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1. Introduction

The practical problems of analyzing and synthesizing
complex systems are solved under conditions of uncertain-
ty. The degree of uncertainty is determined by the level of
knowledge on the state and behavior of a system under study
and the environment in which the system operates. It is es-
sential to take this uncertainty into account while solving
problems of assessing and predicting the states of systems in

engineering [1, 2], military affairs [3, 4], medicine [5], econ-
omy [6, 7], as well as problems of structural and parametric
optimization [8—10].

Over the past few decades, the emergence and rapid de-
velopment of the fuzzy set theory [11-21] have significantly
expanded the range of tasks for which it has become possible
to use a strict formal mathematical apparatus. The presence
of a rod element in this theory means a fuzzy value mem-
bership function as a natural analogue of the distribution




density of random variables, which creates some necessary
preconditions for an axiomatic construction of fuzzy math-
ematics.

However, in practical situations of “information hun-
ger”, a priori assignment of the membership function is not
well-founded. Its adequate recovery from experimental data
can not be implemented. The impossibility of using the fuzzy
set theory in such cases correctly has been an impetus for
developing a theory of rough sets, introduced in [22, 23].
The basic theoretical premise of this theory is the possibility
of approximating an ill-defined rough set with a couple of
precise sets, which are called a lower approximation and an
upper approximation. The lower approximation is a subset
containing objects that definitely belong to a set under
consideration, and the upper approximation is a subset that
includes objects that may belong to the considered set.

2. Literature review and problem statement

Let us consider the basic provisions of the rough set the-
ory that are presented in [22, 23] and specified in [24—27].

May U be a universal set and may X be a subset within
U. We shall introduce X to denote the lower approximation
and X to denote the upper approximation of X. Then, ac-
cording to [25], Xc X c X . Let us consider an example of a
constructive setting of a rough number. Let A be a non-emp-
ty set, may A be a set of all the subsets of A, and let A be an
element of A. We shall introduce a four-element set in which

c<a<b<d, A={x|c£xsd} and A={x|a£xsb}.

Then the value of &eA, definitely belonging to the in-
terval [a, b] and possibly belonging to the interval [c, d], is a
rough value given by the intervals

(A, A) = ([a,b], [c,d]).

A special case of a rough value is the interval [a, b] num-
ber, which can be regarded as some rough value of the type

([a.5].[a.b])

The possibilities of the direct use of the rough set theory
to solve practical problems are determined by the rules of
processing rough values [24, 27].

May

&= ([} [ana,]) and n=([b,b, 1 [b,.b,])
be two rough values. Then

§+T\=([a1 +by,a,+b,]|[a, +bs,a, +b4]);
&-n=([a,~b,.a,~b,][a,~b,.a,~b,]);

ke [ka“kaz],[kag,kaJ, k>0,
- [kaz,kaJ,[kamkag], k <0;

Exm= ([a1b1,a2b2],[a3b3,a4b4]), a,20,b, 20;
and

g 4 Ay |23 Ay >
- = T 1 PlT 1 | —Oyb 0
n {[bz b1 b4 b3 % 7

)

In a special case of interval numbers, we obtain the fol-
lowing interval arithmetic [28-31]:

[a1,a2]+[b1,b2]=[a1 +b,,a, +b2];
|:al,212:|—[b1,b2:|:[a1 -b,,a, —b1:|;

k[a1,a2], k>0,
kla,a, [= 2
[31 az] {k[az,a1],k<0; )

[a,a, |x[b,,b,]=[ab,a,b,] a,20,b,>0;

and

[a1,az]_ ﬂai
[b1,b2]_ bz,bl ,2,20,b,>0.

There are undoubted theoretical benefits of the formal-
ism that is introduced in [22]. However, some weaknesses are
also obvious. It is clear that the quality, utility and efficiency
of using any models are primarily assessed in terms of their
adequacy. A reasonable claim against the adequacy level of
describing a rough value with the model ([a, b], [¢, d]) is
based on the lack of smoothness and derivative continuity
of all transitions between the subsets containing objects
that certainly belong, possibly belong, and certainly do not
belong to a variety under study. Besides, all elements of
the subset ([c, d]/[a, b]) are equally, although it is not clear
how, similar to each other in respect of a possible belonging
to the considered set. These elements are equally distinct
from the objects that definitely belong to this set, which
does not fully correspond to the true understanding of
the nature of things. Furthermore, the summation of two
rough numbers produces a rough number, but its type of
uncertainty differs from that of the summands. The subset
([a;+bs,a,+b,]\[a,+b,,a,+b,]) of the elements of the
resulting rough value is not as homogeneous as the origi-
nal subsets ([aS,a4]\[a1,a2]) and ([bS,b4]\[b1,b2]). It is
because the elements of the resulting set, for which the un-
certainty remains, are produced by combining, in particular
with the elements that undoubtedly belong to the summand
sets for which there is no uncertainty. Thus, the resulting
rough number can not be further adequately described by
the model of the type ([c1,cz], [cs,c4]); therefore, rule (1)
must be adjusted. The natural direction of the adjustment
is fuzzy mathematics [11-16]. The use of advanced tools of
fuzzy mathematics to solve problems with an imprecise de-
scription of the source data significantly expands the toolbox
of mathematical methods of research under conditions of
uncertainty. It determines the urgency of the problem.

The definition of a rough set, first described in [22],
through its lower and upper approximations allows interpret-
ing it in terms of the fuzzy set theory. In this case, the rough
number &= ( [a,b], [c,d]) can be described, for example, by a
trapezoidal fuzzy number x with a membership function

a
u(x)=11, a<x<b,




The fuzzy number x definitely belongs to the interval
[a, b] and possibly belongs to the interval [c, d], which is
quite consistent with the canonical definition of the rough
value of ([a,b], [c,d]), suggested in [22-24]. Moreover, this
definition of a rough value is equally consistent with any un-
imodal fuzzy number with the normal membership function
(i. e. if maxu(x)=1). In terms of rough mathematics, such a
fuzzy number has a subset A, coinciding with the support of
the fuzzy number, whereas the subset A contains one element
that is the kernel of the corresponding fuzzy set. This makes
it possible to extend some of the known results of fuzzy
mathematics to rough mathematics.

3. The purpose and objectives of the study

The theoretical and practical aims of this study consist in
developing a method and structural techniques of describing
the elements of the rough set theory as well as the rules of
processing rough numbers in terms of fuzzy mathematics.

Therefore, our objective is to use terms, models, methods
and tools of fuzzy mathematics to solve practical problems
of rough mathematics. To achieve the aim, it is necessary to
solve the following tasks:

— to develop a method of describing models of rough
sets by means of fuzzy sets;

— to select the type of membership functions of fuzzy
numbers that are approximations of rough numbers;

— to calculate the parameters of the membership func-
tions of fuzzy numbers used to describe rough numbers;

— to adapt the fuzzy mathematics algebra to solving
problems with roughly set initial data.

4. The main results. The development of a technology
for applying the mathematical apparatus of fuzzy
mathematics to solve problems of rough mathematics

In accordance with [32], let us consider an arbitrary
binary operation (addition, subtraction, multiplication, and
division) that assigns the result B to the elements of the com-
position numbers Aj and A,. At the same time, we introduce
a “reverse” operation ® that can help use the composition
result B and one of the components (e. g., A{) to determine
the second component.

Let

B=A,*A,=A,+A, B=A*A,=A -A,
and
B=A,*A,=AA, B=A*A,=A, /A,

Then the use of the “reverse” operation will respectively
produce

A,=B®A,=B-A, A,=B®A,=A, -B,

A,=B®A, =£, and A,=B®A, =ﬁ.
A, B
The membership function of the binary composition

B=A,*A, is defined by the correlation

s (2)= [, (), (z®1)dt

We normalize the obtained membership function by
rationing its maximum value. In particular, if * is a summa-
tion operation, the membership function corresponding to
the result will have the form

1y () =I i, (01, (2~ ).

In this case, the normalization produces

fiy(z)= |:1nax {pB (z)}:|_ IQM (t)u,(z—t)dt.

z

These rules can be applied when using fuzzy models for
rough values.

It is noteworthy that more varied possibilities of a
practical use of fuzzy models of rough values appear if
the corresponding membership functions are reduced to
the form

ﬁ(X) 2(111&'
_[u(x)dx

Then
d
Jﬁ(x)dx =1, (i(x)>0, xe[cd],

and the normalized membership function acquires the prop-
erties of the distribution density. In this case, in particular,
it is possible to calculate the expected value for a rough
value with the membership function {i(x), and it will be a
natural analogue of a mathematical expectation of a random
variable.

Let us calculate the expected value of a rough value

¢=([ab] [ed]

with the membership function

0, X<C,
X_C, c<x<a,
(|a-c
la(x)=§ 1, as<x<b, 3)
d_X,bSXsd
d-b
10, x>d,
where
d
(d-c)+(b-a)
S= dx=——"+———72
{u(x) x ;
Consequently,

m= E[C] = Jxﬁ(x)dx =

:1 jxx_cdx+ixdx+Ij:E

S a—c
C

dX:|:J1+J2+J3-



Ji= S(a1 5y Jx(x c)dx =
I N e S
T S(a-c)| 3l T2l

1 ag—cg_caz—c2 _
“S(a-c)l 3 2 )

1 a’+ac+c? _ac+c2 B
S 3 2

S 6(2a +2ac+2c* —3ac— 30)

_2a’—ac—c’
6s

1x2

b5y

1 1 x2d x%d
1 d(dz—b2 _de'—b3 B
2 3 |

b b*-a’

a 2S

)

~S(d-b)
_1]d*+db d*+db+b* |
sl o2 3 -

2 _9l?
=i(3d2+3db—2d2—2db—2b2)=m.
6S 6S

Ji+),+]),= (2a —ac—c’+3b*=3a’ +d* +db-2b*) =
—6—(b2+d2+db—a2—c2—ac)=
=6—1S—;(b #2b+d7) - (a4 20+ )+

Ly ly Le Lo
2 2 2 2

=g%|:(d+b)2 —(a+c)2]+
+%[(b2 +d*+2db+b*+d* —2db)—
—(a2 +c?+2ac+a’+c¢l - 2ac)]] =

1

GS[ [(@+b)' ~(aef o
+7[(b+d)z+(d—b)z—(a+c)z—(a—c)z]]=
1

68[4[(d+b) ~(arc) ]+

by —(a—c)z]],

Since
(d+b)2—(a+c)2 =(a+b+c+d)(d-c+b-a),
S_ d-c+b-a

=

then

L([A-b) () »

1
~Lla+brc+d
m=(atbrerd)rp—rm

The obtained correlation can be de presented in another
form, which in some cases is more convenient than the initial
expression

3(51+b+c+d)(d—c+b—a)+(d—b)2—(a—c)2
12(d—c+b—a)

m=

_ G

12(d-c+b-a)’
The numerator of this ratio is equal to
G =3ad -3ac+3ab-3a’+3bd -
—3bc+3b?-3ab+3cd -3¢® +3cb -
—3ac+3d?-3cd+3bd —3ad +
+d?-2bd+b*—a’+2ac—c’=
=4(b2 +d?+bd -a’ —ac—cz).

In this case,

e b?+d*+bd-a’-ac—-c’
3(d—c+b—a) '

In the most realistic particular case, if the interval [a, b]
within the interval [c, d] is symmetric, then d—b=a—c, that
is, correlation (4) is simplified in the form

_a+b
—

In another particular case, if a rough number is of an
interval type, then a=c, b=d and correlation (4) can be again
reduced to formula (5).

Finally, let us consider another special case in which the
lower approximation of a rough number is reduced to a point,
that is, a=b. Then

)

1 (d—a+a—c)(d—a—a+c)_
12 d-c B

1 1
=Z(d+c+2a)+a(d+c—2a)=

m=i(d+c+2a)+

=%(3d+3c+ba+d+c—23)=%(d+a+c)‘ 6)

and we re-obtain

. . c+d
If in this case d—a=a—c, then a= ,

formula (5).

The uncertainty level of a rough number that is defined
by formula (3) is determined by the extent by which this
number deviates from its expected value. This extent can be
naturally measured by

D=E[(c—m)2]=j<x—m>2ﬁ<x>dx=

d d d
= é|:.[ xu(x)dx — ZmI xu(x)dx + mzju(x)dx] = (11 +1,+ 13).



I—1d2 dx— 12X Cd d dzd—xd_
1—§£XH(X) X—f!’ X+! X+.I[X b X [=

Thus, if the points ¢ and d are symmetrically
arranged relative to a, that is, a—c=d—a, then

c+d
1_ 1 “ d d 1 d = 9 and
-3 (a_C)IXSdX—a CI 2dX+J 2dX+d—bIX2dx_d—bJX3dX= )
- ) ’ b 1] (c+d) , ., c+d
1— 1 34 C4 & d d 1 d :E 4 +c +d _T(C-i-d)—(jd =
S D N T g 2 2y a1
_S_(a—c)(4 4] {de+!xdx+d_b£ x“dx d—b',[XdX N
11 1 (a* ¢* c (a® ¢ b* a’ d (& b’ :118|:_(C+2)+C’z+d2—cd]=
o 05 g e e e e e
27 +2d* - 2cd+c* +d* +2cd ¢’ +d?
- 36 RV

= %(3;13 +3ac® +3ca’ +3c® —4a’c—4dac® —4c® +4b° — 4% +

+4d® + 4d*b + 4db? — 3d* — 3db* — 3bd? —3b3):
1

( a’—ac?—a’c—¢ +b3+d3+dzb+db2)
12S

12 S|:b2(b+d)+d2(b+d) a’(a+c)—c (a+c)]

TS [(b+d)(b2 +d)-(a+o)@’+c’)|=
(b+d)(b2+d2) (a+c)(a’® +c)
6(d-c+b-a)

d
I,= —2mjxﬁdx =-2m’% I,+I,=-m’

Then

L+L+L =

_1b’+d’+d’b+db’—a’ -’ —a’c—ac’ B
6 d-c+b-a

1 (b2+d2+bd—a2 —ac—cz)2
9 (d—c+b—a)2

In the previously considered particular cases, the result-
ing expression is, of course, simplified.
If the rough number is of an interval type, then a=c and

b=d. Then

Finally, if the points ¢ and d are arranged
symmetrically with respect to [a, b], that is,
a—c=d-b, then d—a=b-c and d-c+b—a=2(d-a).
Consequently,

b +d*+b’d+d’b-a’—c’—a’c—ac’ (a+b)’

p= 12(d—a) T

These correlations make it possible to formu-
late and solve more complex problems in which
rough source data can be converted into fuzzy
data, for example, it concerns the problem of rough
mathematical programming [33] and the problem
of regression analysis [34].

We introduce the rough vector

C={([ei bl D[ Cm blessai]) m([CanCr b lCnseni )},

the rough vector

= {( [bwbw]’[bwbm] )7( [b21rb22]v[b23’bz4] )v"-’( [bmvbmz] [bm 3 m4] )}’

the rough matrix

A={laya,] [aga,]}, =120, j=12..m,

and the vector X=(x,,X,,..,X,). Then, for example, the
problem of rough linear programming is formulated as fol-
lows: to find a vector X, which maximizes

D= 4b°® —4a° _(a+b)2 _b2+ab+az _25l2+221b+b2 _ L(C7X)=E|:Z([Cjwcj2] [c Ci3oC 14]) :| @
6-2(b-a) 4 3 4 a
b+ dab 4 da? —3a? —6ab43b2 b —2ab+a (b—a)2 and satisfies the constraints
- 12 12 12 n
If the interval [a, b] degenerates into a point, then a=b and Gi(ABX)=E jz::'([aiﬂ’aiﬂ]’[aij3’aij4]) X (=
Do d*+d%a+da®+a’—a’—c’—a’c—ac® (d+c+a)2 3 [([b”,b I [biS’bM])]V
6(d—c) 9 . .
d3—c3+a2(d—c)+a(d2—c2) (d+c+a)2 i=12,..,m, x>0, j=1,2,..,n. 8)
- 6(d-c) 9 Here E[ ] is the operator for calculating the
y ) expected value of a rough value. Relations (7) and
_d’+a’+c’ +ad+cd+ac (d+c+a) _ (8) are converted into the form
6 9 .
3d* +3a’ +3¢” +3ad + 3cd + 3ac — 2d* — 2¢* - 2a” — 4dc — 4ac — 4ad L(C,X)ZZEJXJ-, )]
- 8 - B
2 2 2 _ _ _
_a+c +d*—-ad—-cd ac. G.(ABX)= zauxj_ i=12.m. (10)

18



Here Ej,aij,Bi i=12,..m, and j=12,.,n, are the ex-

pected values of the relevant rough numbers, calculated
according to formulae (4)—(6), depending on specific char-
acteristics of their descriptions.

The resulting problem is a regular problem of linear pro-
gramming.

Let us consider a simple example: to find a set X=(x1, X»),
maximizing

L(CX)= ([C11’C12]:[C13’C14 ]) X+ ([C217C22]7[C23’C24 ])Xz
and satisfying the constraints

X, +2x,=95, x,20, x,20.

¢, =3, ¢,=4, ¢,;=1 c¢,=6,

Cy =4 =6, cy=2 ¢, =8

Using (5), we get ¢,=3,5, ¢,=5, and the problem is

converted into the form: to find a set (x4, xo), which maxi-
mizes

L(X)=3,5%, +5x,,
and satisfies the constraints
X, +2x,=5, x,20, x,20.

Let us assume that y,. =x,, y, =2x,. Then the objective
function is reduced to the following:

L(Y)=3,5y,+2,5y,,
and the restrictions are as follows:

Yi+y,=9, y,20, y,20.

The problem solution is obvious: y, =5, y,=0. At the
same time, returning to the original variables, we find the
answer:

x, =5, x, =0.

An even simpler example is to find (x{, x9), maximizing

L(C,X)= ([C11’C11]7[C137C14])X1 + ([C21,C21],[C23,C24 ]) Xy)
and satisfying the constraints

X, +2x,=5, x,20, x,20,

Ci=Cy =1 C3=0Cyy=0, ¢;;=cy =2.

Then ¢, =¢,=1, and the problem is converted into the
form: to find the set X=(x,,x,), maximizing L(X)=x,+X,
and satisfying the constraints x,+2x,=5 x,20, and
X, 20. It is obvious that the problem in this case will be
solved by the set

X, =5, X,=0.

The situation changes if the orthodox concept of fuzzy
sets is used to assume that the rough model of the number

&=([a,a],[c,d]) is compliant with a fuzzy number of an L-R
type [13] with the membership function

L(m_x), x<m,
o

R(Xgmj, X >1m,

where m is the mode of the fuzzy number and (a, B) are the
left and right factors of the fuzziness.

Let us consider the technology of solving one of the
standard rough problems of mathematical programming by
using model (11).

We shall introduce the rough numbers &, =([1,1], [0,2]),
and &, =([2,2], [0,4] ), as well as formulate the problem: to
find the set X=(x,,x,), maximizing

M(x) = 11)

L(CX)=Ex, +&,x, (12)
and satisfying the constraints
X, +x,=2, x,20, x,20. (13)

To describe the rough numbers &, and &,, we apply the
model of the (L-R) type.

Since in this particular problem for both numbers &, and
&, theinterval [c, d] is located symmetrically with respect to
the modal value of a, it is convenient to represent the (L-R)
function by a Gaussian function, setting that

(u-1)* (u-2)"

{s) {5

The parameters of these membership functions — the
modal value and the factors of fuzziness — are calculated by
the formulae

Hy(u)=expq— » My(u)=expy—

m:a+b, 0L:m—c, and B= d—m.
2 3 3
Now, in accordance with the rules of processing fuzzy
numbers [32], let us construct the membership function of a
fuzzy value of the objective function (12). We have

= o) (- (X))*
WLX)) = exp{ 265(X) } (14)
m,(X)=mx, +m,x, =X, +2x, 15)

and

1 4

To solve the problem, we use the following two-stage
procedure. In the first stage, we obtain a modal solution,
assuming the following: & =m,, £ =m,. In this case,
the task of (12)-(15) is converted into the form: to find the
set (X1, X2), maximizing L(X)=x,+2x, and satisfying the
constraints of (13). This trivial problem is solved by the set
of X =(x{"x")=(0,2).

Actually, the problem is solved in the second stage, with
the optimization of the complex criterion the numerical val-
ue of which takes into account, on the one hand, the extent
of the proximity between the desired solution to the problem



X and the modal solution X and, on the other hand, de-
scribes the compactness of the membership function of the
fuzzy value of L(x) of the objective function of the problem
within the set X.

The extent of closeness of the set X to the modal set X(®
in the Euclidean metric is determined by the formula

J = (X=XO) (X=X,
The extent of the membership function compactness
W(L(X)) of the objective function can be assumed as the

square of the area under the objective function w(L(X)). This
measure, taking into account (14), is calculated as follows:

Jo =S (WIL(X))) = ﬁ u(L(X))dL} =

[ Jesp my (X)) ]
120X

=|:\/EGE\/2—;]:QXP{ Gl mz)}d } = 2162 (X).
TGy =,

In forming a complex criterion, it is expedient that the
introduced measures J; and J, be normalized. Then the ex-
pression for the criterion will have the form

e-x1) fx-x")
(X(o) )T X

Here A is a regularizing parameter (ke[O;l]), defining
the acceptable level of compromise between the individual
criteria J; and Jo.

Let us express criterion (16), taking into account the
parameters of the problem being solved.

+(1-2) 2

J(X)=7\, XY

(16)

X} +(x —2)2 fxf+éx§
J(X)=r=— +(1-2)2 §9 -
9

2
:%[k(xf +(x,=2) )+ (1- x)(—+ Xz]:l (a7
The minimization of (17) with the restrictions of (13) is
equivalent to the minimization of the following function of
the variable x4:

2

f(x,)=A2x}+(1- }”)[ZJ“@ X)QJ

The minimum f(x) is achieved at

8 A

T Rves 1A

The problem solution for various values of the regular-
ization parameter A is reduced to the table below. Here we
also specify the relevant normalization of the values of the
specific criteria J; and J, and the complex criterion J.

The analysis of the table data produces the following
conclusions. With an increase in the numerical value of the
regularization parameter A, the sequence of the problem
solutions converges into a modal solution. Meanwhile, there
is an increase in the area under the curve that describes
the membership function of the fuzzy value of the objective
function. If the height of the membership function is fixed,
it means some sprawling and stretching of the body of the
membership function, i.e. an increase of uncertainty as to the
result of solving the problem. Moreover, the minimum value
of the complex criterion is achieved at A=0.5.

Table 1
The results of solving the problem
A 0 0.09 0.33 0.5 0.9
(xj,x;) (1.6;0.4) [ (1.38;0.62) | (0.89:1.11){(0.62;1.38)| (0.17;1.83)
g 0.2 0.22 0.36 0.5 0.84
j1 1.28 0.95 0.4 0.19 0.01
1.48 1.17 0.76 0.69 0.85

5. Discussion of the results of developing fuzzy models of
rough mathematics

Thus, the study has determined that the formal defini-
tion of rough sets [22] allows making their consistent inter-
pretation in terms of fuzzy sets. It has been shown that the
developed mathematical apparatus of the fuzzy set theory
can be effectively used to solve many practical problems in
which the initial data are rough values. The development
of appropriate technologies for empowering mathematical
analysis, linear algebra, methods of solving linear and non-
linear equations and their systems, as well as optimization
methods in terms of rough input information are directions
for further research.

6. Conclusions

1. The study suggests a method for describing models of
rough sets in terms and by means of using the mathematical
apparatus of fuzzy sets.

2. Rules have been developed for performing arithme-
tic processing of rough values. The introduced rules have
the structure and the technology of their implementing
that comply with the same rules of processing fuzzy
numbers.

3. The suggested mathematical methods for calculating
the numerical characteristics of rough values are ana-
logues to the mathematical expectation and the variance
of random variables. These techniques are based on using
fuzzy models of functions that analytically describe rough
numbers.

4. Examples are given on the simplest tasks of mathemat-
ical programming when the parameters are given roughly.
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