taking into account that w= K :

( ) ww + + w + w = b 
1 2 1 2 kT T T T K .

A general solution of this non-uniform equation of the 
second order is the sum of the solution of the corresponding 
uniform equation ωod and particular solution ωr, that is:

w = w + wod r ,

First, we will find solution ωod, for 
which we write down the corresponding 
uniform equation: 

( )w + + w + w = 
1 2 1 2T T T T 0,  	 (9)

which has the following characteristic 
equation: 

( )+ + + =2
1 2 1 2T T k T T k 1 0, 	 (10)

the roots of which are necessary to de-
termine. 

From (10), we obtain:

+
+ + =2 1 2

1 2 1 2

T T 1
k k 0,

T T T T

hence, we find expressions for the equa-
tion roots:

( )
( )
( )

( )
( )

( )
( ) ( )

( ) ( )

= − + ±

 ± + − = 
= − + ±

 ± + + − = 
= − + ±

 ± + − = 
= − + ±

± −

1,2 1 2 1 2

1 22 2 2
1 2 1 2 1 2

1 2 1 2

1 2
2 2 2 2

1 2 1 2 1 2 1 2

1 2 1 2

1 2
2 2 2 2

1 2 1 2 1 2

1 2 1 2

1 2 1 2

k T T 2T T

T T 4T T 1 T T

T T 2T T

T T 2T T 4T T 4T T

T T 2T T

T T 2T T 4T T

T T 2T T

T T 2T T .

From the last equation we find the following expressions 
for the required roots of characteristic equation: 

( ) ( ) ( ) ( )= − + + −1 1 2 1 2 1 2 1 2k T T 2T T T T 2T T , = −1 1k 1 T ,

( ) ( ) ( ) ( )= − + − −2 1 2 1 2 1 2 1 2k T T 2T T T T 2T T , = −2 2k 1 T .

According to the obtained values of roots k1=–1/T1 
and k1=–1/T2, it is possible to write down a solution for 
the initial differential equation (10) for angular veloci- 
ty w [15]:

( ) ( )w = − + − + w1 1 2 2 rC exp t T C exp t T . 		   (11)

Integration constants C1 and C2 are found from the in-
itial conditions at t=0. Initial value of angular velocity will 
be designated through ωo, and angular acceleration w o=0. 
Substituting initial values at t=0 in (11), we will obtain the 
following expression:

w = + + wo 1 2 rC C ,

For the second expression, it is necessary to write down 
analytical form of first-order derivative w . For this purpose, 
it is necessary to differentiate (11):

( ) ( )w = − − − −
1 1 1 2 2 2C T exp t T C T exp t T ,
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at t=0, we will obtain the second expression for defining C1 
and C2:

w = − −
о 1 1 2 2C T C T ,

+ =1 2 2 1C T C T 0.

From the obtained equations, we write down the follow-
ing expression:

+ = w − w1 2 o rC C ,

+ =1 2 2 1C T C T 0.

From the second equation, we obtain:

= −1 2 1 2C C T T ,

which, when substituting in the first expression, will give:

− + = w − w2 1 2 2 o rC T T C ,

hence: 

( ) ( )= − w − w −2 2 o r 1 2C T T T ,

( ) ( )= − w − w −1 1 o r 1 2C T T T .

That is why the expression for angular velocity w takes 
the form:

( )
( ) ( ) ( )

w = w + w − w ´

 ´ − − − − 

r o r

1 1 2 2 1 2T exp t T T exp t T T T . 	 (12)

Integrating the obtained expression, we find analytical 
dependence for the current value of the vessel’s course in 
general form:

( )
( )

( ) ( )

w − w
= w t = ´∫ −

 ´ −t − −t t + w t∫ ∫ 

t
o r

0 1 2

t t

1 1 2 2 r
0 0

K d
T T

T exp T T exp T d d ;

( )
( )

( ) ( ) t

w − w
= + ´

−

 ´ − −t + −t + w 

o r
o

1 2

2 2
1 1 2 2 r0

K K
T T

T exp T T exp T t.

Substituting integration limits, we obtain the following 
expression for the current course of vessel K:

( )
( ) ( ){ } ( )

= + w + w − w ´

   ´ − − + − − −   

o r o r

2 2
1 1 2 2 1 2

K K t

T 1 exp t T T 1 exp t T T T .

Let us find expression for K, substituting the values of 
the initial and steady-state angular velocity of the vessel’s 
turn at the first phase in the obtained equation, in this case 
ωo=0 and ωr=aω:

( ) ( ){ } ( )
w

w

= + −

   − − − − − − −   

o

2 2
1 1 2 2 1 2

K K a t

a T 1 exp t T T 1 exp t T T T ,

( ) ( ){ } ( ){ }w

= +

   + − − − + − − −   

o

2 2
1 1 2 2 1 2

K K

a t T 1 exp t T T 1 exp t T T T .(13)

We obtain the expression for the current vessel’s course 
at the second phase of turn K,  substituting in the initial 
expression of formula for ωo=ωo(Δtk) and ωr=–aω. First we 
will find expression for ωo(Δtk), taking into account that the 
moment of time Δtk is the finishing moment of the first phase 
of the vessel’s turn. Therefore, we substitute Δtk in (12), tak-
ing into account initial data for the first phase of the turn:

( )
( ) ( ) ( )

w

w

w D = −

 − −D − −D − 

k

1 k 1 2 k 2 1 2

t a

a T exp t T T exp t T T T ,

( ) ( ) ( ){ }w

w =

 = − −D − −D − 

o

1 k 1 2 k 2 1 2a 1 T exp t T T exp t T T T .

Substituting the obtained values ωo and ωr in the initial 
expression for the current course of vessel K, we will obtain: 

( ) ( ) ( ){ }
( ) ( ){ } ( )

w

w

= − +

 + − −D − −D − + 

   ´ − − − − −   

´

−



1 k 1 2 k 2 1 2

2 2
1 1 2 2 1 2

K K a t

a 1 T exp t T T exp t T T T 1

T 1 exp t T T 1 exp t T T T ,

( ) ( ) ( ){ }
( ) ( ){ } ( )

w

w

= − +

 + − −D − −D − 

   ´ − − − − −  

´

 −



1 k 1 2 k 2 1 2

2 2
1 1 2 2 1 2

K K a t

a 2 T exp t T T exp t T T T

T 1 exp t T T 1 exp t T T T . 	 (14)

Expressions (13) and (14) make it possible to write down 
the first equation for the assigned change in the course DK at 
the turn of an operating vessel. However, first it is necessary 
to write down expressions for an increment in the course at 
the first phase of the turn K(Δtk) and at the second phase of 
the turn K (Dt).

We substitute value Δtk in expression (13) and obtain:

Similarly, substitution of Dt in (14) allows us to obtain 
the expression for an increment in the course at the second 
phase of the turn K (Dt):

( )
( ) ( ) ( ){ }

( ) ( ){ } ( )

w

w

D = − D +

 + − −D − −D − ´ 

   ´ − −D − − −D −   



1 k 1 2 k 2 1 2

2 2
1 1 2 2 1 2

K t a t

a 2 T exp t T T exp t T T T

T 1 exp t T T 1 exp t T T T .

We substitute the obtained expressions in the formula of 
increment in the course 

( ) ( )D D= D + 
kK K t K t

and obtain the following analytical expression:

( ) ( ) ( ){ } ( ){ }w    D = D − − −D − − −D −   
2 2

k 1 k 1 2 k 2 1 2kK t a t T 1 exp t T T 1 exp t T T T .

( ){{
( ) } }

( ) ( ) ( ){ }
( ) ( ){ } ( )

w

w w

 D = D − − − D − 

 − − − D − − 

 − D + − − D − − D − ´ 

   ´ − − D − − − D −   

2
k 1 k 1

2
2 k 2 1 2

1 k 1 2 k 2 1 2

2 2
1 1 2 2 1 2

K a t T 1 exp t T

T 1 exp t T T T

a t a 2 T exp t T T exp t T T T

T 1 exp t T T 1 exp t T T T .
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We will divide both parts of the equation by magni-
tude aω:

( ) ( ) ( ){ }
( ) ( ) ( ){ }

( ) ( ){ } ( ) w

   D − −D − − −D − −   

 −D + − − D − − D − ´ 

   ´ − − D − − − D −  = D 

− 2 2
k 1 k 2 k 2 1 21

1 k 1 2 k 2 1 2

2 2
1 1 2 2 1 2

t T 1 exp t T T 1 exp t T T T

t 2 T exp t T T exp t T T T

T 1 exp t T T 1 exp t T T KT a .

From the last expression, we write down dependence 
Δtk on Dt: 

We compile the second equation, substituting in (12) the 
values of the initial and steady-state angular velocity at the 
second phase of a turn and equaling the obtained expression 
to zero, that is:

( )
( ) ( ) ( ){ }

( ) ( ) ( )
w

w

w D D =

 = − − D − − D − ´ 
 ´ − D − − D − −  =

k

1 k 1 2 k 2 1 2

1 1 2 2 1 2

t , t

a 2 T exp t T T exp t T T T

T exp t T T exp t T T T a 0.

Reducing both parts by aω, we obtain the following 
equation:

( ) ( ) ( ){ }
( ) ( ) ( )

 − − D − − D − ´ 
 ´ − D − − D − − = 

1 k 1 2 k 2 1 2

1 1 2 2 1 2

2 T exp t T T exp t T T T

T exp t T T exp t T T T 1 0,

( ) ( ) ( ){ }
( ) ( ) ( )

 − − D − − D − ´ 
 ´ − D − − D − = 

1 k 1 2 k 2 1 2

1 1 2 2 1 2

2 T exp t T T exp t T T T

T exp t T T exp t T T T 1.

We perform elementary transformation in the last 
equation:

( ) ( ) ( )
( ) ( ) ( ){ }−

 − D − − D = − ´ 

 − − D − − D − 

1 1 2 2 1 2

1

1 k 1 2 k 2 1 2

T exp t T T exp t T T T

2 T exp t T T exp t T T T ,

which allows us to write down the obtained equation in the 
form, convenient for calculation by the method of simple 
iterations. For this purpose, we will write down: 

( ) ( ) ( ) ( )
( ) ( ) ( ){ }−

 − D = − D + − ´ 

 ´ − − D − − D − 

1 2 1 2 1 2 1

1

1 k 1 2 k 2 1 2

exp t T T T exp t T T T T

2 T exp t T T exp t T T T .

We take logarithms of both parts of the last expression 
and obtain: 

( ) ( ) ( ){
( ) ( ) ( ){ } }−

 − D = − D + − ´ 

 ´ − − D − − D − 

1 2 1 2 1 2 1

1

1 k 1 2 k 2 1 2

t T ln T T exp t T T T T

2 T exp t T T exp t T T T ,

hence, it is possible to write down the following expression:

( ) ( ) ( ){
( ) ( ) ( ){ } }−

 D = − − D + − ´ 

 ´ − − D − − D − 

1 2 1 2 1 2 1

1

1 k 1 2 k 2 1 2

t T ln T T exp t T T T T

2 T exp t T T exp t T T T .

 Designating 

        
( ) ( ) ( ) = − − D − − D − 1 k 1 2 k 2 1 2L 2 T exp t T T exp t T T T ,

finally, we receive the expression, connecting Δtk 
with Dt:

( ) ( ){
( ) }−

D = − − D +

 + − 

1 2 1 2

1
1 2 1

t T ln T T exp t T

T T T L . 	 (16)

Thus, for the calculation of values Δtk and Dt by the 
method of simple iterations, assigned by the previous value 
Δtk, value Dt is calculated with the help of expression (16), 
which is then substituted in expression (15) for calculating 
the subsequent value Δtk. 

Let us find expressions for calculating the increments in 
coordinates of the operating vessel Δxo and Δyo within the 
period of turn t. As it was shown earlier, the required incre-
ments in coordinates are expressed as follows with the help 
of definite integrals:

( )
t

 D = +∫  o o o
0

x V sin K K t dt,

( )
t

 D = +∫  o o o
0

y V cos K K t dt.

We also consider that each of the reduced integrals is the 
sum of two integrals, corresponding to increments of coordi-
nates at the first and second phase of a turn, that is:

( )

D

D

D = + + ∫  

 + + D +∫  


kt

o o o
0

t

o o k
0

x V sin K K dt

V sin K K t K dt,

( )

D

D

D = + + ∫  

 + + D +∫  


kt

o o o
0

t

o o k
0

y V cos K K dt

V cos K K t K dt.

First, we will find expression for increment Δx, removing 
the constants from the integral sign:

( ) ( )

( ) ( )
( ) ( )

D D

D

D

D = + +∫ ∫

 + + D +∫ 

 + + D ∫ 





kt t

o o o o o
0 0

t

o o k
0

t

o o k
0

x V sinK cos K dt V cosK sin K dt

V sin K K t cos K dt

V cos K K t sin K dt,

then, substituting formulas (13) and (14) in the last expres-
sion, we obtain the following analytical dependence: 

( ) ( ){ } ( )
( ) ( ) ( ){ }
( ) ( ){ } ( ) w

   D = D + − −D − − −D − −   

 − − − D − − D − ´ 

   ´ − − D − − − D − +   D

2 2
k 1 k 2 k 2 1 21

1 k 1 2 k 2 1 2

2 2
1 1 2 2 1 2

t t T 1 exp t T T 1 exp t T T T

2 T exp t T T exp t T T T

T 1 exp t T T K1 exp t T T T a . (15)
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Similarly, we find expression for Δyo:

either substituting expressions for K and K,  we will obtain:

Thus, we perform the calculation of increment in the 
coordinates of the operating vessel during its turn, taking 
into account the third dynamic model of motion by the yaw 
angle.

6. Discussion of results. Selection of the most acceptable 
model of the rotary motion of a vessel

For the selection of an adequate model of the rotary mo-
tion of a vessel, which can be used for solving the problem of 
determining parameters of the turn, the imitation simulation 
of trajectories of the turn with the help of experimental ma-
terial was carried out.

In the process of operating the container carrier “Ox-
ford”, experimental materials were obtained as a result of 
field observations of the vessel turning ability, which were 
used for determining the type of dynamic model and the 
calculation of numerical values of its parameters. The ves-
sel was made in 1998, its length is 216 meters, its width is  
26,8 meters, and the height of its side is 21,8 meters. 
Displacement in ballast is 17130 tons, full load displace- 
ment – 23660 tons with the average draught of 9,40 meters. 
The power plant consists of two diesels of MAN|B&W 9L 
58|64 type, with capacity of 12510 kW each. The propel- 

ler is 7000 mm in diameter and 
weighs 45000 kg. Effective area 
of the rudder is 25,6 sq. m. The 
maximum speed in full load 
with both engines in operation 
is 27 knots.

The experimental material 
was obtained as follows. At the 
vessel’s motion by unchanged 
course and velocity, the rudder 
was put over to the assigned 
angle and the chosen hard. From 
the starting moment of putting 
the rudder over, in the equal 
intervals of approximately 5 sec-
onds, the moments of time ti and 
the correspondent values of an 
increment in the vessel’s course 
ΔKi were registered. Under op-
erating conditions it was possi-
ble to obtain experimental data 
for the vessel’s turn to the right 
and to the left at the angles of 
putting the rudder over to 5, 10 
and 15 degrees. In this case, each 
of six indicated maneuvers was 
made several times under the 
maximally similar conditions: at 
the sea state of 2–4 points, wind 
of 2–3 points and in still waters. 
Table 1 displays data on the con-
ditions for field observations.

The materials of all series of 
one maneuver were averaged, ob-
taining the dependence of an in-
crement in the course on the time. 
The averaged results of each of the 
maneuvers are given in Table 2.

Table 1 

Data on the conditions for field observations

Number of 
maneuver

Side of 
turn

Angle of 
putting 
rudder 
over b

Vessel’s 
velocity 

Number 
of series 

Load 
state 

Maneuver 1 right 5 24 5 in ballast

Maneuver 2 left 5 24 5 in ballast

Maneuver 3 right 10 21 5 in load 

Maneuver 4 left 10 21 5 in load

Maneuver 5 right 15 27 4 in load

Maneuver 6 left 15 27 4 in load

For the approximation of initial experimental material 
by the dynamic model of the third order and the calculation 
of the corresponding values of parameters T1 and T2, we used 
the method of least squares under the assumption of normal 
law of distribution of measurement errors. Results of the 
calculations are given in Table 3.

( ) ( ){ } ( ){ }{ }
( ) ( ){ } ( ){ }{ }

( ) ( ) ( ) ( ){ }{

D

w

D

w

D

w w

   D = − − − − − − −   

   − − − − − − −   

   + D − + − − D − − D − ´∫  

−

−

´ −

+

+

∫

∫

k

k

t
22

1 1 2 1 2o o o 2
0

t
22

1 1 2 1 2o o 2
0

t

o o k 1 k 1 2 k 2 1 2
0

2
1

dtx V cosK cos a t T 1 exp t T T 1 exp t T T T
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Table 2

Averaged data on maneuvers 

Maneuvers

1 2 3 4 5 6

ti ΔKi ti ΔKi ti ΔKi ti ΔKi ti ΔKi ti ΔKi

5 0,5 5 0,4 5 0,9 5 1,1 5 0 5 0

10 2,0 10 2,1 10 3,0 10 2,8 14 0 11 0

15 4,2 15 4,4 15 6,2 15 6,3 18 1,5 15 2,0

20 7,5 20 7,3 20 11,3 20 11,1 21 5,1 19 6,1

25 11,2 25 11,4 25 17,2 25 17,1 26 12,0 27 21,9

30 15,5 30 15,2 30 23,0 30 23,2 31 22,1 33 35,1

35 19,8 35 20,0 35 29,0 35 29,1 36 35,2 39 50,2

40 23,8 40 23,6 40 35,5 40 35,3 40 44,8 43 60,1

44 28,0 44 28,1 45 58,0

Table 3

Parameters of dynamic models of container carrier “Oxford”

Rudder Model 1 Model 2 Model 3

5°
w =a 0,92

w =a 0,92;

=1T 14,23
w = = =1 2a 0,88; T 9,61; T 1,69;

10°
w =a 1,38

w =a 1,38;

=1T 13,22
w = = =1 2a 1,28; T 8,89; T 1,54;

15°
w =a 2,70

w =a 2,70;

=1T 10,23
w = = =1 2a 2,65; T 9,62; T 1,23;

Correctness of the calculated parameters of the vessel’s 
turning ability for the dynamic models of the second and 
third orders was verified with the help of calculation of the 
curve of dependence DK on t and comparison of results of the 
calculations with experimental data. 

The following analytical dependence was used for the 
dynamic model of the vessel’s turning ability of the se- 
cond order:

D =K 0,  if < Z ,t t

( ) ( )( ){ }w
 D = − − − − − Z 1 Z 1K a t t T 1 exp t t T ,  if ≥ Z ,t t

and for the dynamic model of rotary motion of a vessel of the 
third order we used analytical dependence :

 
D =K 0,  if < Z ,t t  

( ) ( )( ) ( )( ){ } ( ){ }w
   D = − − − − − − − − − −   

2 2
Z 1 Z 1 2 Z 2 1 2K a t t T 1 exp t t T T 1 exp t t T T T ,

if ≥ Zt t .
As an example, Fig. 2 represents results of the calcula-

tions of the maneuver with the rudder angle of 15˚ for the 
dynamic model of the second order.

Results of the calculations on maneuver with the rudder 
angle equal to 15 degrees for the dynamic model of the third 
order are represented in Fig. 3. 

The conducted analysis of correspondence of experimen-
tal data and calculated results revealed that the method of 
least squares, applied for the model of rotary motion of the 
third order, provides for a good agreement between experi-
mental data and those calculated. 

Fig. 2. Calculated dependence DK on t for maneuver to 15˚, 
obtained with the aid of the second dynamic model

For the bulk carrier “Sheila Ann” (built in China in 
1999), materials on its turning ability were obtained under 
actual operating conditions; according to these materials, 
the best correspondence to the experimental trajectory of 
the vessel’s turn is reached for the third type of the model.

Fig. 3. Calculated dependence DK on t for the maneuver to 
15˚, obtained with the help of the third dynamic model

Paper [4] also examined im-
itation simulation of the turn of 
container carrier “Oxford”, whose 
characteristics of turning ability 
were given above, with the calcula-
tion of magnitude of trajectory er-
ror by the moment of the maneuver 
completion (Fig. 4). 

As a result of the imitation simulation of the turn to 90°, 
it was established that with the use for the prediction of the 
curvilinear section of the first type of mathematical model, 
the trajectory error was 150¸200 m, for the second type of 
the model this magnitude was 35¸40 m, and for the third 
type – 25¸30 m.

Therefore, mathematical model of the vessel’s turning 
ability of the third type is the most acceptable, since, at 
sufficient simplicity, it possesses the required accuracy 
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(maximum divergence of experimental and model tra-
jectories is 25¸30 for both experiments). Therefore, it 
is expedient to use a mathematical model of the vessel’s 
turning ability of the third type as the model of the ves-
sel’s rotary motion.

At the National University “Odessa Marine Academy” 
(Ukraine), a navigation information system of providing 
for vessel maneuvering is under development, which con-
tains the module of calculation of parameters of a vessel’s 
turn when using a model of the vessel’s turning ability of 
the third type. By the assigned sections of program trajec-
tory and increment in the course between them, the system 
calculates the starting moment of a turn and its trajectory 
taking into account the rudder blade angle and character-
istics of the vessel’s inertia, predicting the trajectory of the 
vessel’s motion, as shown in Fig. 5.

Thus, present work presents an analysis of three models of 
a vessel’s rotary motion, which to varying degrees correspond 
to the real process of turning and can be used when calculat-
ing the parameters of a vessel’s turn in the situations of dif-
ferent constraint. A drawback in the examined models is that 
they do not consider the time of putting the rudder blade over. 

It is expedient to use results of the study in the navi-
gation information systems for developing the function of 
calculation of parameters of a vessel’s turn for the assigned 
initial data, which will substantially increase the accuracy of 
performing a turn by the vessel and entering a new phase of 
the program trajectory. In future, it is necessary to analyze 
the models of the vessel’s rotary motion, which consider the 
duration of putting the rudder blade over, and perform their 
comparative characteristic with the models, proposed in this 
article by the parameter of accuracy.

 Fig. 4. Trajectories of the vessel’s turn when using different models

 

Fig. 5. Results of predicting a vessel’s turn
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7. Conclusions

1. On the basis of an analysis of dynamic models of the 
vessel’s turn, which consider its inertia, the analytical ex-
pressions for calculating the duration of both phases of a 
turn were obtained.

2. With the help of experimental data, obtained during 
the field observations, the substantiation of selecting the 

most acceptable model of the vessel’s rotary motion was per-
formed, which minimizes a trajectory error in vessel entering 
the predetermined trajectory.

3. It was shown that the results of the study are used in 
the developed navigation information system of providing 
vessels maneuvering, which contains the module of calcu-
lation of parameters of a vessel’s turn with the help of the 
model of the vessel’s turning ability of the third type.
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