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1. Introduction

The quality of providing electronic trusted services,
primarily in the functioning of electronic government,
is impossible without the use of electronic digital signa-
ture (EDS). Its application makes it possible to provide
users with such services as integrity, authenticity, irresist-
ibility and authenticity of the source of information, by
which it was created. In Ukraine, to solve the indicated
tasks, national standards are used — DSTU 4145-2002 and
DSTU 7564-2014. In addition to the national standards,
such harmonized ones are also used as, for example,
DSTU ISO/IEC 14888-3 and DSTU ISO/IEC 9796-3. As
shown by the analysis, cryptographic strength of the speci-
fied standards largely depends on the properties of general
system parameters that are employed, the possibilities of
expanding their dimensions and operative generation and
replacement. The aforementioned becomes especially rel-
evant in the case of emergence of quantum computers and
their application for conducting cryptanalytic attacks, for
example, to solve the problems on full disclosure and pro-
tection from collisions [1].

Therefore, absolutely relevant is a problem task on the
prompt generation and application, with the possibility of
replacing the tuples, of strong system-wide parameters for
EDS. The EDS used in Ukraine are implemented based on
cryptographic transformations in the group of points on
elliptic curves. At present, the specified task of rapid replace-
ment of general settings and dimension of these parameters

is not solved and there is an essential need to consider and
resolve it [2].

2. Literature review and problem statement

The national standard of EDS DSTU 4145-2002 was
adopted in 2002 and contains system-wide parameters with
size up to 431 bits. At that time, it was considered that such
parameters would be able to provide the necessary level
of the cryptographic transformations stability on elliptic
curves (EC) for decades. However, as shown in studies [1],
the current state of technology development in the direction
of constructing a quantum computer and existence of the
Shor’s quantum algorithm [3] open up new threats for the
existence of modern cryptography, especially asymmetric,
including that on EC.

The National Institute of Standards and Technology in
the USA (NIST) plans to adopt in the next three to five
years the first standard of asymmetric crypto-transforma-
tion. However, it is more likely that before its application
there will be a “transition period” when both existing and
post-quantum EDS are used [2]. Nevertheless, to ensure
cryptographic strength of the existing EDS, for example, of
those specified in DSTU 4145-2002, it is necessary to in-
crease the dimensions of the system-wide parameters. Such
an increase will not significantly improve stability against
quantum cryptanalysis. However, for running such an analy-
sis, a true quantum computer is required with a large number




of qubits, which will not be created for many years to come.
Therefore, the use of EDS in line with DSTU 4145-2002
with an increased order of the base point to 1000 and more
bits can be a guarantee for the cryptographic stability for a
significant number of years [4].

The main problem on forming the general systems pa-
rameters for use in the groups of points on EC comes down
to a complicated, in terms of calculation, task — to compute
the number of points on EC [4]. The problem to calculate the
number of points on EC is a non-trivial one and, at present, in
Ukraine there are no data in the available sources on the exe-
cution order and essence of this stage. However, articles [5—13]
present an overview and proof of mathematical methods that
can be employed to count the number of points on EC.

The algorithm for computing the trace of Frobenius endo-
morphism, presented in paper [9], is the first p-adic algorithm
that was proposed to resolve this type of problems. Earlier,
to calculate the order of EC, they used l-adic algorithms
[5]. The article [6] can be considered a basis in the direction
of calculation the order of EC for binary fields. Author in
paper [6] proposed a modification of the method so that it
can be used not only for the characteristic 3 and larger. The
computational complexity of the method described there is
rather high. In particular, article [8] presents a detailed anal-
ysis of existing methods for the calculation of zeta-functions
and author of the work proposes certain improvements to
the algorithm from paper [9]. All the improvements to the
method from article [9] are based on the reduction of its com-
putational complexity. In paper [10], authors propose certain
mathematical improvements that will be analyzed in detail
later in the present study. Thus, it is proposed to use another
basis, analytical method for normalization and the applica-
tion of inverse Frobenius substitution, in contrast to articles
[6, 8, 9], where the ordinary substitution was employed. In
[12], author proposes a certain improvement to the algorithm
based on arithmetic and geometric progression, which is
based on using other modular polynomial. Further, in the
present study, there will be a detailed analysis of articles [10,
12] and we shall experimentally test the effectiveness of such
improvement. Papers [11, 13] describe a variety of solutions
to the Artin-Schreier equation for various bases. In [11], for
optimal polynomial basis, in [13], for the Gaussian normal
basis. A detailed theoretical and practical analysis of these
studies will be presented further in our research.

Paper [14] analyzed the international standard ISO/
IEC 15946-5, which defined the methods for generating EC.
Research in [14] demonstrated that for the finite field F(2™),
significant advantages by the criterion of time complexity
(performance speed) are displayed by the methods that are
implemented based on the p-adic numbers. In this case, math-
ematics in the ring of p-adic numbers needed for constructing
a program model was described in articles [7, 8, 15]. As the
main criterion in the present study, we shall use the criterion
of time complexity (performance speed) in the calculation of
the number of points on EC and the guarantee of properties
of the appropriate system-wide parameters. We shall also
subsequently compare efficiency of the received results with
the fundamental results that are presented in papers [8, 14].

3. The aim and tasks of the study

The aim of present research is to determine and imple-
ment optimal (by performance speed) algorithm for the

computation of EC order, which can be applied to increase
the base of system-wide parameters of the Ukrainian EDS
standard.

To achieve the set aim, the following tasks were formu-
lated and resolved:

—analysis and substantiation of selecting the most prom-
ising methods for computing the EC order out of those
existing;

—selection by the criteria of minimization of the computa-
tional complexity in the algorithm for generating system-wide
parameters of high and super-high levels of stability;

—development of a program model and conducting a pro-
gram simulation, as well as a comparison of theoretical and
obtained experimental results.

4. Materials and methods for examining the algorithms to
compute the order of elliptic curves

4. 1. Overview of canonical lift of EC
Article [14] presents a general approach to count the
number of EC points (EC order) E, assigned by equation:

v +xy=x"+aj,
with element ag over Fy with j-invariant
(E)=ag’

and q=p". Such a general approach includes phases of canon-
ical lift of EC, conducting the normalization of coefficients
of lifted curve to the base field and the computation of trace
of Frobenius endomorphism. Further attention will be paid
to the optimal methods of canonical lift of EC that possess
quasi-quadratic complexity of their execution or close to
such. The stage of normalization is described in more detail
in papers [7, 8] and will be described in the subsequent stud-
ies on the given subject.

The first algorithm for canonical lift of EC using the
p-adic methods was proposed in article [9] (described in de-
tail with certain modifications in paper [8]) and is based on
the fulfillment of the Lublin-Serre-Tate theorem.

Theorem. Assume E is not a supersingular elliptic curve
over the field Fy. Then, up to isomorphism, there is one curve e,
defined above Z, such that:

1. EC equation ¢ is equal to EC equation E by module 2.

2. End(e) = End(E).

A corollary to this theorem is the following commutative
diagram:

0,0 ¢p -1

80
Loy
—TE, )
where ¢ is the canonical lift E and ¢,1is the correspond-
ing lift ¢p,i-

Such isogeny of degree 2 allows us to associate modular

equations also of the 2 degree j-invariants of canonically
lifted curves:

@,(j(e), 2(j(£))) =0, 3)

where @,(X, Y) is the symmetric bivariate polynomial:



@, (X,Y)=X"+ Y- X*Y*+2".3:31(X’Y + XY ) -

—2'3'5% (X +Y?)+3'5° - 4027XY +

+29375° (X +Y)-2"3°5". )

A more detailed description of the canonical lift is given in
articles [8, 9]. In the following chapters, we shall demonstrate

the application of basic properties of canonical lift, as well as
their evolution to rapid counting of the number of points on EC.

4. 2. The Satoh-Skjernaa-Taguchi method (SST)

In the beginning of counting the number of EC points,
j(E) in F/F4 is known and it is required to compute j(¢) ac-
cording to (3). The value of j(¢) can be calculated by receiv-
ing in turns one by one bit of the entire magnitude: assume
that we know J as:

J=j(e)mod 2",

then we can record computation:
i&)=J+2%

and insert it formally into equation:

@,(j(2),Z(j(8))) =0,
hence, we obtain equation e by module 2. Thus, receiving one
bit when approximating to j(¢) [8].

In a general case, this method can be used for different
characteristics of finite fields, but in the present study we
shall carry out the adaptation towards extending the finite
fields of characteristic 2. This is due to the existence of
acting standard on the electronic digital signature based on
elliptic curves DSTU 4145-2002. In a general case, expres-
sions of type:

j(e)=J+2",
take the form:
j(e)=J+p'e

and others on the analogy.
For a more accurate tuning, let us take its decomposition:

@, (j(e),Z(j()))=0,
in a Taylor series:
0=,(j(e), 2(j(e))) = @,(J + 2“¢,Z(J +2"¢)) =

=@, T+ 2 e I+
+2ke*%0,zu»+2“r<e, 5(e)), (5)

with such element r that reZ,[X,Y].
In this equation:

@, (i), 2(i(e)) =0,

by module 2 in degree k, and hence we can divide expression
by 2% and obtain ratio e by module 2. In addition, from the
Kronecker relationship:

(I)p(X,Y)=(XP -Y)(X-YP), 6)
it follows that:

0,
aX

(JZUN+2°=0,

e ST 20,

module 2. Finally, since £(e)=e*mod2, we obtain:

e’= —Wmodz

k
2 S (JE0))

Taking the unique root of power 2 (e€F,) leads to a bet-
ter approximation of j(¢) that is assigned by:

()

J+2%e=j(e)mod 2",

In paper [10], authors proposed a different approach
to solve such problem (difficult in terms of computational
complexity) as finding the root for the situation of degree 2.

To avoid having to find the root, it was proposed to
replace the system of equations in (2) with such J=j(g) by
module 2 with:

@,(Z"'()).))=0 and J=j(E)mod2. ®

In this case, expression in (7) can be converted into an-
other form and thus avoid having to calculate the root:
___2,E'DD
e= aq)’—mod 2. ©))

k 2 —1
2SRE DD

It is necessary to note that:
®,(27(J),J)=0mod 2",

and we only need to compute the inversion:
0D,
— ) )
v D

by module 2. The only problem that remains is the calcula-
tion of inverse Frobenius substitution.

Authors of the national standard of electronic digital
signature DSTU 4145-2002 propose to use the represen-
tation when f(x)€Z,[x] is used as a module. It means that
such a polynomial is the discharged one, irreducible to F,[x]
of degree n. Using such a representation makes it possible
to effectively perform algebraic operations in a ring, espe-
cially the operation of taking by the module. However, for
the operation, which is necessary to compute (7) or (9), in
particular calculation of Frobenius substitution value, it is
very slow.

To reduce computational complexity when calculating
the Frobenius substitution, authors the SST method in arti-
cle [10] proposed to use different representation of the ring
of p-adic numbers. Such representation makes it possible to
significantly accelerate computing the Frobenius substitu-
tion, but requires certain precomputations.

The essence of using alternative representation is in
the following. Assume Equ is zero in f(x)mod p, in other



words, F, =F, [G] It is obvious that © is the (q—1)th roots
of unity because Oqu Assume 0 is the Teichmuller lift
from 6, in other words, the (q—1)th root of unity in Z, and
6=0mod p, then we define m(x)EZ,[x] as a formative poly—
nomial. In this case, m(x)=f(x) by modulo 2, and hence it
follows that it is possible to assign a ring of p-adic numbers
(Qq as Qq[x]/m(x)) [8]. More details on the procedure for
calculating the Teichmuller module can be found in [7].

Such a representation of the ring allows us to reduce
the computation of Frobenius substitution. Since Z(0)=6P
by module 2 and £(6) is the (q—1)th root of unity in Z,, the
authors conclude that:

%(6)=6"mod p.

Therefore, efficient computation of the Frobenius substi-
tution is reduced to:

n—1 n—1
Z(Zaiei):Zaie“’,
i=0 i=0

the result of the calculation in this case should always be
reduced by module m(x). For a binary field, characteristic p
takes value 2.

Returning to (9), in particular to the problem on computing
the inverse Frobenius substitution and employing new presen-
tation of the ring, such computation takes the following form:

s (5u0)-5[ =

i=0 j=0 \ 0<pk+j<n

(10)

pmek]c (©), (11)

where
C,®)=3"'@)=6""

This value can be precomputed (as well as the value of the
Teichmuller module). Thus, if we perform all the necessary
precomputations, then finding the value of inverse Frobenius
substitution, in terms of computational complexity, will be
simple. Interpretation of formula (11) to the binary field will
take the following form:

2'1(2:&19‘):

For a binary field, actually, calculating the inverse Frobe-
nius substitution does not require a large amount of compu-
tations, and precomputations come down to finding only one
element:

z azkek* Z 32k+19k*c1(9)-

0<2k<n 0<2k+1<n

(12)

C,(0)=6"",

that is also a trivial task.

If we take an idea to use in particular the inverse Frobe-
nius substitution and, accordingly, other space, and combine
with the Satoh algorithm, then it is possible to represent the
idea of the SST method (“grey” method) as follows:

Algorithm. Lift ] Naive
Input: j—invariant j € F2"\F2? and accuracy N
Output: ] € Z,, J=j mod 2 and @»(£'(]),]) = mod 2V.

l.d= ( L) J)) mod 2;

=2toNdo

1 =X"'(y)mod 2},

.2, y=y—d*®,(x,y)mod 2';
return y.

(13)

Substitution of lift step of the j-invariant with algo-
rithm (13) in the Satoh algorithm will yield the accelera-
tion of computing the EC order by about 5 times. Authors
of the SST method pointed that at every step of such algo-
rithm (13), it is necessary to recalculate @y(x,y), though
values of x and y at step i+1 are very close to the values that
are used at step 1. Therefore, we can compute:

y = j(E)mod 2V

and
x=X(y)mod 2"V

for certain W. Assume m>1 and i>0:
@, (x+ 2"V AX, y + 2"V AY, ) = D, (x,y) +

oMW+ (a;;g(x,y)AX + aaq;Q (ny)Ay)HlOd 2(m+1)W7 (14)

so it remains to find out the values:

aqnz

< o) and 222 v o)-

Thus, it is possible to use the indicated equation to
compute:

D, (x+ 2" AX,y + 2"V Ay),

from value @y(x,y) while i<W. This idea is represented in
the following algorithm, which conditionally consists of
two parts: in the first, we compute y=j(E)mod2% using
algorithm (13), and in the next, we use expression from (14).
Such expression is used to incrementally update the value of
Dy (x,y) without its recalculation at each step [10].

Algorithm. Lift_J
Input: j—invariant j € F2"\F2? and accuracy N
Output: ] € Z,, J=j mod 2 and @y(2(]), J) = mod 2N.

-1
d= (aac% (2'1(j),j)) mod 2;
y=jmod?2;

fori=2toWdo
1. x=X'(y)mod 2}

—_

B W W w

.2, y=y—d*®,(x,y)mod 2';
x=X"'(y)mod2";
5.D, = aa 2 (x,y)mod2"V;
oD

D, = 2(x y)mod 2%;

6.
7. form—ltoL(N 1)/ W |do 15)
7.1. x=X7'(y)mod 2™V,

7.2. V=®,(x,y)mod 2""V;

7.3. fori=0toW-1 do

7.3.1. Ay=—d* 27"V mod 2;



7.3.2. Ax=X"(Ay) mod 2%V,

7.3.3. y=y+2"™" Aymod 20"V,

7.3.4. V=V +2™(D_Ax+D,Ay)mod 2"
8. returny. )

Authors in paper [10] proved that the complexity of
calculation in this method, algorithm in (15), for W=
~n*/ W and N=n/2 is O(m**"/A*W) In practice, authors
also recommend using such a value for W that is multiple
to the word size of central processor. Of course, the above-
described complexity does not account for the time to per-
form precomputations for the polynomial, which assigns
field m(x), also the value Cj(0) from expression (11). One
has to point that the complexity of computing C,(8)=6" 1
is O(n2**™!), demonstrated in [8].

In general, the full version of this algorithm can be
shown in algorithm (16). This version is the full version of
the SST algorithm and includes the following steps:

1. Computing a polynomial that assigns the field (can be
recalculated).

2. Computing element Cj(0) for finding the inverse
Frobenius substitution (can be precomputated).

3. Lifting the j-invariant of curve to the required accuracy.

4. Finding value c( from expression:

V(1) =¢yT, + O(1)).

This step for the characteristic of field 2 is described in
more detail in articles [8, 10].

5. Normalization of coefficients of value from step 4 and
finding a trace of Frobenius endomorphism.

6. Obtaining value of the EC order as #E(F,)=1+q*t,
where t is the value obtained in the previous step.

Algorithm. SST
Input: Elliptic curve E: y* +xy=x"+¢ over F2¢
Output: Number of points on curve E(F2¢)

1. Nz[dw+13;
2

M=N-10;

- J=IE);

. m(x)=GenTeichmullerModule(f(x));
. C=GenC,(x)mod 2%;

. J=Lift_J(j)mod2Y;

. J=27'(J)mod 2%;

_ (J? +195120] +4095] +660960000)
T 8(J7+J (563760 512])+ 372735 +8981280000)

9. T =((12Z* +Z)(J -1728)—36)mod 2";
10. CN = (J = (504 +12096Z)T)mod 2";
11. CD=(T(240T + J))mod 2*;

12. ¢=Sqrt(CN / CD)mod 2";

13. t=Norm(c)mod 2"™;

14. if t?>2%? thent « t -2V,

15. return 2¢ +1—t.

The algorithm presented requires certain explanations
and clarifications, in particular j(E)=1/¢ for the curve

equation:

L2 3, =
E:y"+xy=x"+coverE,.

mod 2~; (16)

Function of the Teichmuller module generation:
m(x) = GenTeichmullerModule(f(x)),
described in detail in [7, 10], and by function:
C=GenC (x),
we mean the computation:
C,(0)=6"",

to find the value for the inverse Frobenius substitution (12).
Function Lift_J(j) in the 6th step of algorithm (16) is de-
scribed in more detail in (15). The functions of finding a
square root in the ring of p-adic numbers used in step 12, as
well as other mathematical functions that are defined in the
ring of p-adic numbers, are described in detail in [7]. The op-
eration of normalization in the 13th step of the algorithm im-
plies the recovery of trace of Frobenius endomorphism [15]:

n-1 .
t=[]='(co)= Ny, /g, (¢,)moda. A7)
i=0

A fast algorithm for computing the norm and proof of
its work was proposed by authors of the SST method in the
same paper [10]:

NQq s, (@)= exp(TrQq/Qp (log(a))). 18)

This algorithm works fast for finite fields of characteris-
tic 2, but for finite fields of other characteristics its compu-
tational complexity increases significantly. This is primarily
caused by the complexity of calculating the logarithm in the
ring of p-adic numbers. It should also be noted that this al-
gorithm in the wording proposed in [10] for the binary fields
will work only for the sparse generating polynomials. For
the polynomials that form the Teichmuller basis, expression
from (18) with the possibility of rapid computation of the
logarithm will not work out. This causes the need to trans-
form element ¢ after step 12 of algorithm (16) back to the
optimal polynomial basis.

4. 3. The modified Satoh-Skjernaa-Taguchi
method (MSST)

Paper [12] proposed to combine the idea of
arithmetic-geometric method and the Satoh-Skjer-
naa-Taguchi method. The AGM method was an-
alyzed in detail in article [14]. It is worth noting
that for the MSST work, one should use a one shift
variation of the AGM method, though in terms of
computational complexity, one shift and two shift AGM are
almost indistinguishable. However, using the one shift varia-
tion implies applying the AGM-sequence (a,,b, );,, in which:

a,=b,=1mod4, a, =b, modS§,
in the next variant, A=aj /by, which matches EC:
E, P =x(x=1)(x=AY). 19)
As each preceding AGM-sequence makes it possible

to compute the next one, in other words, such sequence is
iterative:



(2,1, by ) =((a, +b,) /2,{Ja,b,),

then we may represent the iterative function of the one shift
AGM-sequence in the form

2,/A
My = [12].
1+,

Initialization of the one shift AGM-sequence is per-
formed as follows:

A, = (1+8c)mod 16, (20)
where c=c¢mod2 is the free EC coefficient. Gaudri also

proves that sequence Ar+1 converges similar to ay/by, it is
implied that:

Ay = 2N, ) mod 2,

and if we substitute this value into the value of iterative
function of the AGM-sequence, we shall obtain:
(A ) A+ A, ) —4A, =0mod 2, (21)
The above-indicated expression is solved with the use of
the main idea of the SST algorithm. Paper [12] presents the
solution to this problem through the change of expression
for modular polynomial that is used for EC lift (described
in (3)).
Assume E(X,Y) is the module expression of AGM, then:
E(X,Y)=Y*(1+X)? - 4X =0. (22)
The above representation allows us to use the condition

of modular polynomials (Lublin-Serre-Tate theorem) in
the form:

E,(X, X(X))=0mod 2.

It should be noted that both partial derivatives are equal
to zero by module 2 in this expression, which is why it is not
possible to directly use the SST algorithm. To eliminate such
a problem, [12] proposes the following substitutions:

X« 1+8X,
Y «1+8Y

and, as a result, we shall obtain a modified modular polyno-
mial for finite fields of characteristic 2 in the form of:

E=(X+2Y+8XY)’ +Y+4XY =0, (23)

that can be solved when X is known and it is not equal to
zero by module two, so that Y =X(X). In this case, the par-

tial derivatives are equal to:

%(X,Y): 2AX+2Y +8XY)(1+8Y)+4Y, (24)

S—E(X,Y) = (4(X+2Y +8XY) +1)(1+4X),

it is not difficult to confirm that each partial derivative
by X is indeed equal to zero by module two, and by Y is

equal to unity that satisfies the requirements of the SST
algorithm [10].

The last thing that is necessary to do is to align the ex-
pression from which a Frobenius trace is computed, for the
two-shift AGM sequence it takes the following form:

TrF=t, +q/t, mod"* (25)

from

t = NQ(,/QI, (& /a,)

substituting in this expression the values that were accepted
for the one-shift AGM, in other words:

A.=a, /b, a,=(,+b,)/2
and
7\,151+8C,

we shall obtain:

1

Upon presenting the SST method, the algorithm de-
scribed above does not need special explanations. If one
compares two similar methods of SST and MSST in terms
of computational complexity, the MSST method is usually
works faster. For W=n*/("1) and N=n/2, its complexity
is O(n2#*95), This is caused by the fact that the modular
polynomial used in the MSST method requires 1 multi-
plication and 1 squared raising. The SST method needs
3 multiplications and 2 squared raisings (meaning in the
ring of p-adic numbers). From the point of view of the spa-
tial complexity, the two methods require similar resourc-
es. Spatial complexity for them is O(n?). Although the
constants that are used in the MSST modular polynomial
are significantly lower than those in the SST method. The
phase of precomputations for two algorithms is the same
and requires O(n?**!) computing resources for its imple-
mentation [8].

(26)

4. 4. The Harley method

Article [13] proposed a p-adic algorithm for finding the
EC order without precomputations and with computing
complexity O(n?!logn). The main idea of this method was
applying the method for solving equations by Artin-Schreier,
that is, equation of the form:

xP—x+0=0,
with element a€F, (by the field characteristic — p). Positive
version of Hilbert space claims that such equation has the
solution in Fy only in the case when:

Tr, (0 =0,

Since:

2(x)=x",

then the given equation for Z takes the form:



Y(x)—ax—-b=0,

27)
with a, b€Z,. Let us define:

YH(x)=ax+b,,
for all k=2,...,n. As

X' (x)=x,

the authors conclude that the above-given equation is as-
signed as:

b, /(1-a,),

and for computing ay, by, the authors propose the following
formula

Y(x) =2 (ax+b) =2 (a )(ax+b)+X'(b,).  (28)

It is the above-given expression that is used to solve
the Artin-Schreier equation. Next, to lift EC, a generalized
Newton’s algorithm is used [13], the very basic idea of lifting
remains the same as in the SST algorithm (2). However,
[13] proposed these parameters (solving the Artin-Schreier
equation and the generalized Newton’s algorithm) for the
Gaussian normal basis only.

[11] presents a similar variant for solving the Artin-
Schreier equation and a different generalized Newton’s al-
gorithm that can be used for the optimal polynomial basis
and the Teichmuller basis. Assume we have the following
problem: given

(X, Y)eZ [X,Y],

and it is required to find the root x€Z, such as:
O(X, (X)) =0. (29)
Assume we know that:
x™ =xmodp"

and let it be
8, =(x-x,)/p",

then the decomposition in a Taylor series around x,, for p=2
yields:

0=0,(x,2(x))=D,(x,, +2"5,,2(x, +2"9,))=

=D, (x,, 2(x,))+2" (8, Ax+3(3, )Ay)mod 2", (30)
with
Ax = ag{z (X, 2(x,,))mod 2"
and
Ay = 90, (x,,2(x_))mod2"
y aY m?’ m N

Hence, it follows that 8 has a solution of the following
type:

_wz SAX+Y(8)Aymod 2",

Assume:

(31

k=ord, (Ay),

and then if ord,(Ax)>k and
ord,(x,,,5(x, ) = k+m

and m>k, we obtain the following equation:

aX(8)+pS+7=0mod 2™, (32)
coefficients a, B, yY€EZ, and a are the unity in Z,. As the
Frobenius substitution maintains the values, then the
above-given equation computes &, mod 2™ unequivocally
and, in addition:

— m 2m-k
x=x, +2", mod2-"™.

We shall assume that there is an algorithm that returns
the null value 3, from equation (32) with accuracy t'= [t / 2]
(half precision), then there is a possibility to employ the same
algorithm for computing &, with accuracy t (full precision).
Let us substitute:

3, =8, +2"At

we shall receive in (31):

Y~ 0mod 2t

o X(At)+BAt +m)2—tfm

(33)

that is why, since t—t'<t', then it is possible to apply
the same algorithm for computing At by module 2t and,
therefore, we may receive the value §;. Thus, it gives us a
recursive algorithm that allows us to find value (32). If we
assume that:

ord,(Ax) > ord,(Ay),

then it follows that ord,(B)>0 and everything is reduced
to solving:

oY(8)+y=0mod2.

And since o is the unity, it allows unambiguously com-
puting 8 mod 2. To calculate the Artin-Schreier equation, it
is proposed to employ the following algorithm [11].

Algorithm. Artin-Schreier-root
Input: a, p, y€Z,, 0€Z>,, 0ord2(p)>0, accuracy N.
Output: x€Z, so as aX(x)+px+y=0mod 2N,

1. if(N=1) then
1.1. x=(-y/a)*mod2;
(34)

Y = (@ X(x)+Bx"+7) / 2Y mod 2;

2.1

2.2.

2.3. x'=Artin — Shreier —root(o.,,y,N");
2.4

2.5. A'= Artin —Shreier —root(o.,f,y',M);



2.6. x=x+2VA'mod 2V;
3. return x.

Paper [8] demonstrates certain optimization regarding
computing in step 1. 1. of algorithm 4 (34), in other words,
root calculation takes the following form:

n-1 . i/p p-1
(Zaie') =2( D pkﬂek]c (), (35)
i=0 j=0 \ 0<pk+j<n
where
€)= =0"
and version for the binary field takes the form:
n—1 1/2
(Zaiei) = 2 a0t X a,,00°C,0),  (36)
i=0 0<2k<n 0<2k+1<n

where
C,(0)=6>".

Assessment of the complexity of the above-given algo-
rithm is also provided in article [11] and amounts to:

O((nN)"logN).

The complexity of the algorithm as a whole is based
on recursive challenges in steps 2. 3. and 2. 5. of algorithm
5 (34), multiplication and computation of the Frobenius
substitution in step 2.4. The complexity of computing the
Frobenius substitution is O((nN)*) bit operations [8].

The above-given algorithm allows us to effectively solve
equation (33), and to solve the main problem outlined in
(30) and reduced to (32) in paper [11], proposes to use a
generalized Newton’s lift somewhat different from the one
described in article [13].

Algorithm. Generalized-Newton-Lift
Input: Modular polynomial x¢€Z, which satisfies

Dy(x0,2(x0))=0 mod 281 and (a;)(z (XO,Z(XO)))>1{, k=

—ord, (85;2 (x0,2(x, ))), accuracy N.

Output: xN€Z,, Da(xn,Z(xn))=0 mod 2N** and xy=
=xpmod 2k*1,

1. if(N <2k +1) then
1. 1. x=x;

else
N'=[N/2]+k;

1.
2. M=N-k;
3.

2.
2.
2. (37)
2.

2 0P,
X

Generalized — Newton — Lift(x,,N");

X'
2.4. y'=¥(x")ymod 2%;

2.5. V=(@,(x",y")mod 2") / 2% mod 2™,
2.6. V=(@,(x',y)mod2") / 2¥ mod 2";

(x',y")mod2"') / 25 mod 2¥;

2.7. Ay= aaq;z (x",y")mod2") /2 mod 2";

2.8. A'=Artin —Schreier — Root(Ay, Ax, V,M);
2.9, x=x"+2"A"mod 2%;
3. return x.

The complexity of algorithm (37) is similar to algo-
rithm (35). The main complexity is based on the recursive
challenges of the algorithm from (35).

Multiplication of two integers that consist of n bits is
performed in O(n*) operations, where p is the constant that
defines the period of multiplying two m bit integers with
time complexity O(m#). Thus, for classical algorithms of
multiplication, values u=2, and for the fast Karatsuba algo-
rithm, p=log,3.

It should be noted that each of the presented methods
finds only the order of the curve and does not tackle the issue
on the possibility of its use in cryptographic transforma-
tions. Based on this, upon computing the order of the curve,
it is necessary to verify the feasibility of its application in
the cryptographic systems. And to choose the criteria that
make it possible to select elliptic curves for constructing
system-wide parameters at the required level of stability.

3. Results of exploring time complexity of the methods
for computing the order of elliptic curves

When exploring the mechanisms for constructing strong
cryptographic system-wide parameters of EC, an important
criterion is the time required for the construction of such
parameters and the dimensionality of field, over which
the curve is defined. Parameters obtained in this way will
be suitable for their further use in the EDS mechanisms
according to DSTU 4145-2002 (or similar, in other words
those that employ a binary field). The Ukrainian standard
sets the parameters of size up to 431 bits while the standard
FIPS 186-3 contain system-wide parameters up to 521 bits.
Important is the estimation of time needed to build strong
cryptographic parameters at the super high level of stability
(509 <#E <1031, bits) [4].

The largest complexity and resource consumption when
generating the parameters is displayed exactly by the step in
counting the points on EC, the theoretical information about
this stage is presented in the previous chapters of present
article. Those chapters also describe theoretical evaluation
of complexity in the phase of EC lift for all presented algo-
rithms. The complexity of computing the norm is given for
only one of the existing algorithms that was used to calcu-
late the order of EC.

For the canonical lift, we applied the SST method [10],
the MSST method [12] and the Harley method [11] (de-
scribed in chapters 4.2—4.4 of the present article). For the
normalization, an analytical method (proposed in paper [10])
was employed.

To count the number of points on EC, we developed a
software tool in the C++ language using the library NTL
and gmp. A research into algorithm execution time was car-
ried out in the program that was compiled using gec 4.84 in
the operating system Ubuntu 14.04 (USA) and the proces-
sor CPU Intel Core i5-2300 (USA). As all the operations for
this class of algorithms are conducted sequentially, the par-
allelization of implementation of the algorithm is impossible,
and the number of cores in the processor will not change
execution time of the algorithm.



Table 1 gives the period of computing the lift phase for
the SST, MSST, Harley methods and the norm. An analysis
of Table 1 allows us to argue that there is an advantage of
the MSST method over its standard modification in the SST
method; the practical results of present study confirm theo-
retical research into the given methods. The Harley method
is the most optimal among the three presented methods from

Fig. 2 shows a chart of dependence of the field size and
the norm computation period for different methods of ca-
nonical lift of elliptic curves, although the same method of
normalization was actually used.

------ SST normalization = =MSST normalization

Harley normalization

the point of view of computational complexity. . i
Table 1 = i’j
Computational complexity of p-adic methods § 112
- g 1
egt};i;iiziri E)Ife Lt phiy The Harley Normaliza- §- 08 ’/"/
field d, bits SST,s | MSST,s method, s tion by SST; s :5 g,i —
7 0,006265 | 0,003216 [ 0,000925 | 0,000248 02 I
23 0,023238 | 0,010162 | 0,004397 0,00088 0 —/
79 0,198349 | 0,077477 | 0,054023 | 0,007455 TEtERETE a2 nanaTE AL OEARG
107 0,251051 | 0,123306 0,07934 0,010746 Field size, bits -
173 0,680349 | 0,400715 | 0,219232 0,028311 Fig. 2. Chart of dependence of the norm computation period
199 0822255 0,501402 | 0,278724 0,035182 for different size of the field extension
257 0,950504 | 0,698594 | 0,290267 0,054191
307 155134 | 117776 | 0431548 0,088748 The chart in Fig. 2 demonstrates that such a method for
383 239215 | 191847 | 0,614475 0,133243 computing the norm is efficient and results for all methods
433 278954 | 2,245 0,766383 0,159998 were about the same each time with a difference of 0.01 s.
503 3,97648 3,2511 1,00376 0,198481
601 7,15564 | 6,00326 1,60194 0,424093
709 1044 | 9,02212 2,16152 0,532264 6. Discussion of results of exploring complexity in the
787 13,2826 | 11,6431 2,61117 0,649224 methods for computing the order of elliptic curves
827 15,0722 | 13,1966 2,86254 0,715296
929 19,5872 | 17,5986 | 3,54738 0,920241 The results obtained can be compared to the results re-
1021 249435 | 224928 | 435925 1,06235 ceived in article [8]. To count the number of points on EC,
1049 34,2923 | 30,0397 | 5,27848 1,7509 the author used the processor AMD XP 1700+ (USA) and

It can be argued that the canonical lift of EC using the
Harley method is about six times more efficient than the SST
method (the idea of which was employed in the Harley meth-
od). If we refer to the results of studying the AGM method
and Satoh method in the previous article [14], then it can be
argued that the Harley method is about 25 times more ef-
fective than the AGM method and is 75 times more efficient
than the best modification of the Satoh method.

Fig. 1 shows a chart of dependence of the size of the field
and the execution time for different methods of the canonical

the operating system Linux Redhat 7.1 (USA). The algo-
rithms were written in the programming language C, and
basic mathematical operations in the ring of p-adic numbers
were performed on Assembler. Results of comparing the time
indicators from [8] to the ones received in the present study
are given in Table 2 (columns with data from article [8] con-
tain the designation “B”).

Table 2

Comparison of the time complexity of computing
the order of curve

lift. A difference in the execution time between the algorithms Total time cinz the ordor of
of lift is observed for all the examined sizes of field extension. Exten- ota’ time for computing the order of curve
sion of SST MSST The The Har-
------ SST = —MSST ——The Harley method the field| ST, 5 gy g IMSSTs| | Harley [ley method
0 d, bits » S *® | method, s “B”, s
35 144 0,44 | 0,13 0,24 0,06 0,17 0,06
30 168 0,63 | 0,26 0,37 0,08 0,2 0,08
E )5 i 192 0,74 | 0,29 0,45 0,13 0,26 0,12
3 A
z 20 Rl 240 0,77 | 0,65 0,55 0,28 0,23 0,25
% ,’ . 288 1,3 0,72 0,97 0,39 0,37 0,38
Q. "
g - 336 | 183 | 1,17 | 143 | 064 | 049 06
10 i 384 | 24 | 176 | 191 | 097 | 06 0,92
> . _:;'______/ 480 | 344 | 356 | 287 | 203 | 091 1,87
0 L “.“.nl‘
TRebrElARARIGERAEEALREALE
Ficld st b = Results in Table 2 demonstrate that the basic mathe-
ield size, bits

Fig. 1. Chart of dependence of computational period of
canonical lift on the size of field extension for different
algorithms

matical operations, written in the low-level programming
language (implemented in paper [8]), yield large effective-
ness when computing the order of EC. The most effective
method for computing the order of EC, as shown in Table 2,



is the Harley method, in other words, research results of the
present work and of the studies in article [8] regarding the
method that is optimal in terms of computational complex-
ity, coincide.

One should consider the size of 1031 bits, because this
is exactly the size of elliptic curves required for the super
high level of stability (512 bits for symmetric cipher). The
total time for counting the number of points on EC of size
1031 bits for the Harley method at computing the norm by
SST is approximately 10 s. This period slightly exceeds that
of Table 1 because there are certain operations performed,
which were not dealt with in the present work in detail. For
example, present article does not address the process of poly-
nomial generation for the field, converting elements before
the normalization, etc.

It can be argued based on the presented findings that
there is a convergence between the theoretical computation-
al complexity of the examined algorithms and the compared
experimental results. Similar to article [8], the present
study observes reduction in the computational complexity
from the SST, MSST methods to the Harley method. The
obtained experimental assessments confirm the analytical
complexity that was described by authors of the estimated
methods in articles [10—13]. We can state that a combination
of the Harley algorithm for EC lift and the normalization
method from the SST algorithm are the best candidates to
modify the Ukrainian EDS standard. Here by modification
we mean an expansion in the base of general parameters.
And, of course, the given combination is the best one only by
the criterion of computational complexity.

The given article presents an optimal algorithm to count
the number of points on EC that applies the Harley method
[11] and the method for normalization form paper [10], as well
as certain adaptation for a binary field used in the Ukrainian
and world standards. Results of research into these algorithms
demonstrated that they might be employed to modify the
Ukrainian standard DSTU 4145-2002 in the direction of
extending the number of general parameters and their size.
The software model makes it possible to generate system-wide
parameters at the super high level of stability in seconds.

In addition, present study shows the time required
to generate parameters at the good level of stability (for
example, 257 bits) — it is less than 0.5 s. At such character-
istics, users of information systems can generate common
parameters all by themselves prior to the phase of assigning
keys between the parties. Previously, such a situation was
impossible due to the high complexity of computations, but
modern computing power and efficient mathematics provide
the users with such possibility.

7. Conclusions

1. The conducted analysis of promising methods for
computing the EC order revealed that to solve this problem,
at present, the most efficient (in terms of computational
complexity) is the Harley method. This conclusion was made
based on the performed theoretical and experimental studies
and comparison between the Satoh, AGM, SST, MSST and
Harley methods.

2. Analytical complexity in the execution of the SST,
MSST and Harley methods was demonstrated and, ac-
cording to it, we determined the fastest (by execution
time) algorithm for computing the order of the curve. It is
demonstrated that the Harley method is the fastest, due to
applying the Artin-Schreier equation for canonical lift of
EC. By reducing the number of computations for the large
size accuracy, the Harley method is more efficient than the
SST and MSST methods. Present study shows that using the
Harley method in practice makes it possible to accelerate the
computation of EC order by approximately 7 times compared
with the SST method.

3. Based on the explored data, we constructed a program
model for the methods of canonical lift of EC and normaliza-
tion. Development of a software model made it possible to
perform experimental analysis of the examined algorithms.
By the data obtained, the present work experimentally
confirmed the quasi quadratic dependence of the field size,
over which EC is defined, and the time required for the EC
canonical lift.

References

1. Horbenko, Yu. I. Analysis of the possibility of quantum computers and quantum computings for cryptanalysis of modern cryp-
tosystems [Text] / Yu. I. Horbenko, R. S. Hanzia // Eastern-European Journal of Enterprise Technologies. — 2014. — Vol. 1,
Issue 9 (67). — P. 8-16. — Available at: http://journals.uran.ua/eejet/article /view /19897 /18759

2. Hanzia, R. S. Analiz shlyakhiv rozvytku kryptohrafiyi pislya poyavy kvantovykh kompyuteriv [Text] / R. S. Hanzia, Yu. I. Hor-
benko // Visnyk Natsional'noho universytetu “L'vivs’ka politekhnika”: Kompyuterni systemy ta merezhi. — 2014. — Issue 806. —
P. 40-48.

3. Shor, P. W. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer [Text] /
P. W. Shor // STAM Journal on Computing. — 1997. — Vol. 26, Issue 5. — P. 1484—1509. doi: 10.1137/s0097539795293172

4. Horbenko, I. D. Prykladna kryptolohiya [Text]: monohrafiya / I. D. Horbenko, Yu. I. Horbenko;, KhNURE. — Kharkiv: Fort,
2012. — 868 p.

5. Schoof, R. Counting points on an elliptic curve over finite fields [Text] / R. Schoof // Proc. Journees Arithmetiques. — 1995. —
Issue 93. — P. 219-252.

6. Skjernaa, B. Satoh’s algorithm in characteristic 2 [Text] / B. Skjernaa // Mathematics of Computation. — 2003. — Vol. 72,
Issue 241. — P. 477—-488. doi: 10.1090/50025-5718-02-01434-5

7. Handbook of Elliptic and Hyperelliptic Curve Cryptography [Text] / H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen,
F. Vercauteren (Eds.). — NW.: Chapman & Hall/CRC, 2005. — 807 p. doi: 10.1201,/9781420034981

8. Vercauteren, F. Computing zeta functions of curves over finite fields [ Text]: diss. for the degree of PhD / E Vercauteren. — Katho-
lieke Universiteit Leuven, 2003. — 195 p.

9. Satoh, T. The Canonical Lift of an Ordinary Elliptic Curve over a Finite Field and its Point Counting [Text] / T. Satoh // J. Ra-
manujan Math. Soc. — 2000. — Vol. 15, Issue 4. — P. 247—-270.



10.

11.

12.

13.

14.

15.

Satoh, T. Fast computation of canonical lifts of elliptic curves and its application to point counting [Text] / T. Satoh, B. Skjernaa,
Y. Taguchi // Finite Fields and Their Applications. — 2003. — Vol. 9, Issue 1. — P. 89—101. doi: 10.1016,/s1071-5797(02)00013-8
Harley, R. Asymptotically optimal p-adic point-counting [Electronic resource] / R. Harley // E-mail to NMBRTHRY list. —
2002. — Available at: https://listserv.nodak.edu/cgi-bin/wa.exe? A2=ind0212&L=NMBRTHRY &F=&S=&P=7824

Gaudry, P. A Comparison and a Combination of SST and AGM Algorithms for Counting Points of Elliptic Curves in Character-
istic 2 [Text] / P. Gaudry // Lecture Notes in Computer Science. — 2002. — P. 311-327. doi: 10.1007/3-540-36178-2_20

Lercier, R. Counting Points on Elliptic Curves over Finite Fields of Small Characteristic in Quasi Quadratic Time [Text] / R. Ler-
cier, D. Lubicz // Lecture Notes In Computer Science. — 2003. — P. 360-373. doi: 10.1007/3-540-39200-9 22

Hanzia, R. S. Otsinka obchyslyuval'noyi skladnosti metodiv pidrakhunku kil’kosti tochok na eliptychniy kryviy [Text] /
R. S. Hanzia // Systemy obrobky informatsiyi. — 2016. — Issue 8. — P. 92—99.

Satoh, T. Asymptotically fast algorithm for computing the Frobenius substitution and norms over unramied extension of p-adic
number fields [Text] / T. Satoh. — Department of Mathematics, Faculty of Science, Saitame University, 2001. — P. 1-21.

B 36’a3Ky 3 He3a0086i16H010 cmilikicmio cmanoapm-
HUX Kpunmozpadiunux anzopummie 3 6i0Kpumum
Kouem 00 mMemoodié Keanmoeozo Kpunmoananisy,
npoeedeno 00CHI0NCEHH MONCAUBOCIE BUKOPUCMAH-
HS NOCMKBAHMOBUX KPUNMOPAPIUHUX ATOPUMMIE.
IIpoeedero nopieHANLHY OUIHKY MAKUX AN20pUMMIE
8 3aJencHocmi 610 YMo8 6UKOPUCTMAHHA MA NPOAHATE-
306aH0 nepesazu PizHUX MeXaHi3Mi6 Kpunmozpadiu-
HUX nepemeopenv, Wo € CMiliKumMu 00 Memooie Keamn-
M0B020 KPpUNMoanaiizy

Kniouoei cnoea: nocmrxeanmosi kpunmoezpadiuni
anzopummu, NOPiGHANLHA OUIHKA KPUNMOAN20pUM-
Mi8, Kpumepii nOPIBHAHHA KPUNMOATI20PUMMIE

=,

u] =,

|DOI: 10.15587/1729—4061.2017.96321|

EXAMINING A
POSSIBILITY TO USE
AND THE BENEFITS
OF POST-QUANTUM
ALGORITHMS

B cea3u ¢ neyoosaemeopumenvHol CmMolKocmvio
cmanoapmuolx  Kpunmozpauueckux —aazopunt-
MOB C OMKPLIMbIM KJIHOUOM K Memoodam KéaHmoeoz0
Kpunmoaunaiusa, npoeedeno uccaiedo8amue 603Moxic-
HOCMU UCNOJIb30BAHUS NOCMKBAHMOBLIX KPUNMOZPA-
Quueckux aneopummos. Ilposedena cpasnumenvias 1.
OUeHKa MAKUX anzopummos 6 3a6UCUMOCMU OM Ycao-
BUIl NPpUMEHEHUSL U BbINOJIHEH AHANIU3 NPEUMYU,eCME
PA3HBIX MeXAHU3MO6 Kpunmozpaduieckux npeoopa-
3068anuil, CMOUKUX K MeM0O0am K6AHMO6020 KPUNMO-
anaausa

Knwouesvie caosa:
epajuueckue anzopummvl, CpasHUMENbHAST OUEHKA
KPpUnmMoaizopummos, Kpumepuu CpasHeHuss Kpunmo-
anzopummos

i DEPENDENT ON THE
CONDITIONS OF THEIR
APPLICATION

Gorbenko
Doctor of Technical Sciences, Professor®
E-mail: Gorbenkol@iit.com.ua

V. Ponomar

Postgraduate student®

E-mail: Laedaa@gmail.com

*Department of Security of

Information Systems and Technologies

V. N. Karazin Kharkiv National University

nocmkeanmoevle Kpunmo-

u] =,

Svobody sq., 4, Kharkiv, Ukraine, 61022

1. Introduction

Due to the development of technologies for quantum
computing and the introduction of quantum computer, there
is a threat to the current state of protection of cryptographic
systems with a public key [1]. With an advent of quantum
computer that would have the volume of register required for
the methods of quantum cryptanalysis, the stability of exist-
ing crypto algorithms will significantly degrade [2, 3]. This
necessitates the creation of algorithms resistant to the meth-
ods of quantum cryptanalysis. The European project “New
European Schemes for Signatures, Integrity, and Encryp-
tions “ (NESSIE) and the National Institute of Standards
and Technologies (NIST) of the USA announced a start of

recruiting the applicants for the contest of post-quantum
algorithms whose standards are planned to be adopted over
20202022 [4, 5].

A peculiarity of this task is that the contest will accept
the algorithms whose cryptographic transformations are
based on the latest information or insufficiently tested
mathematical methods that will require considerable time
to prove their stability in terms of quantum cryptanalysis.
That is why the choice of the new standard will affect not
only the algorithm that will be employed but also further
development of the post-quantum cryptography.

Another feature is that the universal algorithms are lacking
that can be used both for electronic signature (ES) and the
encryption. Therefore, it is necessary for each of the security






