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Ha ocnosi enracmueocmeit sdep pyuxuii anze-
Opu noziku dogedeno kpumepii ix peanizoeanocmi
00HUM HEUPOHHUM eJleMEHMOM 3 NOP0206010 PYHK -
yiero axmueauii. Buxopucmosyrouu 3o6pasicenns
adep Gyneeux QynKuil mampuyamu moJepanmuo-
cmi ompumaino pao neooxionux i docmamuix ymoe ix
peanizoeanocmi 00HUM HEUPOHHUM eSleMEHMOM, AKL
Modcymv Gymu epexmueno 3acmocosani npu cum-
me3i YiOUUCTIO8UX HEUPOHHUX esleMeHmMI8 3 8eJiu-
KUM 4UCTIOM 8X00i8

Knouosi cnoea: mampuuys moaepanmuocmi,
onykaa Jniniiina 00040HKQ, 6eKmMOp cmpyxmypu,
dynxuia axmuesauii

=, u]

Ha ocnoee ceoiicme soep Qyuxuuil anzedpot
N02uKu 00KA3aH Kpumepuii ux peanusyemocmu
00HUM HEUPOHHBLIM IJIEMEHMOM C NOPO20BOU PyHiK-
yueil akmusauuu. Hcnoav3ys npedcmaenenue soep
Oyneevix PynKuull Mampuyamu moaepanmHocmu,
noayuen psao Heodx00UMbIX U 00CMAMOUHBIX YCJLO-
8Ull UX Peanu3yemMocmu O0OHUM HEUPOHHLIM 3IJle-
MeHnmom, komopvte Mozym Ovimsv 3P Pexmusno npu-
MeHeHb. npu CuHme3se UeLOMUCTIEHHLIX HEUPOHHbIX
3J1eMEHMO8 C GOIBUUM HUCTIOM 6X0008

Kanrouesvie cnosa: mampuya moaepanmuocmu,
byKNAA TUHEUHAS 0007104KA, 8eKMOP CMPYKMY-
oL, Qynryus akmueayuu

u] =,

1. Introduction

One may define recent years as a period of rapid devel-
opment of technical means and information technologies
with high performance efficiency that led to the creation
and implementation of more effective methods of pro-
cessing and analysis of data and new methods of solving
complex applied problems. In this regard, there is a surge
of theoretical and practical techniques in the field of neu-
rocomputers and there is increased interest in neuro-like
structures, which are widely applied in various areas of hu-
man activity — pattern recognition, forecasting, business,
medicine, engineering.

Solving applied problems in neuro-basis would be pos-
sible if practically applicable methods of the synthesis of
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neural elements and the synthesis of logical circuits from
them are developed.

Significant resources that are invested in creating soft-
ware and hardware implementation of artificial neural net-
works, as well as widespread use of neuro-like structures, in-
dicate that the problem of synthesis of neural elements with
different activation functions and the construction of logical
circuits from them is relevant and practically significant.

In practice, when recognizing discrete images, at the
compression and transmission of discrete signals, it is nec-
essary to be able to synthesize neural elements, that have a
large number of inputs (=100); in these cases, the classical
methods of approximation of different orders and various
iterative methods cannot be actually applied to the synthesis
of neural elements for the realization of discrete functions.




Therefore, the development of new methods of synthesis of
neural elements that allow finding vectors of a neural ele-
ments structure with a large number of inputs, is a relevant
and practical important task.

The results obtained in present work make it possible
to synthesize neural elements with a large number of inputs
for the implementation of Boolean functions under certain
constraints on their kernels.

2. Literature review and problem statement

Artificial neural networks have been successfully used
for the development of various components of intelligent
systems. The main problem of applying these networks is
to select required input data for the set problem, to form a
test sample for training a neural network and to choose a
learning algorithm.

The scope of practical applications of artificial neural
networks is wide. They are effectively used to improve qual-
ity [1], segmentation [2], classification and recognition of
images [3, 4]. Based on them, intelligent blocks of different
systems for the chemical processes control are devised [5],
for the classification of diseases [6] and diagnosis [7], to
predict economic [8], biological [9] processes and forecast-
ing the number of incidences of the disease under study [10].
As evidenced by research, neural network techniques are
successfully used for the compression of signals and images
[11-13], in the banking sector to assess credit risk [14].

It should be noted that the basis for constructing neu-
ral networks used in the aforementioned spheres of human
activity is formed by various iterative methods that solve
appropriate problems with certain accuracy. However, there
are problems for which approximated solutions are not
acceptable, for example, the problem on the realization of
Boolean and multi-valued logical functions by one neural el-
ement with a threshold activation function or in the synthe-
sis of combinational circuits of the specified neural elements.
These combinational circuits can be successfully used when
building functional blocks of logical devices to manage tech-
nological processes, for the compression of discrete signals,
for the recognition of discrete images, etc. The shortcomings
of iterative methods of training neural elements and neu-
ral networks for solving the problems on the Boolean and
multi-valued functions realizability by one neural element
(neural network) include:

—instead of precise solution, we receive approximated
solution for the problem (for example, discrete function is re-
alized by one neural element while iterative methods of rela-
tively set accuracy reveal lack of its implementation (there is
a problem of the choice of accuracy and process convergence
relative to the assigned accuracy));

— the possibility of applying iterative methods for train-
ing artificial neurons with a small number of inputs (40,
50), whereas biological neurons may possess thousands of
inputs [15].

The methods obtained in present work for the verifica-
tion of realizability of Boolean functions by one neural ele-
ment with a threshold activation function and the synthesis
of relevant neural elements under certain constraints on
their kernels can be applied as well in the case when the ap-
plication of iterative methods is not expedient or practically
impossible.

3. The aim and tasks of the study

The aim is to devise efficient methods for the synthesis of
neural elements with a threshold activation function on the
basis of which it is possible to synthesize neural networks for
solving practically important problems in the field of com-
pression and transmission of discrete signals, recognition of
discrete images, diagnosis of technical devices.

To achieve the set aim, the following tasks are to be
solved:

— to obtain realizability criteria of functions of the alge-
bra of logic by one neural element with a threshold activation
function;

— to establish necessary conditions for the realizability
of Boolean functions by one neural element of the above
described type;

— to propose sufficient conditions for the realizability of
functions of the algebra of logic, which underlie the synthesis
of integer neural elements with a large number of inputs.

4. Verification of the realizability of Boolean functions by
one neural element with a threshold activation function
and the method for synthesis of these elements

4. 1. Criteria and necessary conditions for the realiz-
ability of Boolean functions by one neural element with a
threshold activation function

Assume Z,={0,1} and Z) is the nth Cartesian power
of set Zy. For Boolean function f(x,,...,x,)(f:Z} >Z,), we
shall define sets f(1), f(0):

I ={xeZ [fx)=1}{(0)={xeZ; [f(x)=0}. ()

By definition, neural element with a threshold activa-
tion function with a vector of structure [w=(a,,...,®,);®,]
(n-dimensional real vector, called a weight vector, g is
the real number (threshold)) implements Boolean function
f(x1,...,x ), if condition is satisfied

xef (D)o (x,w)<o, (2)

where (x,w) is the scalar product of vectors x and w.
If through

(0] (1= fo)

we denote the number of elements of set (i), then, according
to [16], kernel K(f) of Boolean function f is determined as:

K(f)=£"(1),

If [£'(1)|<[f'(0)] , and K(f)=£"(0) otherwise.

Assume K(f)={a,,...,a,} is the kernel of Boolean func-
tion f:Zy »Z, and K(f) =73\ K(f). From the elements of

kernel K(f) we shall construct matrix K. (f) in the following
way: the first line of matrix K, (f) is vector

Ay = (“au)v""o‘é(i)n)

with K(f), the second line of the matrix is vector

Ay = (%(2)1’-“’%&):1)’



the final line K (f) is

A~ (%(qu%(q)n)v

where &(i) is the substitution action £eS, fori.

Matrix N, built from the first r lines of tolerance matrix
LeE, [16], is called tolerance prematrix and is denoted
N=L(1).

Remark. 1f K(f)=4, then we consider that K, (f)=L1(0),
where L is the arbitrary matrix with E,.

Let us determine convex linear shell convK(f) of kernel
K(f) as follows:

q q
convK(f)={xe[0,1]" [x=DAa, YA, =1,

i1 i1
k120,...,kq20;a1,...,aqeK(f)}. 3)

Theorem 1. Boolean function f:Z; —Z, is implemented
by one neural element with a threshold activation function
if, and only if, when convK(f)n convK(f) =@.

The proof. The necessity is to be proved by contradiction.
Suppose that

convK(f)nconvK(f) +@, K(f)=f"(1)
and function f is implemented by one neural element with
a threshold activation function. Then, as it is known [16],
there is such €S, and L=L €E , that K (f)=L,(q). It
follows from the latter equality that for all aeK(f) and for
all beK(f)'

(a,w)>(b,w). )

Assume d econvK(f) nconvK(f)". Then

q q
d=Yha; Zki =LA, A, 205a,,....a e K(f), )
i=1 i=1

q’ q’

d=YAb; YA =1;1]..1,, 20;b,,...b eK().  (6)
i=1 i=1

Assume

o, .= Inin{(ai,w)|ai e K(f)}

min

and
max

@], =max{(b,w)[b, eK(f)}.

We obtain based on (4)—(6):
q q
(d,w)= zxi(ai)w) 2 (Z}Lijmmin >0 =
= =
q’ q’
= (2}»;)%” 2y A(b,,w)=(d,w). @)
= i1

The resulting inequality (d,w)>(d,w) demonstrates that
our assumption

convK(f)n convK(f) + T

at K(f)=f!(1) is not valid. If K(f)=f'(0), then we have
(d,w)<(d,w) and the necessity is proven.

Let us show that when convK(f)n convK(f) =@, then
function f is realized by one neural element with a threshold
activation function. Using convex shells convK(f) i con-
vK(f)", we shall build a set

D={d=a-b|aeconvK(f), beconvK(f)}, 8)

which is, obviously, convex and dows not contain zero vec-
tor 0 because

convK(f)n convK(f) = @.

Convex linear shells convK(f) and convK(f)" are com-
pact [17], therefore, the set D is also compact and is there-
fore locked. Then, based on the separation theorem [18],
one may argue that for D in the n-dimensional Euclidean
space R" there is such a hyperplane ©={xeR"|(p,x)=p,}
(p#0), p, R, which satisfies conditions

P, =(p,0)=0 )

and forall deD

(p.d)>p,. (10)
With regard to
d=a-b(aeconvK(f),beconvK(f)")
it follows from the latter inequlity that
(p.a)>(p,b), (11)

for any a econvK(f) and for arbitrary beconvK(f)".

Hence inequality (11) holds for all aeK(f) and for all
beK(f)".

Then, as shown in [19], there is such a vector weQ,
(Q, is the set of all such n-dimensional real vectors that
(x, W) #(x,,w), if (x,#x,)and x,x,€Z,), which satisfies
(11). This means that from the elements of kernel K(f) one
may build such a matrix K, (f), that K, (f)=L,(q) (L, €E, ).
Therefore, function f is implemented by one neural element
with a threshold activation function and the theorem is
proven.

Let us determine distance p(a,b) between elements

a=(0,,...,0,) and b=(B,,...,.,)eZ)
as follows:

p(a,b)=i\ai _Bi |

It is obvious, p(a,b)is the number of coordinates in
which vectors a and b are different.

Assume a, b are the arbitrary elements of kernel K(f)
(a#b) of Boolean function f:Z) —Z, and O(a,b) is the set
of such unit vectors €€, that

(12)

a@b=ei1 te, +..+e,
S

where @ is the coordinate-wise sum of vectors by module 2,
i, #1,, if r#k. We shall denote through H(a,b) a subgroup
of group Zy (Z, forms a group relative to operation @),
which is generated by elements O(a,b), that is,



H(a,b) =<ei1 ey @

's

€ € eO(a,b)>.

Assume

a=(o,,...,0,), b=(B,,....B,)eZ.

Coordinate-wise conjunction of vectors a and b will be
denoted through

a&b=(o, &B,,...,0, &B,)

and through H(a&b) we shall denote adjacent class of
group Z, by subgroup H(a, b), which is determined by el-
ement a&b, that is,

H(a&b)=a&b®H(a,b).

Theorem 2. If Boolean function f:Z); —Z, is implemented
by one neural element with a threshold activation function,
then for any two different elements a, b with K(f), for which

|H(a&b)NK(f)'| = 2

and for any two different elements g, h with H(a &b)K(f)',
inequality p(g,h)<p(a,b) is true.
The proof. Let

a=(a,,...,a.), b=(B,,....B,)

are the arbitrary different elements with K(f) (a#b),

g=(Yy-Y,), h=(3,,...,8))

are the arbitrary different elements with H(a & b)nK(f)’
and p=p(a,b). Without confining the generality of reasons,
we shall assume that the first p coordinates of vectors a
and b are different, while others are equal, that is, o, #p,
for i=1,2,...,p and o, =P, i=p+1,...,n. It follows from
theorem 1 and from the fact that function f is realized by one
neural element with a threshold activation function:

convK(f) N convK(f) = @. (13)
Therefore,
Ma+(1-A)b#r,g+(1-1,)h, (14)

for all A,,A, €[0,1].

Given that points a, b (a#b), g, h (g#h) are the cor-
ner points of the corresponding sets convK(f), convK(f)"
and K(f)nK(f) =@, inequality (14) can be replaced with
inequality

A(a=-b)+b+#A,(g—h)+h 15)
provided
A, €(0,1) and A, e(0,1). (16)

It follows from (16) that there is such a number
re{l,...,p}, for which there is inequality

Ao, =B +B, #A,(y,—6,)+9,. A7)

Let us demonstrate that with (15), (16) and a, #B,, then
v, =9,. This means that

p(g,h) <p(a,b). (18)

Let us consider the following possible cases:
1. Assume o, =1. Then B, =0 and from (17) we obtain
Ay #F A, (7, —8,)+96,. Hence

V-8, (0, -5)). (19)
r,

The left part of inequality (19) takes the values from set
{-1, 0, 1}, because v,,8, €Z,.

The right side of inequality (19) based on (16) cannot
be equal to 0 at any values of A,, A,. Therefore, inequality
(19) is valid at arbitrary A,,A, €(0,1) only when vy, -3, =0.
Thus, p(g,h)<p(a,b).

2. Assume o, #0. Then B,=1 and it follows from
(17) that

A H1E A (Y, —8)+8,, (20)

or

(1.=8)#--(1-1,-8)). e

Similar to the previous case, the latter inequality
holds for all A,A,e(0,1) only when 7y, -8 =0. Thus,
p(g,h)<p(a,b). The theorem is proved.

Assume

K(f)={a,,....a }
is the kernel of Boolean function

t:Z, -7, and K(f), ={ai Da,,...,a; @aq}
is the reduced kernel [16] of function f relative to element
a, e K(f).

We shall denote the set of all reduced kernels of Boolean
function f through

T(H) ={K(f), =a,K(H)| i=12,...q}.

They say that vector

a=(a,....0,)eZ,
precedes vector

b=@,,...B,)eZ) (a<b),
if o, <P, (i=12,...,n).

We shall denote through M, the set of all such vectors
from Z3, which precedes vector a.

Assume L= (o) is the tolerance matrix over

Z, (j=1,2,,m5i=1,2,.,2"").

Let us build matrix L' = (Brj) in the following fashion:

Brj - U‘Z""—iﬂj’



where @ is the negation of element o; and define operation
V over matrices L and L* as:

.. (L
(LVL ):(L*).

Assume
w=(0,...m, )eQ ,
a=(0,,...,a.,)€Z, and c€S,.

Let us define operations:

=((-1) 0 (D) @, ) and W = (@100 O )-

Theorem 3. 1f Boolean function f:Z) —Z, is imple-
mented by one neural element with a threshold activation
function, then in the set of reduced kernels T(f) there is such
an element K(f), that

VaeK(f),= M, cK(f).. (22)

The proof. Tt follows from the fact that function f is
realized by one neural element with a threshold activation

function that there exist such LeE, and §eS, (q =|K(h))
[16] that satisfy condition
K. (f)=L(q). (23)
Assume L=L_, then [16]
(LVL)-w'=c!, (24)

where ¢, =(CyCyusCpy )y € >Cy > > C,
Let us select by a; the first line of matrix L and transform
equality (23) as:
aK.(H=aL(q). (25)
The coordinates of vector w,=aw are negative, and
matrix L, =aL satisfies condition [16]
(L, VL, )i =], 26)
We shall position coordinates of vector wy in descend-
ing order, that is, construct vector w,=w{, where ceS,.
Then, based on (26), we shall obtain:

* T_ T
(L,, VL, ) w; —ey , (27)

where L —L" Assume d is the arbitrary line of matrix
ang(f)— (qB except for the first one. If beZ) is such
that M, cl\/id (b#d), then inequality (d, w2)<(b w,) is

true. It follows from the latter inequality and (27) that the
ordinal number of line d in matrix L, ,() is larger than the
ordinal number of line b. Thus, if M, CM (b#d), then

deKZ(f), = beKI(f), (KI(F), =a’Ke(f)).

If we denote through a vector b“ii, then it directly fol-

lows from the latter ratio

VaeK(f), =M, cK(f), (28)

and the theorem is proved.
Let T(f)= iK(f)i =aK(f)|a, eK(H)} is the set of re-

duced kernels of Boolean function
t:2, 572, a=(a,,..

la)=Yo, k= max{"a" lae K(f)i}
=)

S0 )eZl,

and k' = min{k: |i=1,2,...,|K(f)|}.

It directly follows from theorem 3.

Corrolary. If Boolean function f:Z) —Z, is implement-
ed by one neural element with a threshold activation func-
tion, then

1) in the set of reduced kernels T(f) there is such element
K(f) that, for any arbitrary aeK(f )i and for any inherent
integer r< ||a|| inequality is true

|{beK(f)|||b|| }| ol

where CI' is the binomial coefficient;
2) |K(f) 22"

(29)

4. 2. Sufficient conditions of realizability of Boolean
functions by one neural element with a threshold acti-
vation function and its application for the synthesis of
neural elements

Assume A={a,,...,a }CZ) and {L,,...,L,} is the set of
tolerance matrices whose elements are built by recurrent
relation:

L 01 Ln—1 0n—1
=(0,), L, = LL = .
L 0 Ln—1 011—1

We shall denote through p(afiAGi) the matrix whose
lines are elements of maximum subsets of set (a,A)*, which
satisfy condition

(30)

0...0 ),31)

(] +r: +1)

(L; 0, .0 ) V(L (q)0...0) V...V (L, ., (q;) 0
n—ji n (J H)
where q) >q}>...>q" .

Let B=(B ) is the rectangular mxn matrix over Z, and
s(j;B) is the number of unities of jth column of matrix B.
Element ceS, relative to a=(0.,,..,0.,)eB will be deter-
mined so that

s(j—1;a°B%)>s(j;a°B°), (32)
where a®B? = (0, ;, ®By(;))-

Assume,

p(ai"i A ) =

where

Po (a ) (LJ] OJ, 0.11)

n—j;

py(alt A% )= (L, W00

Py (afi A )Vp1 (a?i A )V VD, (aj‘f A% ),(33)

A)=(L, @) 0...0) (34)

nf(ji +1 +1)

Si
Pra|



and element o, €S, is determined by condition (32).
Let us denote through

pla7”)
the number of lines in matrix p(afiA"i) and assume
|p(afnmA"m) =max{p(a§’iA"i) |i=1,2,...,q}.
If set
{|p(aj’iA"i) |i=1,2,...,q}

contains several maximal elements, then we shall denote one
of them through

|p an A )

Threshold operator p with marks a,, and o, relative to set A
will be determined as: p(A) = p(a;"‘As‘“ ), that is,

P(A) =Py (A) VD (A)V...VDp, (A), (35)

where p(A
PS(A): Ps (af;onm ) , s=01,..r, +1(t,=r, +1).
The maximal subset of set A, from whose elements p( A

matrix (35) can be constructed, will be called the p-a
subset of set A with marks a,, and o, and denoted
through A ®.

We shall determine index jy of p-a subset AM as:

Jo=l0g, [ pe(A)|+1,

where |p,(A)| is the number of lines in matrix po(A).
Let us build the following system of sets:

n) lae (amA)G“‘ },
ocn) lae(a,A)™ },

AW ={a = (oc1,... o, 10,
io

o +

AL =

o+t { (ocl, ocloiocjoﬂ,...,

(€9]

Ip+to ottt

4 ={a =((x1,...,(xj0+[0_2,1,a‘
whose elements will be called one-index sets of p-expansion
of set A. We shall apply threshold operator p to each of these
sets in accordance with marks

e, =(0,...,0, 1 ,0,...,0),6,
(o)
e, =00, 1,0,..,0),0%,
J0+1)
j +to—1 (0 1 O) 0(1) (37)
0 (Jo+t0—1)

where o satisfies conditions:

D Vje{l,2,....j,=Lj +tedo +to+1,...,n} 01(T1|)(j)=6m(j);

o, |la(a,A)" } (36)

) If i jedj o+ 1 mdo+t, 1} (i #])) and o7(1)=0, ()
c"(j)=0,(i), then it is possible only in the case when the
sum of unities in columns i and j matrix (amA)zm (€eS))
coincide, that is,

s(i;(amA)g‘“ ) = s(j;(amA)zl" );
3)if
Li€{jpdo+1-.jo+ty—1}
and

s(iz(a, )¢ ) # s(is(a, )7 ),
then

oy’ () =0,(), 6 () =0,

Assume

p(AP)=p(A0) Vp,(A0) V..V, (a),

1 _ 1) 1 )

,(1'011) (A(, +1) Vp, (Ai 11) vaptjo“ (AthH ),

(©) [€)] (©) 1)

D) 7P (AL ) VB (AL ) Vb (A ) (38)

pz(A)—pO(A)V[ OVOP(Am)J (39)

To=lo

We shall denote through A® the maximal subset of set
A, from whose elements matrix p*(A), can be built.

Assume f:Z) —Z, is the Boolean function and its ker-
nel is A=K(f).

Theorem 4. 1f A=A® and the blocks of matrix

P*(A)=p(A)VPI(A)V...Vp; (A) (40)
satisfy conditions:
M O) L .
1) [P (AL | =[Py (AL )| 1080080 =2;
2) at each fixed
P00ty =2 £, =t
and for each ke {1 2.t +1+1}
(Aﬁéin) (A(;lm) =q; 20, (41

then function f is implemented by one neural element with a
threshold activation function.

The proof. It is given that A=A®, that is, there are such
elements ae A and ceS,, relative to which a matrix can be
constructed from the elements of set a®A°

PA(A)=Py(A) VPP (A)V...VpP(A).

Let us demonstrate that when blocks



pP(A),ps” (A),...,pt
2, then there is such n-dimensional vector w, for which there
is inequality

?(A) of the matrix satisfy conditions 1,

Vxea®A’ VyeZ)\a’A® (x,w)>(y,wW). (42)
Assume
ji=log.Jpo (A0) +1 G <)
and
o, =-1,0,=0,—1,... Zu) —1. (43)

.. 4 thelast lines of the
Yo

We shall denote through z,...,z
respective matrices

p1 (A(i))v--ypt ( (1)) (t >2)
Jo
are successively found from equalities:

-0))=
S0 5=1,2,0.t 1.

and coordinates ;..

S
(Zs,((01, i J“, ,

=(z_,,(0,, RO (44)

jp+s—17 0,.
Parameters jy,j, and t, —1 are related to one of the
relations:
a) Jo— (it ~D>1
b) j()_(j1+tj -DH=1
In the first case, the coordinates
o -1

. , 0. yeeny @
J1+lj0 _]1+Lj0 +1 io

of vector w will be found as

(Dj1+1j0 :"':(Djo—1 :(Zw(‘”v J1+L’ 7 O)) 1 (45)
where t= tJ —1.
In the Second case, coordinates ,,.. SO of

vector w have been already defined. Coordinate o; will be
determined by formula:

ot
.= Z‘mi -1.
=

Then from 2nd condition of the theorem for coordinates
O, we obtain:

O i T O it = din (i=12,...,t,-1).
Coordinates O 1 Oj et
formula:

o, will be defined by

=m0, = (20,0, ,0,.,0))+0, 1. (46)

® j0 +

Then vector w= =(0,...,0,) satisfies condition (42) and
for vector w, =aw® we have
VxeAVyeZ\NA (x,w)>(y,w,). 47)
It follows from the latter inequality and [19] that there
exists such vector veQ,, which satisfies (47), too. Thus, it
is possible to build from elements of set A tolerance prema-
trix L,(q)(q=|A]) and in this case the theorem is proved.

If t,=0, or t,=1, then A® =A® and vector w is built ac-
cording to [20]. Hence, the theorem is proved.

Let a=(0,...,0...,0 ..., 0, ) is the arbitrary vector
of set s€{0,1,....,n—j} and j=2. On the set of coordinates
{o,,...,0.,} of vector aeZ; for fixed s and j we shall deter-

mine function & (k €{0,...,s}) as follows:

o, if i<j-1;
e (o) =qa,(j-1), if i=j+k; (48)
o, if > j+s,
where
I, e{1,2,...,j—1}.
Through functions 8}‘ (k=0,...,s) at fixed se{0,...,n—j}
and j we shall assign mapping of
&:2y -7, (Z,,={01,...,j},2<j<n)
as follows:
£)(a)-
=(€5(0t),0-,8 (01 ), €01, ), ! (01 )
€)(0,),85 (0o £5(01,) (49)
and define functional v} on set Z; by formula:
VaeZ, vi(a)= Y, & (o) + Y el(o,,), (50)
i€l (j) i=0
where I1.(j)={1,2,....n}\{j,j+1,...,j+s}. Using functional
v; for each
ke{0,1,....s},

we shall construct a set of Boolean vectors F( )

j+k as:

Fl) = ~faem(L,0..0)lvi@)<j-1} 1)

j+k

where m(LJ+k0 0) is the set of Boolean vectors, built of the

lines of matrix (L]+k0 0) and

I I e{1,...,j—1}

Theorem 5. If in kernel K(f) of Boolean function
f(f:Zy >Z,), in group S, there accordingly exist such el-
ements a, ¢ and such integers

p2r2...21,>0 (r,<j-1)

that

a"K(f)G=m(LjO...0)u( f’) (52)
n—j i=0
then function f is implemented by one neural element with a
threshold activation function.

The proof. We shall assign n-dimensional vector
w=(w,,...,0,) as follows:



W; =1, — )0

=0 @ TH =) Wy T T 0, =)

*
Upon construction of vector w, we obtain:
min{(x,w)|xem(L,0...0)} =1~}
Vke{0,1,....s) min{(x,w)|xeFj(j§*)}: 1—j>

s em5,0.0) 4}

j+k j+k

Vte{s+1,...,n} max{(x,w)|xem(L*t0...0)}=—j. (53)
Then it follows directly from (52):
vxea'K(f)’,VyeZ; \a’K(f)° (xw)>(y,w).  (54)

Thus, there is such vector veQ; [19], which also satis-
fies inequality (54). This means that there is such element

&eS, (q=[K(f)],
that
a’K.(f)*=L,(q),

where L, €E; . Then, from the elements of kernel K(f) one
can build tolerance prematrix

Li@(L, =Ly

The theorem is proved.

3. Discussion of results of the study

5. 1. An application of necessary conditions for veri-
fying the realizability of Boolean functions by one neural
element with a threshold activation function

The efficiency of applying necessary conditions, ob-
tained in present paper, for the realizability of functions of
the algebra of logic by one neural element with a threshold
activation function will be demonstrated using the following
problem: is the given Boolean function f:Z}" —Z, realized
by one neural element if

f’1(1)={e1,e2,...,e100},

where e€; is the unit vector, whose ith coordinate equals 1.
In this case,

K (f)=f"(1).
Let us build a set of reduced kernels
T(f)={K(f), K(F), - K(F),, }

By the definition of a reduced kernel for arbitrary fixed
i we have

K(f), ={e, ®e;|j=1,2,...100}.
If j#i, then for element

a=e ®@e; eK(f),

condition M, cK(f), is not satisfied. Thus, function f is
not implemented by one neural element with a threshold
activation function.

If one applies iterative methods for the synthesis of
neural elements with a threshold activation function, which
have n inputs and structure vector

w=(0,0,,..,0,;0,),
then for finding the value of the weighted sum
w(a)= 0,0, + W,0, +..+ 0, 0, +0,

in set a=(0,,0,,..,00,;0,)€Z, it is required to perform n
operations of multiplying and n adding operations, that is,
2n arithmetic operations. Hence, it directly follows that to
perform one step of iteration (excluding those arithmetic
operations that are required to find new structure vector wy
by recurrent formula) is equal to 2"*'n. Thus, the number
of arithmetic operations needed for the verification of real-
izability of Boolean functions by one neural element with a
threshold activation function at any accuracy of approxima-
tion by the iterative method is not less than number 2""'n.
In our case, not less than number 2'°1100. This indicates
that the iterative method is practically not applicable when
solving the set problem because of a large number of required
arithmetic operations.

3. 2. Synthesis of integer neural elements with thresh-
old activation functions

We shall demonstrate how theorems 4 and 5 are applied
for the synthesis of integer neural elements with a threshold
activation function.

Example 1. Assume n=10, a;=(1,1,1,1,1,0,0,0,0,0),

(123456738910
6 78 9101234 5)

Ke(£), = p*(K(H),) = o (K(F),) VpE(K(F), )V p2(K(f),),
where

Py (K(F),) = (L,000), p(K(f),) =

=, (K(HY)Vp, (KDY )V p, (K )V
Vp, (K(HY)=
=(L,001000) V (L, (4)001000) V (L(2)01000) V (L;(2)1000);

P3(K(F),) =, (K(H)R) Vp, (KR )V, (KER )V, (KDY =
= (L,000100)V(L,(3)000100)V (L;(1)00100) V(L (1)0100).
Let us find a structure vector of neural element that im-

plements function f(x1,...,x10). In line with theorem 4, we
shall construct vector w=(w,,...,®,):

Po (K(f)f;))

ji=log, +1=4,

then o=-1,0,=-2,0,-—4,0,=-8.
Vectors

z,=(1,1,0,1,0,0,1,0,0,0),



z,=(1,0,0,0,1,0,1,0,0,0),

z,=(1,0,0,0,0,1,1,0,0,0)
are built from the last lines of corresponding matrices
by (K(HY), b (KHE), py (KEP)-

Coordinates 5, @, of vector w are successively found from
relations:

(zs,((o1,...,coh,mw,...,mj1+50,...,0))=

= (zs_l,((x)1,...,mj1 ,m.i1+1,...,03j1+5_10,...,0)), s=1,2.

In this case, w;=-10,m,=-10. Parameters jo=7, ji=4,
t;=3 satisfy condition j, —(j, + t,—1= 1.

Then

0, =0, +...+ 0, —1=-36.

Parameter ty=2, and by appropriate formula (theorem 4)

O =0

-q,, (i=1,2,...,t,-1)

i +i—1

is determined wg; =, —1=-37. The last coordinates of vec-
tor w will be found from the following relation:

0y =0, =(z,,(0,,...,0,,0,0,0,0,0,0)) + 0, —1=—48.

The built vector

w=(-1,-2,-4,-8,-10, 10, —36, 37, —48, —48)
satisfies condition

vx eK°(f),,Vy e Z, \ K°(f), (x,w)>(y,w).

Thus, Boolean function f(x,,...,x,,) is realized by the
neural element with weight vector

w,=aw" =(10,36,37,48,48,~1,-2,~4,~8,~10)
and threshold

w’=(w1,aiz§71)=132,
if K(f)=f"'(1). In the opposite case (K(f)=f'(0)) function
f(x,,...,X;) is implemented by the neural element with
structure vector [-w;®"], where @” =-131.

Example 2. Assume n=10, a;=(0,0,0,0,0,1,1,1,1,1),

0212345678910
10 9 87 65 432 1)

j=5, ro=r11=3, 15=2, r3=1, 14= 15=0.
j=5, 10=r1=3, r2=2, r3=1, r4=r5=0.

In this case s=3, since r3>0 i r;=0.
For arbitrary

— 10
a=(0,...,05)€Z,

we shall determine €}(a):

j=5,10=r1=3, r2=2, r3=1, r4d=r5=0.

3 3 3 E 3
8;(3) = (8;(&1),85 (a,), 8;((X3), g5 (o ),8(5’(()(5 )s
e5(0tg),&2(01;), 85(0g), £5(0ty ), €5 (0 ) =
= (01,0, 05,00, 205,201, 30L;, 40, 50Uy, DOy ).

Let us successively build sets F&*?
by rule:

33
) Fé )7

23
E®9,

(13)
FS

F_(r'f;'s) ={ae m(L*j+k0...0)|V;(a)SJ._1}’

I+

where mgL*ka'“O) is the set of Boolean vectors, construct-

ed of the ;

ines of matrix L

F&¥ ={(0,0,0,0,1,0,0,0,0,0),(1,0,0,0,1,0,0,0,0,0),
0,1,0,0,1,0,0,0,0,0), (1,1,0,0,1,0,0,0,0,0),
(0,0,1,0,1,0,0,0,0,0),(1,0,1,0,1,0,0,0,0,0),
0,1,1,0,1,0,0,0,0,0), (0,0,1,1,1,0,0,0,0,0,0)};

F& ={(0,0,0,0,0,1,0,0,0,0),(1,0,0,0,1,0,0,0,0,0),
(0,1,0,0,0,1,0,0,0,0),(1,1,0,0,0,1,0,0,0,0),
(0,0,1,0,0,1,0,0,0,0),(1,0,1,0,0,1,0,0,0,0),
(0,1,1,0,0,1,0,0,0,0),(0,0,1,1,0,1,0,0,0,0),
(0,0,0,0,1,1,0,0,0,0)};

E ={(0,0,0,0,0,0,1,0,0,0),(1,0,0,0,0,0,1,0,0,0),
(0,1,0,0,0,0,1,0,0,0),(0,0,1,0,0,0,1,0,0,0),
(0,0,0,1,0,0,1,0,0,0)};

FO% =1(0,0,0,0,0,0,0,1,0,0)}

and let us consider the Boolean function whose reduced ker-
nel allows for the following representation:

K°(f), = m(L,00000) UF®» UF®? UFS O FM,
Then by theorem 5
o,=0,=0,=0,~-1,0,=3-5=-2,

W, =-2,0,=-3,

g =—4,0, =

Neural element with weight vector

w,=aw® =(0,0,0,0,0,1,1,1,1,1)x
X(=5,~5,~4,~3,~2,-2,—1,~1,~1,~1) =
= (=5,-5,~4,-3,-2,2,1,1,1,1)

by threshold
@, = (ax" ,w,)=2,
where
x=(z,0,0,0,0,0),
z is the last line in tolerance matrix L, implements func-
tion f(x,,...,X,0), if K(f)=f'(1). In the opposite case

(K(f)=f"(0)) function f(x,,...,x,,) is realized by one neural
element with structure vector



[W2 =(5)5)4r372)_2)_1)_1)_1)_1);0)6 =_1]

The examples presented in the article demonstrate that,
based on theorems 4 and 5, it is possible to construct effective
algorithms for the synthesis of integer neural elements with a
threshold activation function with a large number of inputs.

6. Conclusions

For a wide use of neural elements with threshold activa-
tion functions for solving applied problems, it is necessary to
possess efficient methods for the verification of realizability
of functions of the algebra of logic on such elements and the
methods for their synthesis with a large number of inputs.
These tasks may include: compression and transmission of
discrete signals, classification and recognition of discrete
images, coding of information, selecting fragments in dis-
crete images.

Based on the results, described in present article, on the
structure of kernels and reduced kernels of Boolean func-
tions and properties of tolerance matrices, we obtained:

— criteria for the realizability of Boolean functions by
one neural element with a threshold activation function;

— effective necessary conditions for the validation of re-
alizability of Boolean functions by one neural element with
a threshold activation function;

— sufficient conditions for the realizability of functions of
the algebra of logic by one neural element with a threshold
activation function, using which it is possible to synthesize
neural elements with integer structure vectors with a large
number of inputs.

Obtained results might be successfully applied when de-
veloping methods for the synthesis of neural network circuits
from integer neural elements with a large number of inputs.
These neural network circuits can be effectively used for the
encoding and compression, for the classification and recog-
nition of discrete signals and images.
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Pozensnymo euxopucmanus gax-
MOpHO20 ananizy 0N eusuenns Qax-
mopié pu3uKy GUHUKHEHHS KPU3U
8 cimelinux eionocumnax, AKi npueo-
dsamo 0o Jucuupxyaamopnoi enyeda-
aonamii. 3a donomozoro paxmopro-
20 ananizy oOrpynmoseamno pozoumms
cucmemu nNOKA3HUKIE HA 3MICMOGHI
onoxu. Busaeneni ¢paxmopu 00360a:-
0msv GU3HAMUMU MiUeH] NCUXOKOPeK -
uii, AKi 6KJIIOUAIOMb 0COOUCMICHI AKO-
cmi @ paxmopu, ymoeno eioneceni 0o
00Ky cimetinoi kpusu

Kmouosi caosa: cimeiina xpusa,
Jucuupkyasmopna enuedanronamis,
daxmopnuii ananiz, micnoma 36'a3xy,
KOZHIMUGHI ma eMouiiini po3naou

Paccmompeno npumenenue pax-
MOpHO20 ananu3a 0as usyuenus Qax-
mMopo8 pucka 603HUKHOBEHUS KPUUCA
8 CeMeUHbIX OMHOUWEHUAX, KOmOopble
MOYmnpueecmux OUCUUPKYIAMOPHOU
anyedpanronamuu. C nomowpro pax-
mopHozo ananuza 06ocrosano pazoue-
HuUe cucmemvl noxasameJeii Ha cooep-
acameavHvle Onoxu. Boiaeaenmnoie
daxmopor nozeoastom onpedenumo
MUMEHU NCUXOKOPEKUUU, KOMOopbvle
8KII0MAIOM JIUMHOCMHbIE KaAuecmea
u ¢paxmopot, ycnoeno omnecennvie K
00Ky cemelinozo Kpusuca

Kniouesvie caoea: cemeunwvlii xpu-
3uc, oucuuprxyasmopuas snuedano-
namus, paxmopnwlii ananus, mecnoma
C8A3U, KOZHUMUBHVIE U IMOUUOHATD-
Hble paccmpoiicmea
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1. Introduction

The institute of family in the contemporary society,

including Ukrainian, is subjected to significant changes.

Today in Ukraine we may observe a considerable increase  Its value-normative space is changing, the new types of
in negative phenomena in the sphere of marriage and family,  families and family relations appear, and functional relations
namely a reduction in the quantity of new marriages, an in-  between the family and the society are transformed. The
crease in divorce rate, weakening family bonds and others [1].  transitive nature of society development could not but affect




