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Pospobasiombcas ma ananizyromvcs
JUHIUHL ma HeNiHIlHI MameMmamuuni mooe-
Ji npouecy menaonpoeionocmi 0as ee-
MeHmMi6 eleKMmMPOHHUX CUCmeM, AKi onuca-
HO Wapom i KYcKo60-00HOPIOHUM WapoMm
13 HACKPI3HUM YYHCOPIOHUM UUNIHOpUY-
HUM 6KJIOUEHHAM, HA OOMIU i3 MeNHCOBUX
NOBEPXOHL AKUX 30CePeOHCeHO Menio6ull
nomix. I3 euxopucmannam ysaeanvhe-
HUx QyuKuil, 66edeHuUx JiHeapu3yoUuUx
dynxuii, xycrxoso-ainitinoi anpoxcumauii
memnepamypu Ha NOGEPXHAX CHPANHCEH-
HA HEOOHOPIOHUX esleMeHmMié wapy ma
iHmezpanvnozo nepemeopenns Ienxens
3Hall0eno aHaiMU4HO-YUCTI06] PO36’°A3-
KU JUHIUHUX 1 HeJUHTUHUX Kpallosux 3aday
mennonpogionocmi

Kniouosi caoea: mennonpogionicmo,
isomponni wap i KYcko60-00HOPiOHU
wap, wyncopione HACKpizHe 6KIIOUEHHS,
MmepMoOUYymauGicmo, Menao6ull nOmix

T u |

Paspabamvieaiomcs u ananusupyrom-
cs JuHelinvle U HeAUHelUHble Mamema-
muyveckue Mooeau npouecca Mmenionpo-
800HOCMU 0N IJIEMEHMOE INEKMPOHHBLX
cucmem, onucantsle CJl0EM U KYCOUHO-00-
HOPOOHBIM CILOEM CO CKBO3HBIM UHOPOO-
HOIM UUIUHOPUHECKUM 6KJTIH0OUEHUEeM, HA
00HOT U3 2PDAHUMHBLX NOBEPXHOCMEN KOMO-
poix cocpedomouen mennosou nomox. C
ucnoav3oseanuem 0600uweHHvIx QyYHKUUIL,
86COEHHBIX JUHEAPUIUPYIOWUX DYHKUUIL,
KYCOUHO-TIUHEUHOU AnnpOKCUMAUUL MeM-
nepamypol Ha NOGEPXHOCMAX CONPsLICE-
HUSL HEOOHOPOOHBIX ITIeMEHMO8 CA0SL U
uHmepanbHo20 npeodpazosanus Xenxeus
nOCMPOCHbL UUCTEHHO-AHATUMUYECKUE
peuenuss TUHeUHbIX U HeJUHEUHbIX Kpae-
8bLX 3a0au MenionposooHOCmu

Knouesvte crosa: menionposoonocmo,
uzomponuvie CaA0U U KYCOUHO-00HOPOO-
Mol CJI0U, UHOPOOHOE CKBO3HOE 6KI0Ye-
HUSL, MEPMOUYECMEUMETbHOCb, MENJL0-
801 nomox

|l =,

1. Introduction

Of particular importance in the production of electronic
devices are composite materials, development of which is
one of the leading challenges of modern materials science.
The emergence of new composite materials with improved
operational physical-mechanical properties will contribute
to the creation of new technologies in aviation, space, ship-
building, energy, electronic industries, machine building and
transport. Among the composite materials, important place
is occupied by the structures with foreign inclusions, which
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are widely used in the designs of sophisticated electronic
systems, in particular, in the integrated sensors for moni-
toring temperature and humidity, light-emitting elements
for dynamic light emitting diode lightening, selective opti-
cal filters, etc. Since the indicated structures are in a wide
temperature range, then their high operational parameters
predetermine the need for the examination and solution of
nonlinear problems, due to the dependence of thermal-physi-
cal parameters of materials on the temperature of structures
and conditions of heat exchange, on the temperature of their
surfaces, because calculations of temperature fields, based




on the linear mathematical models of processes of thermal
conductivity, do not always yield satisfactory results [1].
Therefore, in order to devise a mathematical model, the most
adequate to the real process, it is necessary to take into
account dependence of thermal-physical parameters of ma-
terials on temperature, density of surface flows and intensity
of internal heat sources, change in body shape and possible
phase and structural transformations [2, 3].

2. Literature review and problem statement

Determining thermal state of both uniform and non-uni-
form structures attracts attention of many researchers.

Paper [1] developed a mathematical model for calculat-
ing the quasi-stationary temperature field in solid cylinder
of rotation from composite material with nonlinear bound-
ary conditions, which took into account dependence of the
thermal-physical parameters of materials on temperature.
Analytic expressions obtained for determining temperature
fields make it possible to select the composition of composite
materials for the parts of cylindrical type for a purpose to
extend their operational lifecycle.

One-dimensional (flat, cylindrical-symmetric and spher-
ically-symmetric) nonlinear problems on thermal conductiv-
ity for a given heat flux in the origin of coordinates in the
form of a power function dependent on time were explored.
Approximate solutions were obtained for the indicated prob-
lems with their convergence analyzed [2].

Analytical-numerical solution for a nonlinear problem on
thermal conductivity using the integral method of thermal
balance was found [3]. In order to improve the accuracy of
solution, temperature function is approximated by the poly-
nomials of high degrees. To determine coefficients of poly-
nomials, additional boundary conditions are introduced.
It is demonstrated that such an approach as early as in the
second approximation leads to a significant improvement in
the accuracy of solving a problem.

In paper [4], analytical-numerical solution for a non-sta-
tionary problem on thermal conductivity for a hollow ball
was received, the thermal-physical parameters of whose
material are dependent on temperature. In a particular case,
a solution for a solid ball was obtained.

A variation approach was employed for the develop-
ment of a nonlinear mathematical model for the thermal
conductivity process for a two-dimensional medium with a
thin inclusion. For the linearization of the stated problem,
they applied a Newton-Raphson method. Discretization by
the time variable was performed by the intermediate point
method [5].

Article [6] solved a non-stationary problem on thermal
conductivity and thermoelasticity for functional-gradient
thick-wall spheres. Thermal-physical and thermoelastic pa-
rameters of materials, except for Poisson coefficient, are
arbitrary functions of the radial coordinate.

Axisymmetric stationary problem on thermal conductiv-
ity and thermoelasticity of the hollow functionally gradient
areas relative to the heat source was considered. The solu-
tions are obtained as functions from spatial coordinates for
temperature, the displacement component vector and stress
tensor by using boundary conditions for radial and angular
coordinates [7].

An overview of basic literary sources that address de-
velopment and research into mathematical models for the

thermal conductivity process demonstrated that the models,
which remain insufficiently examined and underdeveloped,
are those that would consider the piecewise uniform struc-
ture design and their thermal sensitivity (dependence of
thermal-physical parameters on temperature). Since the
structures are exposed to temperature influences, then,
in certain intervals of temperatures, an impact of thermal
sensitivity on the results of calculation of temperature fields
manifests itself vividly. This leads to the development of
nonlinear models for the process of thermal conductivity
and for their analysis, because the solutions of boundary
problems that correspond to these models are more accurate
than the solutions for the corresponding linear boundary
problems. Calculations of temperature fields in such systems
are used subsequently for designing electronic devices to
provide for their thermal stability. The accuracy of these
calculations will affect effectiveness of the methods that will
be employed in this case.

3. The aim and tasks of the study

The aim of present work is to create linear and nonlin-
ear mathematical models for the process of thermal con-
ductivity for the elements of complex electronic systems,
which are described by an isotropic layer and a piecewise
uniform layer with a through-inclusion, which are heated
by concentrated heat flow in the local area of their bound-
ary surfaces.

To achieve the set aim, the following tasks are to be
solved:

— to obtain original equations of thermal conductivity
with discontinuous and singular coefficients and boundary
conditions and their analytical-numerical solutions, which
would allow expressing thermal field in arbitrary point of
structure “layer — inclusion” and “piecewise uniform layer —
inclusion”;

— using the introduced linearizing functions, to linearize
original nonlinear boundary problems on thermal conduc-
tivity, to obtain relations to determine these functions and,
for a linear-variable coefficient of thermal conductivity, to
receive calculation formulas that express thermal field in
arbitrary point of the thermosensitive structures “layer — in-
clusion” and “piecewise uniform layer — inclusion”.

4. Basic results of examining the process of thermal
conductivity for piecewise uniform elements of electronic
systems

Let us state the boundary linear and nonlinear prob-
lems on thermal conductivity, present a technique for
solving them and obtain analytical-numerical solutions
that determine thermal field in the elements of electronic
systems, which are geometrically described by a layer and a
piecewise uniform layer with a through inclusion of cylin-
drical shape.

4. 1. Isotropic layer with a through inclusion

Object of study and its mathematical model. Let us con-
sider a layer, isotropic relative to thermal parameters, that
contains a foreign through cylindrical inclusion with radius
R, assigned to cylindrical coordinate system (Or z) with the
origin in the center of inclusion. In region



Q,= {(r,(p,—l) T<R,0< @< 215}
boundary surfaces
L ={(r,¢,-1):0<r<e00<p<2n}
of layer of the system is heated by concentrated heat flow
whose surface density is qg=const, and the other part of this
surface of the layer and surface
L, :{(r,(p,l):0£r<oo,0£(ps21t}
are thermally insulated. At the boundary surface of inclusion
K, ={(R,9,2):0<p<2n,4<l1}

there is an ideal thermal contact
ot ot
AU
ar oar
for r=R (0 — for inclusion, 1 — for layer) (Fig. 1).

t,=t,

Fig. 1. Isotropic layer with a through inclusion

In the given structure, it is necessary to define tempera-
ture axisymmetric distribution t(r, z) by spatial coordinates,
which we obtain upon solving the equation of thermal con-
ductivity [8, 9]

10 at ot

rar[rk(r)ar]+ A(r )E)z =0 )
with boundary conditions

=ly i = Oy
e or|

ot ot

el 0, 2, . :—qOS_(R—Z), (2)
where

A(r)=2, +(Ag—2,)S_(R-T) (3)

is the coefficient of thermal conductivity of a non-uniform
layer; A, Ao are the coefficients of thermal conductivity of
materials of layer and inclusion, respectively; t. is the ambi-
ent temperature

1, (>0
Si(C)z 0,5%0,5, {=0
0, <0

asymmetric single functions [10]. Let us introduce function [11]

T(r,z)=r)8(r,z) %)

and differentiate it by variable r, with regard to the expres-
sion of coefficient of thermal conductivity A(r) (3). As a
result, we obtain:

Mr )a—e a—T+(x -2)8|_, 8. (r-R). 6)

Here
e(r,z) = t(r,z) -t
is the excess temperature;

ds.(¢)
dg

is the asymmetrical Dirac delta functions [10].

Substituting expression (5) in relation (1), we arrive at a
differential equation with partial derivatives with singular
coefficients

51(@) =

8, (r-R)=0, (6)

I
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where

a2
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is the Laplace operator in cylindrical coordinate system.
Therefore, the required thermal field in the indicated
system is entirely determined by equation (6) with boundary
conditions (2).
Analytical-numerical solution. We approximate function
t(R, z) by variable z (Fig. 2) by expression [11, 12]

t(R’Z):t1+§(ti+1_ti)S—(Z_Zi)7 (7)

where z;e(—1; 1); 21<z5<..<z,; n is the number of partitions of
interval (-1; 1); t,(i=1,n) are the unknown approximated
temperature values.

/

Fig. 2. Approximation of function t(R, z) by z coordinate

Substituting expression (7) in equation (6), we shall
obtain:



aT=-R(,-2,)x
T

><|:91 +§,(9m —ei)S-(Z—Zi)}

Using the integral Hankel transform by coordinate r to
equation (8) and boundary conditions (2), taking into con-
sideration relation (4), we arrive at the ordinary differential
equation with constant coefficients

8, (r-R). ®)

T =
dz? &=
n—1
el (1)1, 0,4 8 0,,-0)5 o-2) | ®
i=1
and boundary conditions
dT dT q,R
— =0 — =-20 1
&) 0, 3| : Ji(RE), (10)
where

T(&,2) =[], (&)T(r,2)dr

is the transformant of function T(r, z); £ is the parameter of
the integral Hankel transform; J,({) is the Bessel function of
first kind of the v-th order.

A general solution for equation (9) will be found by the
method of variation of constants in the form

T=ce” +c,e ™+

+%(7‘-0 - )J1(R‘§)|:e1 + E(em —0,)(1-ch&(z-7))S (z~7, ):|

Here cy, ¢y are the integration constants.
Using boundary conditions (10), we obtain a solution for
problem (9), (10) in the form

T:%L (RE)(hy — A, )%

><|:91+i (eiﬁ—@i)@—ché(z‘zi))s(Hi)}

+ch§(1+z) qochi(l—z)
sh2€l Esh2tl

+

sh2g(1-z)+ 1

Applying the inverse integral Hankel transform to rela-
tionship (11), we shall receive

T(r,z)=R[J, (r€)], (RE)

0

Esh2El
qochi(z—l)}dé'

x (7»0—7\.1)[91+?2;(9i+1—Gi)[qOChé(l-’-z)]Shﬁ,(l—Zi)+

+(1-chE(z-2))S (z-7) |+ (12)

Esh2¢l

Unknown approximated values 6, (i=1,n) of the excess
temperature will be found by resolving system n of linear
algebraic equations obtained from expression (12).

Therefore, the desired thermal field in the layer with a
through cylindrical inclusion, induced by heat flow, con-
centrated on the boundary surface of the layer, expressed
by formula (12), from which we obtain temperature value in
arbitrary point of the construction “layer — inclusion”.

4. 2. Isotropic piecewise uniform layer with a through
inclusion

Object of study and its mathematical model. Let us
consider a piecewise uniform layer, isotropic relative to the
thermophysical parameters, which consists of n elements
that differ in geometric and thermophysical parameters.
The layer is related to cylindrical coordinate system (Orez)
with the origin in one of its boundary surfaces and contains
a through foreign inclusion with radius R. At the conjuga-
tion surfaces

K, ={(r,<p,zi):r>R, OS(pSZTC,i:Ln—i},
Ky ={(R92):0<¢<2r,0<z<z}

there is an ideal thermal contact

t=t,, A %z Aisy s
oz oz
for
rnG=Ta=1); t=t, ho=n %% (i=Tm)
or or

for r=R (0 — for inclusion, i — for the i-th element of layer).
In region

Q, :{(Tv(PyO):rSR,OS o< 21t}
boundary conditions
K, ={(1,¢,0):r<e0, 0< <2 }

of layer, the system is heated by the concentrated heat flow
whose surface density equals qop, and the other part of this
surface of the layer and surface

K, ={(r,9.z,):r<e,0<¢<2n}

are thermally insulated (Fig. 3). In the indicated structure,
it is necessary to determine temperature distribution t(r, z)
by spatial coordinates, which we obtain upon solving equa-
tion of thermal conductivity [8, 9].

9y

Fig. 3. Isotropic piecewise uniform layer with
a through inclusion



“’[ A, )}+[x< >] (13)
ror
with boundary conditions
=Y, aj :@ :0)
o or | 0z,
20
05, = =—q,S_(R-T), (14)
Mr,z) = i[xi +(A=A)S_(R-1)|N(zz,) 5)
i=1

coefficient of thermal conductivity of piecewise uniform
layer; A;, Ao are the coefficients of thermal conductivity of
materials of the i-th element of the layer and inclusion, re-
spectively;

z,=0; N(zz_,)=S (z-z_,)-S,(z-2).
Let us introduce function [11]

T(r,z)=A(r,2)8(r,z) (16)
and differentiate it by variables r and z, taking into
account the expression for coefficient of thermal

conductivity A(r, z) (15). As a result, we shall obtain: [

7\’( )@ al GIR +(I‘ R)Z(k k)N(ZZl 1)’

-1

—1
z[xi +(x(, -8 (R-1)]x
i=1
><|:9 o 6+(z—zi_1)].
Substituting expressions (17) in relationship (13),

we arrive at a differential equations with partial de-
rivatives with discontinuous and singular coefficients

I=1

IS (Z—ZH)—G

z=z;-1 ~~

a7)

AT+59\ L -R)x
r =

XZ(;‘O - 7‘1 )N(ZYZHin ) -
i=1

n-1

_Z[Xi + (7\,0 - kl)S_(R — r)] X
X[e‘zzz.—1 & (z-2.,)-9]_, & (z—zH)] 0, (18)

Analytical-numerical solution. We shall
approximate function 0(R, z), 0(R, z) [11] in
the form

t(R,z) =

=1

p-1
6(r,2) =00+ 3,(0(1) ~6{"))S (1),
1=1

1
8(r,z) =67+ (617 -6 )S_(r-1,),
1=1

i=1

x| 6 N(z 7, ,,7,)+ X (BT -
k=1

d'T = 1

dz? £

+Qr%{$”%ﬂ%ﬂi@&)
1=1
[ (65”64&)32(6&
1=1
+(ho =), )(eiz‘ )R\L(R&) + i(efﬁ
1=1

—R&\L(R&)Z(k -, )[9“R’N(z Z, 2 )+§(9§§>

re[O;R], 19)

where

< Z(l)

m-1?

Gy . () <G
7 Nz sz, 7V <737 <.

e]O;r |:,r1 S <L ST,

m, p, t is the number of partitions in intervals

|z sz, Rr'[ ,[O;R]

accordingly;

00 (k=1,m), 6 (I=1p+0),

i=1,n are the unknown approximated value of temperature;
r* is the value of radial coordinate, in which temperature t(r, z)
is almost equal to t..

Substituting expressions (19) in equation (18), we shall
obtain:

AT———S’ “(r- R)Z(x —A)%

i=1

m-1

BV IN(z, 2", i)]+

n —1

+Y {[ki [BY‘” + pZ(efi'{” -6{")S (r—n, )J +
i=1 1=t

+(hg = A)(0VS_(R-1)+

+ (efia')—ef”)s(r—n))]é?(z—z”)—
p-1

Ao St o) o)
1=1

+0h —w(eﬁ S (R-1)+ (6 —ef“)s<r—n>ﬂ6¢<z—zu>}. (20)

N(z,2"",2,)=S_(z-2{"")-S,(z~z7,).

Applying the integral Hankel transform by coordinate r
to equation (20) and boundary conditions (14) with regard
to relation (17), we arrive at the ordinary differential equa-
tion with constant coefficients

{[xi (eiz-' >6+<a>+pz(efza”—eﬁ”)(&(&)—mxr@))}

efl‘”)(&(&)—nm]&)))]s'(Z‘Zi1)‘
efz»)(&(&)—nL(n&))}
ef’”)(&@)—nL(nﬁ)))]ﬁi(Z—ZJ}‘

GfR))N(z,zf:)‘ 7 ):|

2D



and boundary conditions

Applying to expression (23) the inverse integral Hankel
transform, we shall obtain a solution for boundary prob-

@
dz

0, (22)

Upon solving equation (21) by the method of variation of
constants, we shall receive its total solution

T= é’ +c.e g
+éi{[% (9?" 8, (&)+ i(eﬁ'{” -/ )(&(é)— nJ 1(1ﬁ§))]+
i=1 1=1

+(y —xi>[eiz- URJ(RE)+ Y (66 -6l ")(&(&)—nL(n&))ﬂx

xch&(z-z,)S (z-7,_,)- |: 9(2')6+(§)+Tz‘,(9ﬁ1) 952’))(84,(&)_1"1.]1(1‘1&)))4'

+(7~o—N)(GY‘)RJ1(R&)+Z(9& efz'>)(6+<a>—rlj1<r@)ﬂx

xch&(z-2,)S,(z—z)} - jl(Rﬁ)Z(k k){e(‘R)[chﬁg(z 7 )S_(z—7_)—
—Ch&(z—Zi)S+(Z—Zi)—N(Z,ZH,Zi)]+

m-1

+2(6}jﬁ’
—ch&(z-2,)S,(z-27,)-N(z, z(‘) Zi)]}'

o) chez-4")S (2= )-

(22)

With regard to boundary conditions (22), upon finding integration constants
¢1, Ca, a solution for problem (21), (22) will take the following form:

T=éi{{x{e¥f”&(&){2(9}@” 95‘”)(&(&)—nL(r@))}

+(7»o—7»i)(9§2")RJ1(R§)+Z(933"—9§Z'”)(&(i)—nL(n&)))]x

chéz
sh&z,

><|:ch§(z 2. S (z—z,_,)— sh&(z, -z, 1):|

_I}“i (eYi 8,6+ TZ(@}; -6/ )(5+ ©)- r1J1(r1§))) -

—(ho =2, )(Giz, )RJ1(R§) + :2(9511 efz' ))(8+(§) - r1J1(r1§))]:| X

ch&z
ShEz, sh&(z, -z, ):|}

—IQL(RE..){i(?»o 2[00 ((chez-7, S (27, -

chéz
shéz,

21( (R — (‘R))((chi(l z(') )S,(Z—zf)‘)—
=

—ch&(z-2,)S,(z—7,)-N(z, Z(]) ))—

><|:ch§(z z)S,(z—z, )—

—ch&(z -z )S+(Z —Z ) - N(Z7Zi—1 1Z; ))_ (Shé(zn —Z ) - Sh&(zn —Ziy ))) +

_ ch&z
sh&z,

(23)

(shez, ) shcs, ~24" ))ﬂ_qo h&<>}

& sh&z,

T(r,2) = [ET(E2) ], (e

lem (13), (14) in the form:

(24)

Unknown approximated temperature values

o™ (k=1,m),
0 (I=1,p+t), i=1n,

will be found by solving system n(m+p+t)
of linear algebraic equations, obtained
from expression (24).

Therefore, the desired thermal field in
a piecewise uniform layer with a through
inclusion of cylindrical shape is caused by
the heat flow, concentrated at the bound-
ary surface of the layer, expressed by
formula (24), from which we obtain the
value of temperature in arbitrary point of
the structure “piecewise uniform layer —
inclusion”.

4. 3. Thermosensitive isotropic lay-
er with a through inclusion

Object of study and its mathematical
model. Let us consider a thermosensitive
(thermophysical parameters depend on
temperature) isotropic layer, relative to
the thermophysical parameters, with a
through inclusion of cylindrical shape
(Fig. 1). With regard to thermal sensitiv-
ity of the system at the boundary surface
of inclusion

Ky ={(R,¢,2):0< @< 2m |7 <1},

conditions of perfect thermal contact will
be written down in the form

ot ot
ty=t, A, (t)a—r°= A (t)a—r1

for r=R.

Axisymmetric distribution of tempera-
ture t(r,z) by spatial coordinates, taking
into account thermal sensitivity, we shall
obtain upon solving a nonlinear equation
of thermal conductivity [8, 9]

10 at
;g[r}\.(r,t)g] +
d at
o iy 25
3, l:%(ryt) > ] (25)
with boundary conditions
at at
=Y, 0 N = 0)
o or| oz|,_
at
Ao (t)a— =—q,S_(R-1), (26)
Z z=—1




A1) =1 ((O+[A (=4, (O] S(R-T),

coefficient of thermal conductivity of non-uniform thermo-
sensitive layer; ho(t), A (t) are the coefficients of thermal
conductivity of the materials of inclusion and layer, respec-
tively.

We shall introduce a linearizing function [13, 14]

t(r,z) t(r,z)

0= [ MOAE+S R-1) [ A~ (©)]dg, 27)

t(Ryz)

upon differentiating which by variables r and z, we shall
obtain

a9
x(t,r)ng,
x(t,r)gzzaa’j+{[xo(t)—x1(t)]gz} SR-D. (29)

Taking into consideration (28), the original equa-
tion (25) takes the following form:

S_(R-1)=0. (29)

r

d at
Aﬁ+az{[x0(t)—x1(t)]az}

Boundary conditions (26), using ratio (27), will be writ-
ten down as:

B 20

Zo=0,9|__=0 = =0, 30

2, 1o . (30)
B ot

%" —{qo +[(x0(t)— Mt))az] ;_R}S(R -1). (31)

Linearizing function (27) allowed us to reduce a non-lin-
ear boundary problem (25), (26) to partially linearized
equation (29) with discontinuous coefficients with bound-
ary conditions (30), (31).

Analytical-numerical solution. We approximate function
t(R,z) by variable z (Fig. 2) by expression (7) and we shall
substitute it in relation (29). As a result, we shall obtain a
linear differential equation with partial derivatives relative
to the linearizing function (27)

AY =
n-1

= _Z(tm - ti)[ko(tiﬂ) A (ty, )] S (R-1)¥” (Z - Zi) (32)

i=1
with boundary condition

09

— =—q,S_(R-r).
| qpS_( r)

(33)

Applying the integral Hankel transform by coordinate
r to equation (32) and boundary conditions (33), we obtain
an ordinary differential equation with constant coefficients

d*0 L=
dz* b=
= —%L(R&)‘Z(tm _ti)[ko(tiﬂ)_}‘ﬂ(tiﬂ)]si (Z_Zi) (34)

with boundary conditions
do
dz

L dD

__R
—0 2 -

&

ol (Ré)v (35)

z=1

where

(E_,,z) = Jrﬂ(&,z)JO (r&)dr

0

|

is the transformant of function 0(r,z).

Upon solving problem (34), (35) and applying the in-
verse integral Hankel transform to its solution, we shall
receive expression for function 9:

oo

9=R|J,(18)],(RE)x
X {E(tm -t )[ko(tm)— At )] X

x[cii(ggll)stlé(l-zi)—ché(z-%)s(Z‘Zi) ’

(36)

q, ch&(z—l)
T shaal }dé'

Substituting the expressions of temperature dependence
of coefficient of thermal conductivity of the material of layer
and inclusion in relations (27), (36), we obtain a system of
nonlinear equations to determine the unknown approximat-
ing values of temperature t,(i=1,n).

The desired thermal field in the indicated structure
will be determined using the resulting nonlinear equation
with the help of relations (27), (36), after substituting in
them specific expressions of the dependence of thermal
conductivity coefficient of structural materials on tem-
perature.

A partial example. To solve many practical problems, the
following dependence of coefficient of thermal conductivity
on temperature [15, 16]:

r=20(1-kt), (37)
where h?,kj is the reference and temperature coefficient of
thermal conductivity of the materials for inclusion (j=0) and
layer (j=1).

Taking into account relation (37), from expressions (27),
(36) we shall obtain formulas for determining temperature
t(r, z) in the region of inclusion

1 29
tzko[1— 1—k0[k%+61]], (38)
and in region
Q, :{(r,(p,z):r>R,OS(pSQn,|z|Sl}
of layer (except for inclusion)
1 2k
t=—1- [1-=—=|. 39
K, ( V' J ©9



;
r=R

)\'0
={t|:2—k0t —(2-k t)}}
>\'0
1 / 2k
- [1-—t .
=R k1 [ e1 RJ

Formulas (38), (39) fully express temperature field in
the thermosensitive structure “layer — inclusion”.

t

4. 4. Thermosensitive isotropic piecewise uniform
layer

Object of research and its mathematical model. Let us
consider thermosensitive isotropic piecewise uniform layer,
relative to the thermal-physical parameters, with a through
foreign inclusion of cylindrical shape. Conditions of a perfect
thermal contact at the conjugating surfaces

S, ={(r0,z):r>R, 0<g<2m i=1n-1},

Sp ={(R,9,2): 0<<2m,0<z<z }

taking into account thermal sensitivity of the structure, we
shall write down as

1+1 (t) l+1

i 1+1 ’
for

z=z, (I=1,n-1);

=1, ko(t)aaj

(i=1,n), r=R.

Axisymmetric distribution of temperature t(r,z) by
spatial coordinates, taking into account thermal sensitivity,
will be obtained by solving a nonlinear equation of thermal
conductivity (25) with boundary conditions

=0y %
r—o0 or r—yeo 0z 7=2,
ot
kO(t)ZT =-q,S_(R-r1), (40)
Z z=0
where
AMr,zt)=

= i{ki(tﬁ[Ko(t)—%i(t)]S_(R—r)}N(MH)

i=1
Mr,z,t) is the coefficient of thermal conductivity of ther-
mosensitive piecewise uniform layer; A,(t), A,(t) are the

coefficients of thermal conductivity of materials of the i-th
element of layer and inclusion z,=0;

N(ZVZi—1): S+(Z—ZH)—S+(Z—Zi).

We shall introduce a linearizing function [12]

t(rz)

O(r,2) = Z{N(z 7, 1)] A(OAC+S_(R-1)x

t(rz)
XNz | a(© =1 ©)E-S, (2-7,,)x
t(R,z)
t(rziy)
x [ a©-M@©)dg+
t(Rz_y)
t(rz;)
+8.(2=2) [ (W(@-1(©)dE]-
t(Ryz;)

t(rzi) t(rz)

=8, (z=7,) | M@AC+S, (z-2) [ A(©)dg,

(41)

by differentiating which by variables r and z, we shall
obtain

M0 =2 1),

or
<,,t)§ a—‘“}+F< 12), (42)
F(r2)=S.(r— R)Z{ (O A ()2 1 S

(=R )]

: S+(Z_Zi)}v

With regard to expressions (42), original equation (25)
will take the form:

19, 99 aﬁ 19
s
ror

ror

[ )

[E,(r,2)]= (43)

Boundary conditions using relation (41) will be written
down as:

20 _ a9
v =0, — =0
oo or|,.. oz =,
20
3z =-q,S_(R-1). “h
Z z=0

Linearizing function (41) allowed us to reduce a non-lin-
ear boundary problem (25), (40) to a partially linearized
equation with discontinuous coefficients (43) and fully lin-
earized boundary conditions (44).

Analytical-numerical solution. We shall approximate
functions t(R,z), t(r,z,) in the form

m-1
tR2) =110+ Y (1) ~)S (22",
k=1

1-1
trz) =67+ 2 () - §)S (r=r), (45)
=t

where

Zf(i)*o ] ]1,2[ Z(') <Z(1) <. <70

m-1’
o . . .
I, IR, o[} <1, <..<1;

1, m is the number of partitions of intervals ]R L [ and
] 7. 1,z[ respectively;



(O (k=1,m-1), t"(=11-1)

are the unknown approximated values of temperature; r* is
the value of radial coordinate, in which temperature t(r, z) is
practically equal to zero (to be found from the appropriate
linear model).

Substituting expressions (45) in relation (43), we obtain
a linear differential equation with partial derivatives relative
to the linearizing function 9(r,z):

11
AD = 2;

1
i=1 =

EV(2)8 (r—1)~S_(R— r)mz1 ER ()] (46)
et

=T (]'_11 - ,i (t.<i111))—7“i(t_(i:”))&(z_zi%)_
(tﬁu ), (65)-2(60) (5. ()}

By applying the integral Hankel transform by coordi-
nate r to equation (46) and boundary conditions (45), we
shall obtain an ordinary differential equation with constant
coefficients

0 =
pE
m-1

IOW (ré)F(”(Z)—gJ (ROTEV @)

i=1 =

(47)

with boundary conditions

do R do
— == RE),—| =0.
&z, §QOJ1( £), 4

A general solution of equation (47) takes the form:

(48)

=z,

V=ce” +c,e -
—E{g[;rimjéxa—ch&(z—zi,o)&(z—zi,ox
X(t" =t (R (5,7 -

A ()~ 1eha= )5, (=2 K )
X(h(E) =1, (K —R], <R§>2(ti‘i?

“A(t)))ehE(z -8 _(z- Z(‘) -

£ ()=

By using boundary conditions (48), we shall obtain the
following solution of problem (47), (48):

=1

e
9= _{Z[z I‘]‘]1(r|§)(((1 —ch&(z-7,.))S,(z-7_)+

+ 0 )0 (L) 1,1 -

hé n
~(1-chE-2,))S.(2=2,) + - sh(z, ~)) (¢
sh&z, !

sh&(z, -z, 1))(t(,l11)

[0
-t)7)x

KO (1)~ (£ + RT(RE)S (16 -
k=1

O ()~ R (1) (chE(z—£)S (2-A7)
_ ch&z oy q,R ch&(z-z,)
e She, A=A (RO}

By applying the inverse integral Hankel transform to
relation (49), we shall find expression for function 9(r,z) in
the form

(1) = [E,(EBE ) dE, (50)

Substituting the expressions of temperature dependence
of thermal conductivity coefficient of materials of each ele-
ment of layer and inclusion into relation (41), (50), we obtain
a system of nonlinear equations to determine the unknown
approximating values of temperature

™ (k=1,m) and t(j= L1).

The desired temperature field in the indicated system
will be determined by using the resulting nonlinear equation
with the help of relations (41), (50), after substituting spe-
cific expressions of dependence of the thermal conductivity
coefficient of structural materials on temperature.

A partial example.

Let us consider a dependence of thermal conductivity
coefficient on temperature in the form (37), where A, k,
are the reference and temperature coefficient of thermal
conductivity of the materials for inclusion (j=0) and the i-th
element of layer (j=i).

With regard to relation (37), from expressions (41), (50)
we shall receive formulas for determining temperature t(r, z)
for a case of two-element layer (n=2) in the region

Q ={(r,9,2):1>R,0<90<2n,0<z<2z}
of the 1th element of the layer except for inclusion

1- J1- 29& (O+9,)
t= (51)

K )

1

in region
Q,={(r,9,2):1>R,0<9<2mz <z<7,}

of the 2nd element of the layer except for inclusion

1- [1-222(9+0,)

i‘
[N
S

t= (52)

k )

2
in region

Q,={(r,9,2):T<R0<9p<2m,0<z<z}

of inclusion of the 1th element of the layer

1- /1 2:% (1‘)+13)
t= ko , (53)

in region

Q,={(r,9,z):r<R0<¢@<2mz <z<z7,}

(49) of inclusion of the 2nd element of the layer
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Ak, — Aok
By =0, +0; ﬁ‘n=[(>»2—m+“2“t>t]

— M 1)
133 _‘6\' _ﬁv
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. Ak, -0k
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+0

m
2=0
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9, =0® -0 +0,;

r=R

Temperature value t(r,0) will be found by formula (39)
and t(R,z), t(r,z,) by formula (51).

Formulas (51)—(54) fully determine thermal field in the
thermosensitive two-element layer with a through inclusion.

5. Application and analysis of results of examining the
processes of thermal conductivity

We performed a numerical analysis of dimensionless
temperature t =it /(q,R) for the following original data:
material of layer — ceramics VK94-I, material of inclu-
sion —silver,n=10 is the number of partitions of interval (-1;1);
1=R=2mm; qo=200W. In the temperature range [20 °C;
1230 °C], temperature dependences of thermal conductiv-
ity coefficient for the indicated materials are expressed in
the form:

A(t)= 13,67E 1—0,000641‘5 ,
Km K

w 1
A (t)=422,54——[1-0,00031—t |, 55
=225 o) @

which is a particular case of relation (37).

A spatial dependence was built of dimensionless tem-
perature t  on the spatial dimensionless radial r*=r/R and
axial z*=R/z coordinates for linear variable (Fig. 4) and
stable (A, =13,4W /(Km), A, =419W /(Km)) (Fig. 5) coef-
ficient of thermal conductivity of materials in the structure.
We shall note that the maximum temperature is achieved in
the region of action of the concentrated heat flow.

Obtained results for the chosen materials by the linear
dependence of thermal conductivity coefficient on the tem-
perature differ from the results obtained for a stable coeffi-
cient of thermal conductivity by 7 %.

Fig. 6, 7 illustrate a change in dimensionless temperature
t* for a linearly variable thermal conductivity coefficient of
materials in the structure depending on the dimensionless
coordinates z* for r*=0 (Fig. 6) and r* for z*=0 (Fig. 7). A
behavior of the curves indicates conformity of the mathe-
matical model with the actual physical process, because at
surface Ky of the inclusion we observe satisfying conditions
for a perfect thermal contact (no temperature jump).
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Fig. 4. Dependence of temperature t* on the coordinates
r* and z* for linearly variable coefficient of thermal
conductivity of materials in the structure

0,574

0,554

Fig. 5. Dependence of temperature t* on the coordinates
r* and z* for a stable coefficient of thermal conductivity of
materials in the structure

0,55
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20 Lo o 1 z*
Fig. 6. Dependence of temperature t* on coordinate z* for
r¥=0
046
0,44
0 4 9 14 r

Fig. 7. Dependence of temperature t* on coordinate r* for
z*%=0

The number of partitions n=10 of interval (-1; 1) for the
indicated thermal-physical (reference and temperature ther-
mal conductivity coefficients for the materials of layer and
inclusion) and geometric (radius and height of the inclusion,
thickness of the layer) parameters of the structure allows us
to perform calculations with accuracy =105,

6. Discussion of results of examining mathematical
models of the thermal conductivity process

In the process of development and examination of linear
and nonlinear mathematical models of the thermal conduc-
tivity process, we obtained analytical-numerical solutions of
the corresponding linear boundary problems for the elements
of electronic systems, which are geometrically described by
the presented piecewise uniform structures.

We introduced linearizing functions, which made it
possible to linearize nonlinear boundary problems for the



elements of electronic systems, which are geometrically
described by the thermosensitive piecewise uniform struc-
tures, and presented calculation formulas for determining
temperature field in these structures for a linearly variable
coefficient of thermal conductivity of their materials.

Using the received analytical-numerical solutions for
linear and nonlinear boundary problems for the presented
piecewise uniform structures, we devised algorithms and
developed, based on them, computing programs that allow us
to obtain numerical values of the temperature distribution
and to analyze the structures for their thermostability. In
future, geometrical structure of the elements of electronic
devices will get complicated and, accordingly, the approach-
es toward studying linear and nonlinear models for the ther-
mal conductivity process will improve while the new ones
will be devised.

The methods presented make it possible to solve bound-
ary problems of mathematical physics, which correspond to
the linear and nonlinear models of the thermal conductivity
process, not only for the elements of electronic systems, but
for any objects that have a piecewise uniform structure (lay-
ered and with foreign inclusions).

The results obtained were practically implemented in
electronic systems, but it is possible to use them in other
applied areas. Thus, in modern materials science they
develop new materials with improved properties while
microelectronics, radio electronics widely apply layered

film structures that are exposed to heating in the process
of their operation. Overheating may lead to the destruc-
tion of individual parts and even entire systems. That is
why information on the temperature modes in the media
with non-uniform structure is important. In this regard,
we report approaches to solving this problem for the ex-
amined objects.

7. Conclusions

1. We developed linear and non-linear mathematical
models for the thermal conductivity process in complex elec-
tronic systems that are geometrically described by a layer
and piecewise uniform layer with a through inclusion and
obtained analytical-numerical solutions for the correspond-
ing boundary problems.

2. Using the obtained analytical-numerical solutions for
boundary problems on thermal conductivity, we devised
algorithms and computing programs of their numerical
realization for the analysis of temperature modes in the
structural elements with piecewise-uniform structure in the
devices of modern electronic equipment. Results of analysis
of temperature modes allow us to predict operating modes
of electronic systems, to identify the unknown parameters
and improve temperature resistance, which increases their
operating lifecycle.
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