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1. Introduction

The tuning of expert fuzzy knowledge bases involves 
maximum approximation to experimental data for a given 
level of complexity or maximum simplification without los-
ing accuracy of inference [1]. The number of output terms or 
classes of output [2] determines the quality of a fuzzy clas-
sification knowledge base. The optimization of such knowl-
edge base implies: a search for the minimum inference error 
with the limitation to the complexity of a model (the number 
of input terms, output classes, and rules); search for the 
minimum of rules (classes) at the assigned level of accuracy. 
A transition to the relational model makes it possible to sim-
plify the design process by presenting the rules in the form of 
a matrix of fuzzy relations “input terms – output classes” [1]. 
In this case, a multi-dimensional matrix of relations R(X) is 
presented in the form of projections R1(x1),…, Rn(xn) [3]. The 
number of input and output terms is set in advance, and the 
tuning of the model implies selection of the elements of a ma-
trix of relations [4, 5]. However, relational models leave open 
the problem on the optimal choice of the number of output 
classes. At the same time, the problem on the optimization of 
a fuzzy knowledge base is the task of fuzzy clustering [6]. In 
addition, it requires a partition of the space of input variables 
into such number of classes that provides the required or 
extreme levels of inference accuracy and the number of rules.

2. Literature review and problem statement

Methods of relational clustering, which conduct the 
partition of objects by similarity measures, are limited 
by the assigned number of classes [6, 7]. If the number of 
classes is unknown, the methods of min-max clustering are 

used, which imply the generation of easily understandable 
rules-hyperboxes [8]. Hyperboxes learn using supporting 
vector machines (SVM) [9, 10] through extension/com-
pression. Balancing between the inference accuracy and the 
number of rules (classes) is achieved by combining/partition 
of hyperboxes. To restore nonlinear boundaries between 
classes and avoid excessive coverage density, the mode of 
learning in the min-max neural networks must reduce the 
number of hyperboxes without compromising the recogniz-
ing capacity [11, 12]. There remains a problem in the adap-
tation of maximum size of the hyperbox, which determines 
how many rules can be generated. Classes overlapping and 
classification errors render this parameter very important. If 
the value of this parameter is small, unnecessary hyperboxes 
(classes) are formed [13].

A general problem of the min-max clustering methods is 
the selection of the number of output classes and the minimi-
zation of the number of input terms without compromising 
the inference accuracy. The method for the optimization of 
output classes of fuzzy knowledge base was proposed in pa-
pers [14, 15]. In contrast to the heuristic procedures of rules 
(classes) selection [8–13], the generation of fuzzy knowledge 
bases is reduced to the problem on discrete optimization of 
indicators of algorithm reliability [14, 15]. For the selection 
of output classes, the gradient method was used. The number 
of classes is defined under the offline mode [14]. Clarifica-
tion of class boundaries is carried out by adaptive adding/
removing classes in arrangement vectors [15]. For the cur-
rent output classes, interval rules are generated by solving 
the problem on inverse logical inference [2]. This solves the 
problem of control and adaptation of the hyperbox size [16]. 
The structure of the model is determined by parameters of 
interval rules that are connected to the coordinates of the 
maximum of a membership function.
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This paper proposes a method for the optimization of 
output classes and input terms of a fuzzy knowledge base. 
If the number of terms is set in advance, the problem of 
min-max clustering may be solved by relational partition 
of the space of input variables [1]. The number and location 
of hyperboxes is determined by the matrix of relations [17] 
and the sizes of hyperboxes are determined as a result of 
adjusting the triangular membership functions [1]. Then the 
optimization of a relational fuzzy knowledge base lies in the 
selection of such partition matrices “inputs – output”, which 
provide the required or extreme levels of inference accuracy 
and the number of rules. Following [14, 15], the selection of 
number of input and output terms in the partition matrices 
may be performed both under the offline mode and by adap-
tive adding/removing of terms.

3. The aim and tasks of the study

The aim of present work is to develop an approach to 
the optimization designing of relational fuzzy knowledge 
bases by the criteria “inference accuracy – complexity”. This 
approach should simplify the process of the knowledge bases 
tuning based on fuzzy relations for both the assigned and the 
unknown output classes.

To achieve the set goal, the following tasks were to be 
solved:

– development of a relational fuzzy model that matches a 
fuzzy classification knowledge base; 

– development of a method for the optimization of 
knowledge base on the basis of fuzzy relations under offline 
and online modes.

4. Models and methods for the optimization of knowledge 
bases on fuzzy relations

4. 1. Fuzzy relational model
Consider an object of the form y=f(x1,…,xn) with n inputs 

X=(x1,…,xn) and output y, for which the relation “inputs – 
output” may be represented in the form of a system of fuzzy 
classification IF-THEN rules [2]:

j

jp
i i j

p 1,z i 1,n
[ {x a }] y d ,

= =
= → =   j 1,m,=  	 (1)

where jp
ia  is the fuzzy term for the evaluation of variable xi 

in line jp, j 1,m,=  jp 1,z ;=  dj is the fuzzy term for the evalua-
tion of variable y; zj is the number of rules in class dj; m is the 
number of terms of the output variable. 

Let 
ii1 ik{c ,...,c }  be a set of input terms for the evaluation 

of variable xi, i 1,n= . 
We designate

1 n1 N 11 1k n1 nk{C ,...,C } {c ,...,c ,...,c ,...,c },=  
 

where N=k1+…+kn.
Then the system of one-dimensional matrices of fuzzy 

relations corresponds to a fuzzy knowledge base (1):

i il j il,j ic d [r , i 1,n, l 1,k , j 1,m],⊆ × = = = =R

that is equivalent to a multi-dimensional matrix:

I J IJC d [r , I 1,N, J 1,m].⊆ × = = =R

Given matrices Ri, i 1,n,=  dependence “inputs – output” 
is described using the extended compositional rule of infer-
ence [1]:

1 nA Ad
1 1 n n(y) (x ) ... (x ) ,= ∩ ∩R R m m m  	 (2)

where iki i1 i
cA c

i(x ) ( ,..., )= m mm  and 1 md dd(y) ( ,..., )= m mm are the 
vectors of membership degrees of variables xi and y to terms 
cil, i 1,n,=  and dj, j 1,m,=  respectively. 

From ratio (2), hence follows the system of fuzzy logical 
equations, which connects membership functions of fuzzy 
input and output terms:

j il

i

d c
i il,j

i 1,n l 1,k
(y) min{max[min( (x ),r )]},

= =
m = m j 1,m.=

	
 (3)

Ratio (3) defines a fuzzy model of an object as follows:

ry f( ,N,m, ),= X Ψ 	  (4)

where
 

C dC dr C d( , , , , , , )= R H HΨ Β Β Β Β is the vector of param-
eters of fuzzy relations, which includes:

1 NC C
C ( ,..., ),= β βΒ  

1 NC C
C ( ,..., ),= β βΒ  N1 CC

C (h ,...,h ),=H

1 md d
d ( ,..., ),= β βΒ  

1 md d
d ( ,..., ),= β βΒ  

1 md d
d (h ,...,h ).=H

– vectors of lower and upper bounds, as well as vectors of 
coordinates of the maximum of triangular membership func-
tions of fuzzy terms CI and dj; f is the operator of connection 
“inputs – output”, which corresponds to formula (3).

4. 2. Problems on the optimization of knowledge base 
based on fuzzy relations

For a fuzzy knowledge base (1), the interrelation be-
tween the mean root square error and the number of rules 
depends on the number and bounds of output classes. Then 
the problem on the optimization of a fuzzy knowledge  
base (1) is reduced to the problem on the min-max clustering 
and lies in selecting such a partition matrix R that provides 
the required or extreme levels of inference accuracy and the 
number of rules. 

Let the training sample be assigned as P pairs of exper-
imental data:

s s
ˆ ˆX ,y ,  s 1,P,=  

where s s
s 1 n

ˆ ˆ ˆX (x ,...,x );=  sŷ  are the vectors of values of input 
and output variables in the experiment number s. 

Optimization of the number of input terms and output 
classes is carried out under the offline mode. In this case, the 
preliminary boundaries of dj classes are assigned by an expert. 

We shall evaluate the complexity of a fuzzy model (4) 
based on the number of rules Z(N, m, R), which are associ-
ated with relation matrix R. We shall assess the quality of a 
fuzzy model (4) based on the root mean square error:

P 2

s s
s 1

1 ˆ ˆE f(X ,N,m,R) y .
P =

 = − ∑

Then the problem of selecting the optimal number of in-
put terms and output classes may be formulated in the direct 
and dual statement. 

Direct statement. Find such a number of input terms N, 
output classes m and fuzzy partition matrix R that provide 
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the minimum number of rules for a permissible inference 
error: Z(N,m, ) min→R  and E(N,m, ) E,£R  where E  is the 
maximum permissible root mean square error.

Dual statement. Find such a number of input terms N, 
output classes m and fuzzy partition matrix R, which pro-
vide minimum inference error for the assigned number of 
rules: E(N,m, ) min→R  and Z(N,m, ) Z,£R  where Z  is the 
maximum permissible number of rules. 

Optimization of boundaries of output classes is per-
formed under the online mode. In this case, clarification of 
the partition method is made by adaptive adding/removing 
of terms. 

We shall introduce a limitation on the volume of rela-
tions matrix in the following way: i ik k ,£  m m,£  where ik  
and m  are the maximum number of input terms and output 
classes. 

Assume:

1 N
(u ,...,u ),=U  1 m

(v ,...,v ),=V

are the vectors of arrangement of input terms and output 
classes, where uI=1(0) or vJ=1(0) correspond to the addition 
(removal) of term CI

 
or dJ, respectively.

 We shall evaluate a complexity of fuzzy model (4) based 
on the number of rules Z (U, V, R), which are associated 
with relations matrix R. We will assess the quality of fuzzy 
model (4) based on root mean square error

P 2

s s
s 1

1 ˆ ˆE f(X ,U,V,R) y .
P =

 = − ∑

Then the problem on the selection of optimum bound-
aries of output classes may be formulated in direct and dual 
statement. 

Direct statement. Find vectors of arrangement of input 
terms U, output classes V and fuzzy partition matrix R, for 
which under condition of limitation on the knowledge base 
volume Z( , , ) min→U V R  and E( , , ) E.£U V R

Dual statement. Find vectors of arrangement of input 
terms U, output classes V and fuzzy partition matrix R, for 
which under condition of limitation on the volume of knowl-
edge base E( , , ) min→U V R  and Z( , , ) Z.£U V R  

4. 3. Method for the optimization of relational fuzzy 
knowledge base

To select the values of controlling variables, the gradient 
method is used, which was proposed in [14] for the solution 
of problems on discrete optimization of fuzzy knowledge 
base. This method implies a coordinate-wise rise along the 
surface of objective function in the direction of gradient. 
Algorithms for solving the optimization problems have a 
unified structure, consisting of two iteration sections [14]. In 
the first of them, the first permissible solution by successive 
adding of terms with the highest gradients is determined; 
in the second, an improvement of the found solution by de-
creasing the complexity of the model is accomplished. For 
the current output classes, fuzzy relations are tuned by the 
methods proposed in [2].

4. 3. 1. Algorithms of the optimization under offline 
mode

Gradients:

i
x i(k ),γ  i 1,n=  and y (m),γ

will be defined as the ratio of infallibility increment ∆E(ki+1, 
Ψr) or ∆E(m+1, Ψr) to the increment in the number of rules 
∆Z(ki+1, Ψr) or ∆Z(m+1, Ψr) at increasing the number of 
input or output terms in partition matrices:

i i r i r i r
x i

i r i r i r

E(k , ) E(k , ) E(k 1, )
(k ) ,

Z(k , ) Z(k 1, ) Z(k , )
∆ − +

γ = =
∆ + −

Ψ Ψ Ψ
Ψ Ψ Ψ

r r r
y

r r r

E(m, ) E(m, ) E(m 1, )
(m) .

Z(m, ) Z(m 1, ) Z(m, )
∆ − +

γ = =
∆ + −

Ψ Ψ Ψ
Ψ Ψ Ψ

We designate the solution vector, obtained at the tth step 
of the optimization algorithm as:

(t) (t) (t) (t)
i r(k ,m , ).=Ψ Ψ

The algorithm for solving the problem in direct state-
ment is performed in the following sequence: 

1. Set the zero-option of a fuzzy model: 

t=0 (0) (0) (0) (0)
i r(k ,m , ).=Ψ Ψ  

If (0)E( ) E,<Ψ  proceed to step 4. 
2. If (t)E( ) E,>Ψ  proceed to step 3, otherwise – to step 4. 
3. For models 

(t) (t)
i i r(k 1,m , )= +¢ ¢Ψ Ψ  and (t) (t)

i r(k ,m 1, )= +¢¢ ¢¢Ψ Ψ  

identify gradients i
xγ  and γy relative to solution Ψ(t). Find 

the coordinate, for which i
x ymax{ , },γ = γ γ

 
t:=t+1. For vector 

Ψ(t), assign:

(t) (t 1)
i ik : k 1,−= +  (t)

i: ,= ¢Ψ Ψ  if i
x ;γ = γ

(t) (t 1)m : m 1,−= +  (t) : ,= ¢¢Ψ Ψ  if y .γ = γ

Proceed to step 2.
4. Decrease the complexity of model Ψ(t) by decreasing 

the number of input or output terms at maintaining permis-
sible inference accuracy. Check the conditions for models 

(t) (t)
i i r(k 1,m , )= −¢ ¢Ψ Ψ  and (t) (t)

i r(k ,m 1, )= −¢¢ ¢¢Ψ Ψ :

iE( ) E;£¢Ψ
	

(5)

E( ) E.£¢¢Ψ 	 (6)

If conditions (5) and (6) are not fulfilled for any coordi-
nate, consider vector Ψ(t) as the result of solving the problem, 
otherwise proceed to step 5. 

5. For the coordinates that satisfy conditions (5) and (6), 
find the magnitude, by which the number of rules ∆Z will 
decrease. Find the coordinate for which:

(t) (t)
imax{ Z(k 1,m ),∆ = ∆ −

 
(t) (t)
iZ(k ,m 1)}.∆ −

 t:=t+1. For vector Ψ(t), assign:

(t) (t 1)
i ik : k 1,−= −  (t)

i: ,= ¢Ψ Ψ  if iZ(k );∆ = ∆

(t) (t 1)m : m 1,−= −  (t) : ,= ¢¢Ψ Ψ  if Z(m).∆ = ∆

Proceed to step 4.
The algorithm of solving the problem in the dual state-

ment is performed in the following sequence. 
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1. Set the zero-option of a fuzzy model:

t:=0, (0) (0) (0) (0)
i r(k ,m , ).=Ψ Ψ

If (0)Z( ) Z,>Ψ  proceed to step 4.
2. If (t)Z( ) Z,<Ψ  proceed to step 3, otherwise − to step 4.
3. The essence of this step coincides with step 3 of the 

algorithm for solving the problem in direct statement. Pro-
ceed to step 2. 

4. Decrease the complexity of model (t)Ψ for the inclu-
sion in the area of permissible solutions by reducing the num-
ber of input or output terms. Check the conditions for models 

(t) (t)
i i r(k 1,m , )= −¢ ¢Ψ Ψ  and (t) (t)

i r(k ,m 1, )= −¢¢ ¢¢Ψ Ψ

iZ( ) Z;£¢Ψ  	 (7)

Z( ) Z.£¢¢Ψ 	 (8)

If at least one of the conditions (7) or (8) is fulfilled, 
then, among permissible solutions, select a model that pro-
vides a lower inference error, otherwise proceed to step 5. 

5. For the coordinates that do not satisfy limitations (7) 
and (8), find the increment in deriving error ΔE. Find the 
coordinate, for which 

(t) (t)
imin{ E(k 1,m ),∆ = ∆ −

 
(t) (t)
iE(k ,m 1)}.∆ −

 t:=t+1. For vector Ψ(t), assign:

(t) (t 1)
i ik : k 1,−= −  (t)

i: ,= ¢Ψ Ψ  if iE(k );∆ = ∆

(t) (t 1)m : m 1,−= −  (t) : ,= ¢¢Ψ Ψ  if E(m).∆ = ∆

Proceed to step 4.

4. 3. 2. Algorithms of optimization under the online 
mode

Gradients 

I
x I(u ),γ  I 1,N=  and J

y J(v ),γ  J 1,m,=

will be defined as the ratio of infallibility increment ∆E(uI=1, 
Ψr) or ∆E(vJ=1, Ψr) to the increment in the number of rules 
∆Z(uI=1, Ψr) or ∆Z(vJ=1, Ψr) as a result of adding the input 
or output term CI or dJ:

I I r I r I r
x I

I r I r I r

E(u , ) E(u 0, ) E(u 1, )
(u ) ,

Z(u , ) Z(u 1, ) Z(u 0, )
∆ = − =

γ = =
∆ = − =

Ψ Ψ Ψ
Ψ Ψ Ψ

J r J r J rJ
y J

J r J r J r

E(v , ) E(v 0, ) E(v 1, )
(v ) .

Z(v , ) Z(v 1, ) Z(v 0, )

∆ = − =
γ = =

∆ = − =
Ψ Ψ Ψ
Ψ Ψ Ψ

Designate the solution vector, obtained at the t-th step 
of the optimization algorithm as (t) (t) (t) (t)

r( , , ).= U VΨ Ψ  The 
algorithm of solving the problem in direct statement is per-
formed in the following sequence. 

1. Assign the zero-option of a fuzzy model:

t:=0, 
(0) (0) (0) (0)

r( , , ).= U VΨ Ψ

If (0)E( ) E,<Ψ  proceed to step 4.
2. If (t)E( ) E,>Ψ  proceed to step 3, otherwise − to step 4.

3. For the models where (t)
Iu 0=  and (t)

Jv 0,=  add an 
input or output term as follows: 

(t) (t) I
I I r(u 1, , )= +¢ VΨ Ψ  or (t) (t) J

J J r( ,v 1, ).= +¢¢ UΨ Ψ  

Determine gradients I
x I(u )γ  and J

y J(v )γ
 
relative to solu-

tion Ψ(t). Find the term, for which L M
x ymax{ , },γ = γ γ  where:

L (t) I
x L xI
(u ) max{ },γ = γ

M (t) J
y M yJ

(v ) max{ }.γ = γ

 t:=t+1. For vector Ψ(t), assign:

(t)
Lu 1,=  (t)

L: ,= ¢Ψ Ψ  if L
x ;γ = γ

(t)
Mv 1,=  (t)

M: ,= ¢¢Ψ Ψ  if M
y .γ = γ

Proceed to step 2.
4. Improve model Ψ(t) by attaining the required level 

of inference accuracy with fewer terms. For the models for 
which (t)

Iu 1=  and (t)
Jv 1,=  decrease the complexity by re-

ducing the number of terms in the following way:

(t) (t) I
I I r(u 1, , );= −¢ VΨ Ψ  (t) (t) J

J J r( ,v 1, ).= −¢¢ UΨ Ψ

For the inputs and outputs, find such sets of terms (t)
xQ  

and (t)
yQ ,  for which the conditions are fulfilled:

IE( ) E;£¢Ψ  	 (9)

JE( ) E.£¢¢Ψ  	 (10)

If (t)
xQ  and (t)

yQ  are empty sets, consider vector Ψ(t) 
as the result of solving the problem, otherwise proceed to 
step 5.

5. For terms (t)
I xC Q∈  and (t)

J yd Q ,∈  which satisfy con-
ditions (9) and (10), find the magnitude, by which the num-
ber of rules ∆Z decreased. Find the term, for which

 L M
x yZ max{ Z , Z },∆ = ∆ ∆  

where

L (t) (t)
x L II

Z (u ) max{ Z(u 1)};∆ = ∆ −

M (t) (t)
y M JJ

Z (v ) max{ Z(v 1)}.∆ = ∆ −

 t:=t+1. For vector Ψ(t), assign: 

(t)
Lu 0,=  (t)

L: ,= ¢Ψ Ψ  if L
xZ Z ;∆ = ∆

(t)
Mv 0,=  (t)

M: ,= ¢¢Ψ Ψ  if M
yZ Z .∆ = ∆

Proceed to step 4.
The algorithm of solving the problem in the dual state-

ment is performed in the following sequence. 
1. Set the zero-option of a fuzzy model:

t:=0, (0) (0) (0) (0)
r( , , ).= U VΨ Ψ

If (0)Z( ) Z,>Ψ  proceed to step 4.
2. If (t)Z( ) Z,<Ψ  proceed to step 3, otherwise − to step 4.
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3. The essence of this step coincides with step 3 of the 
algorithm for solving the problem in direct statement. Pro-
ceed to step 2. 

4. Decrease the complexity of model Ψ(t) for the inclusion 
in the area of permissible solutions. For models, in which 

(t)
Iu 1=  and (t)

Jv 1,=  decrease the number of terms in the 
following way:

(t) (t) I
I I r(u 1, , );= −′ VΨ Ψ  (t) (t) J

J J r( ,v 1, ).= −′′ UΨ Ψ

For the inputs and outputs, find such sets of terms (t)
xQ  

and (t)
yQ ,  for which the conditions are satisfied:

IZ( ) Z;>′Ψ  	 (11)

JZ( ) Z.>′′Ψ
	

 (12)

If at least one of conditions (11) or (12) is not met, then 
choose among permissible solutions a model that provides a 
lower inference error, otherwise proceed to step 5. 

5. For terms (t)
I xC Q∈  and (t)

J yd Q ,∈  which satisfy con-
ditions (11) and (12), find the magnitude, by which the infer-
ence error ∆E increases. Find the term, for which

L M
x yE min{ E , E },∆ = ∆ ∆  

where

L (t) (t)
x L II

E (u ) min{ E(u 1)};∆ = ∆ −

M (t) (t)
y M JJ

E (v ) min{ E(v 1)}.∆ = ∆ −

 t:=t+1. For vector Ψ(t), assign: 

(t)
Lu 0,=  (t)

L: ,= ′Ψ Ψ  if L
xE E ;∆ = ∆

(t)
Jv 0,=  (t)

M: ,= ′′Ψ Ψ  if M
yE E .∆ = ∆

Proceed to step 4. 

5. Results of computer experiment

For the model-standard [15, 16], the number of terms is 
limited as follows:

1k 9,=  2k 7,=  m 7.=

The task implied the transformation of the expert zero- 
option of a knowledge base to the variant, which provides: 
Z→min and E 0.5≤  in the direct statement; E→min and 
Z 30≤  in the dual statement. 

Results of the calculation of optimization problems are 
listed in Table 1, where each iteration represents the results 
of designing model Ψ(t) for the current number of terms (t)

ik  
and m(t) with further arrangement of terms in vectors U(t) 
and V(t).

The first acceptable solution of the direct problem is 
obtained at step 4 by successive adding of terms with the 
highest gradients: 

– term c24 
at step 2 since:

y 3

0.6712 0.6104
(v ) 0.0152,

16 12
−

γ = =
−

1
x 12 18

0.6712 0.6380
(u ,u ) 0.0166,

14 12
−

γ = =
−

2
x 24

0.6712 0.5968
(u ) 0.0248;

15 12
−

γ = =
−

– terms c12 and c18 
at step 3 since:

y 3

0.5968 0.5575
(v ) 0.0098,

19 15
−

γ = =
−

1
x 12 18

0.5968 0.5310
(u ,u ) 0.0329,

17 15
−

γ = =
−

2
x 23

0.5968 0.5632
(u ) 0.0112;

18 15
−

γ = =
−

– class d3 
at step 4 since:

y 3

0.5310 0.4873
(v ) 0.0109,

21 17
−

γ = =
−

1
x 13 17

0.5310 0.5250
(u ,u ) 0.0015,

21 17
−

γ = =
−

2
x 23

0.5310 0.5101
(u ) 0.0070.

20 17
−

γ = =
−

 
Table 1

Calculation of optimization problems

t k1 k2 m u11,…, u19 u21,…, u27 v1,…, v7 Z E

1 5 4 5 100111001 1100110 1101011 12 0.6712

2 5 5 5 100111001 1101110 1101011 15 0.5968

3 7 5 5 110111011 1101110 1101011 17 0.5310

4 7 5 6 110111011 1101110 1111011 21 0.4873

5 5 5 6 100111001 1101110 1111011 19 0.5575

6 7 6 6 110111011 1111110 1111011 22 0.4625

7 7 6 7 110111011 1111110 1111111 24 0.4318

8 9 6 7 111111111 1111110 1111111 28 0.3514

9 9 7 7 111111111 1111111 1111111 31 0.3007

10 7 7 7 110111011 1111111 1111111 27 0.3819

Model Ψ(4) remains the solution of the direct problem. 
Decreasing the complexity leads to model Ψ(5) leaving the 
region of permissible solutions. Further increase in the num-
ber of terms in model Ψ(6) provides decreasing the inference 
error by ∆E=0.0248 with increasing the number of rules by 
∆Z=1. 

Solution of the dual problem was continued by adding 
terms with the highest gradients: 

– term c23 at step 6 since:

y 5

0.4873 0.4509
(v ) 0.0182,

23 21
−

γ = =
−

1
x 13 17

0.4873 0.4716
(u ,u ) 0.0079,

23 21
−

γ = =
−

2
x 23

0.4873 0.4625
(u ) 0.0248;

22 21
−

γ = =
−

– class d5 
at step 7 since:

y 5

0.4625 0.4318
(v ) 0.0153,

24 22
−

γ = =
−
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1
x 13 17

0.4625 0.4437
(u ,u ) 0.0047,

26 22
−

γ = =
−

2
x 27

0.4625 0.4560
(u ) 0.0022;

25 22
−

γ = =
−

– terms c13 
and c17 

at step 8 since:

1
x 13 17

0.4318 0.3514
(u ,u ) 0.0201,

28 24
−

γ = =
−

2
x 27

0.4318 0.3819
(u ) 0.0166.

27 24
−

γ = =
−

Model Ψ(8) remains the solution of the dual problem. 
Further increase in the number of terms leads to model Ψ(9) 
leaving the region of permissible solutions, and decreasing the 
complexity of model Ψ(10) – to increasing the inference error 
by ∆E=0.0305 at decreasing the number of rules by ∆Z=1. 

Matrices of fuzzy relations in the solutions of direct and 
dual tasks (Tables 2, 3) are associated with fuzzy rule bases, 
presented in Tables 4, 5. Results of structural and parametric 
tuning of models Ψ(4) and Ψ(8) are shown in Fig. 1, 2.

Table 2 

Matrix of fuzzy relations for a direct problem

IF
THEN y

d1 d2 d3 d4 d6 d7

x1

c11 0 0.65 0.72 0.92 0 0

c12 0.74 0 0.65 0 0 0

c14 0.50 0.84 0 0.69 0.57 0

c15 0.72 0.96 0 0 0.92 1.00

c16 0.53 0.82 0 0.70 0.57 0

c18 0.77 0 0.63 0 0 0

c19 0 0.67 0.71 0.95 0 0

x2

c21 0 0.82 0.71 0.91 0 0

c22 0.74 0 0.73 0 0 0

c24 0.75 0.63 0 0.63 0.94 0

c25 0.64 0.52 0 0 0.87 1.00

c26 0.50 0.61 0 0.61 0.92 0

Table 3 

Matrix of fuzzy relations for a dual problem

IF
THEN y

d1 d2 d3 d4 d5 d6 d7

x1

c11 0 0.76 0.82 0.95 0 0 0

c12 0.82 0 0.65 0 0 0 0

c13 0.51 0.70 0 0.70 0.70 0 0

c14 0.52 0.64 0 0 0.83 0.92 0

c15 0.64 0.64 0 0 0.71 0.86 1.00

c16 0.50 0.63 0 0 0.85 0.93 0

c17 0.52 0.70 0 0.70 0.70 0 0

c18 0.81 0 0.64 0 0 0 0

c19 0 0.75 0.83 0.94 0 0 0

x2

c21 0 0.82 0.71 0.93 0 0 0

c22 0.78 0 0.72 0 0 0 0

c23 0.77 0.80 0 0.70 0.86 0 0

c24 0.73 0.64 0 0 0.83 0.76 0

c25 0.61 0.52 0 0 0.77 0.89 1.00

c26 0.50 0.80 0 0.70 0.70 0.70 0

Table 4

IF-THEN rules for a direct problem

Rule

IF THEN

x1 x2 y
 

1, 2 
3

[0.61, 2.03] or [3.90, 5.45]  
[1.75, 4.12]

[0.60, 4.00] 
[0.60, 1.97]

d1, [–0.25, 0.39]

4, 5 
6

[0, 0.86] or [5.17, 6.00] 
[1.75, 4.12]

[1.68, 4.00] 
[0, 0.87]

d2, [0.32, 0.80]

7, 8 
9, 10

[0, 0.86] or [5.17, 6.00] 
[0.61, 2.03] or [3.90, 5.45] 

[0.60, 1.97] 
[0, 0.87]

d3, [0.73, 1.25]

11, 12 
13, 14 
15, 16 

[0, 0.86] or [5.17, 6.00] 
[1.75, 2.72] or [3.30, 4.12] 
[1.75, 2.72] or [3.30, 4.12]

[0, 0.87] 
[1.68, 2.70] 
[3.32, 4.00]

d4, [1.10, 1.97]

17, 18 
19 
20

[1.75, 2.72] or [3.30, 4.12] 
[2.54, 3.45] 
[2.54, 3.45]

[2.56, 3.50] 
[1.68, 2.70] 
[3.32, 4.00]

d6, [1.85, 2.59]

21 [2.54, 3.45] [2.56, 3.50] d7, [2.41, 3.20]

Table 5 

IF-ТHEN rules for a dual problem 

Rule

IF THEN

x1 x2 y
 

1, 2 
3

[0.52, 1.46] or [4.68, 5.54] 
[1.32, 4.82]

[0.56, 4.00] 
[0.56, 1.42]

d1, [–0.18, 0.34]

4, 5 
6

[0, 0.64] or [5.42, 6.00] 
[1.32, 4.82]

[1.30, 4.00] 
[0, 0.68]

d2, [0.26, 0.71]

7, 8 
9, 10

[0, 0.64] or [5.42, 6.00] 
[0.52, 1.46] or [4.68, 5.54]

[0.56, 1.42] 
[0, 0.68]

d3, [0.64, 1.00]

11, 12 
13, 14 
15, 16 

[0, 0.64] or [5.42, 6.00] 
[1.32, 2.24] or [3.85, 4.82] 
[1.32, 2.24] or [3.85, 4.82]

[0, 0.68] 
[1.30, 2.18] 
[3.37, 4.00]

d4, [0.92, 1.63]

17, 18 
19, 20 
21, 22 

23

[1.32, 2.24] or [3.85, 4.82] 
[2.12, 2.76] or [3.34, 3.97] 
[2.12, 2.76] or [3.34, 3.97] 

[2.12, 3.97]

[2.06, 3.45] 
[2.06, 2.72] 
[3.37, 4.00] 
[1.30, 2.18]

d5, [1.50, 2.25]

24, 25 
26 
27

[2.12, 2.76] or [3.34, 3.97] 
[2.64, 3.48] 
[2.64, 3.48]

[2.61, 3.45] 
[2.06, 2.72] 
[3.37, 4.00]

d6, [2.11, 2.78]

28 [2.64, 3.48] [2.61, 3.45] d7, [2.65, 3.37]

For the solutions of a direct and a dual problem, the 
compromise “inference accuracy – complexity” is achieved 
by adding/removing output class d5 and input terms c13, c17 
and c23.
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a 

b 

Fig. 1. Results of the structural tuning for solving: a – direct 
problem; b – dual problem; ___– d1;

 
___ – d2; ___ – d3; 

___ – d4; ___ – d5; ___ – d6; ___ – d7

6. Discussion of results of assessing  
the complexity of tuning algorithms for a fuzzy 

classification knowledge base

The proposed method, as well as methods [14, 15], rep-
resents the formalization of improving transformations for an 
expert fuzzy knowledge base. At the same time, controlling 
variables are set, which are the number of input terms, output 
classes and rules. Improving transformations make it possible 

to formalize the process of generation of fuzzy knowledge 
base variants with a subsequent selection by the criteria of 
accuracy and costs or by the complexity of the tuning process.

Assume the number of rules (classes) is limited, and the 
number of input terms is unknown. Then the number of tun-
ing parameters for the fuzzy classification knowledge base 
is 2nZ+2m for two-parameter membership functions [2] or 
upper and lower boundaries of interval rules [8–13]. Assume 
that in addition to the number of output classes and rules, 
the number of input terms is also limited. Then relations 
matrices are implanted into the antecedents of fuzzy rules, 
and the number of tuning parameters of a relational fuzzy 
knowledge base is ZNm 2N 2m+ +  [4, 5].

If the number of rules (classes) is subjected to minimi-
zation, we limit the number of terms of input NT and output 
MT whose linguistic modification provides the required in-
ference accuracy [14–16]. The number of tuning parameters 
of the rules generator based on the matrix of fuzzy relations 
is T T T TN M 2N 2M .+ +  An inverse inference for m output 
terms requires the solution of Z  optimization problems 
with 2n variables for the upper and lower boundaries of the 
intervals [16].

Compared with [2, 4, 5, 8–13, 14–16], the proposed 
method allows us to decrease the number of tuning param-
eters to Nm 2N 2m+ +  for partition matrices and the upper 
and lower boundaries of triangular membership functions. 
The shortcoming of the method is the necessity of obtaining 
linguistic IF-THEN rules, which are associated with a fuzzy 
partition matrix.

7. Conclusions 

1. The models and methods were developed for the op-
timization design of fuzzy classification knowledge bases 
by the criteria “inference accuracy – complexity”. A fuzzy 
relational model, which corresponds to a fuzzy classification 

knowledge base, was proposed. The prob-
lem on the optimization of a fuzzy knowl-
edge base is reduced to the problem on the 
min-max clustering and comes down to 
selecting such partition matrices “inputs –  
output” that provide the required or ex-
treme levels of accuracy and the number 
of rules.

2. The selection of output classes and 
input terms is reduced to the problem on 
discrete optimization of the algorithm reli-
ability indicators, for the solution of which 
we employed the gradient method. This 
resolves a general problem in the meth-
ods of min-max clustering related to the 
selection of the number of output classes 
and minimization of the number of input 
terms without losing inference accuracy. 

The number and location of hyperboxes are determined by 
the relation matrix “input terms – output classes”, and the 
sizes of hyperboxes are defined as a result of tuning of the 
triangular membership functions. Selection of the number 
of input and output terms in partition matrices may be per-
formed both under the offline mode and by adaptive adding/
removing of terms. A transition to the relational fuzzy model 
provides the simplification of the process of knowledge bases 
tuning both for the assigned and unknown output classes.
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Fig. 2. Results of parametric tuning for solving:  
a – direct problem; b – dual problem
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