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3anponornosarno memod onmumizauyii xaacudixayii-
HUX Hewimkux 043 3HAHL 3A KPUMEPIAMU <MOUHICMb —
CKNAOHICMb >, AKUU 0036015€ CNPOCMUMU NPOUEC HANA-
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3adauy onmumizauyii 6a3u snanv 36edeno 0o 3adaxi min-
max xaacmepusauii. Cymov memody y eubopi maxux
Mampuyb po3dumms <«6x00u — uxios, Axi zabesneuy-
1omb HeoOXxi0ni abo excmpemanoii pieni mounocmi euge-
Odenns ma Kitbkocmi npasu
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min-max Kaacmepusauis, Hewimii peasyiuni mooei
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IIpeonorcen memod onmumuszayuu xKaaccuuxayuon-
HbIX HewemKkux 0a3 3HAHUL NO KPUMEPUAM <MOUHOCMb
— CJIOXMCHOCMb>, KOMOPOHL NO0360Jsem Ynpocmums npo-
yecc HacmpouKu nymem nepexooa K pesyuoHHOU mode-
au. 3adawa onmumusayuu 6asvl 3HanUll céedena K saoaue
min-max xaacmepuzayuu. Cymv memooa 6 évibope maxux
Mampuy, pazbuenus «6xo0vl — 6blX00», Konmopvte obecne-
4UBAIOM HEOOX00UMDBLE UNU IKCMPEMATIbHBLE YPOSHU MOY-
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1. Introduction

The tuning of expert fuzzy knowledge bases involves
maximum approximation to experimental data for a given
level of complexity or maximum simplification without los-
ing accuracy of inference [1]. The number of output terms or
classes of output [2] determines the quality of a fuzzy clas-
sification knowledge base. The optimization of such knowl-
edge base implies: a search for the minimum inference error
with the limitation to the complexity of a model (the number
of input terms, output classes, and rules); search for the
minimum of rules (classes) at the assigned level of accuracy.
A transition to the relational model makes it possible to sim-
plify the design process by presenting the rules in the form of
amatrix of fuzzy relations “input terms — output classes” [1].
In this case, a multi-dimensional matrix of relations R(X) is
presented in the form of projections R(x1),..., Ry(xy) [3]. The
number of input and output terms is set in advance, and the
tuning of the model implies selection of the elements of a ma-
trix of relations [4, 5]. However, relational models leave open
the problem on the optimal choice of the number of output
classes. At the same time, the problem on the optimization of
a fuzzy knowledge base is the task of fuzzy clustering [6]. In
addition, it requires a partition of the space of input variables
into such number of classes that provides the required or
extreme levels of inference accuracy and the number of rules.

2. Literature review and problem statement

Methods of relational clustering, which conduct the
partition of objects by similarity measures, are limited
by the assigned number of classes [6, 7]. If the number of
classes is unknown, the methods of min-max clustering are

used, which imply the generation of easily understandable
rules-hyperboxes [8]. Hyperboxes learn using supporting
vector machines (SVM) [9, 10] through extension/com-
pression. Balancing between the inference accuracy and the
number of rules (classes) is achieved by combining /partition
of hyperboxes. To restore nonlinear boundaries between
classes and avoid excessive coverage density, the mode of
learning in the min-max neural networks must reduce the
number of hyperboxes without compromising the recogniz-
ing capacity [11, 12]. There remains a problem in the adap-
tation of maximum size of the hyperbox, which determines
how many rules can be generated. Classes overlapping and
classification errors render this parameter very important. If
the value of this parameter is small, unnecessary hyperboxes
(classes) are formed [13].

A general problem of the min-max clustering methods is
the selection of the number of output classes and the minimi-
zation of the number of input terms without compromising
the inference accuracy. The method for the optimization of
output classes of fuzzy knowledge base was proposed in pa-
pers [14, 15]. In contrast to the heuristic procedures of rules
(classes) selection [8—13], the generation of fuzzy knowledge
bases is reduced to the problem on discrete optimization of
indicators of algorithm reliability [14, 15]. For the selection
of output classes, the gradient method was used. The number
of classes is defined under the offline mode [14]. Clarifica-
tion of class boundaries is carried out by adaptive adding/
removing classes in arrangement vectors [15]. For the cur-
rent output classes, interval rules are generated by solving
the problem on inverse logical inference [2]. This solves the
problem of control and adaptation of the hyperbox size [16].
The structure of the model is determined by parameters of
interval rules that are connected to the coordinates of the
maximum of a membership function.




This paper proposes a method for the optimization of
output classes and input terms of a fuzzy knowledge base.
If the number of terms is set in advance, the problem of
min-max clustering may be solved by relational partition
of the space of input variables [1]. The number and location
of hyperboxes is determined by the matrix of relations [17]
and the sizes of hyperboxes are determined as a result of
adjusting the triangular membership functions [1]. Then the
optimization of a relational fuzzy knowledge base lies in the
selection of such partition matrices “inputs — output”, which
provide the required or extreme levels of inference accuracy
and the number of rules. Following [14, 15], the selection of
number of input and output terms in the partition matrices
may be performed both under the offline mode and by adap-
tive adding/removing of terms.

3. The aim and tasks of the study

The aim of present work is to develop an approach to
the optimization designing of relational fuzzy knowledge
bases by the criteria “inference accuracy — complexity”. This
approach should simplify the process of the knowledge bases
tuning based on fuzzy relations for both the assigned and the
unknown output classes.

To achieve the set goal, the following tasks were to be
solved:

— development of a relational fuzzy model that matches a
fuzzy classification knowledge base;

— development of a method for the optimization of
knowledge base on the basis of fuzzy relations under offline
and online modes.

4. Models and methods for the optimization of knowledge
bases on fuzzy relations

4. 1. Fuzzy relational model

Consider an object of the form y=f(xy,...,x;) with n inputs
X=(x1,..,Xp) and output y, for which the relation “inputs —
output” may be represented in the form of a system of fuzzy
classification IF-THEN rules [2]:

UlNfx =alll>y=d;, j=im, )
peiz i<in
where a” is the fuzzy term for the evaluation of variable x;
in line jp, j=1,m, p= Lz;; djis the fuzzy term for the evalua-
tion of variable y; z; is the number of rules in class dj; m is the
number of terms of the output variable.

Let {c,,..,c, }_be aset of input terms for the evaluation

i

of variable x;, i=1n.
We designate

{Cres O} ={Cy g Cri s Cotreonn G S

where N=k+...+k,,.
Then the system of one-dimensional matrices of fuzzy
relations corresponds to a fuzzy knowledge base (1):

R, cc,xd, =[r,,i=1n1 =1k, j =1m],

that is equivalent to a multi-dimensional matrix:

RcC xd,=[r;,I =1N,]J =1,m].

Given matrices R;, i=1n, dependence “inputs — output”
is described using the extended compositional rule of infer-
ence [1]:

R =p" xR Nnnpt(x,)oR,, (2

where p(x,)=(u,..,u") and pi(y)=(u",...,u")are the
vectors of membership degrees of variables x; and y to terms
cil, i=1,n, and d;, j =1,m, respectively.

From ratio (2), hence follows the system of fuzzy logical
equations, which connects membership functions of fuzzy
input and output terms:

n" (y) = min fmax[min(u® (x5, )1}, j =1m. (3)
Ratio (3) defines a fuzzy model of an object as follows:
y=f(X,;N,m,¥,), %)

where ¥ = (R,EC,EC,HC,Ed,Ed,Hd) is the vector of param-
eters of fuzzy relations, which includes:

BC = (gq 7---y§CN )7 EC = (BCl )"'7BCN )7 HC = (hcl ’-~-7hCN )y
g 7‘11 7dm
B,=(B"...8"), Ba=(B"..p"), H,=(h" .. h"™).

— vectors of lower and upper bounds, as well as vectors of
coordinates of the maximum of triangular membership func-
tions of fuzzy terms C; and d;; f is the operator of connection
“inputs — output”, which corresponds to formula (3).

4. 2. Problems on the optimization of knowledge base
based on fuzzy relations

For a fuzzy knowledge base (1), the interrelation be-
tween the mean root square error and the number of rules
depends on the number and bounds of output classes. Then
the problem on the optimization of a fuzzy knowledge
base (1) is reduced to the problem on the min-max clustering
and lies in selecting such a partition matrix R that provides
the required or extreme levels of inference accuracy and the
number of rules.

Let the training sample be assigned as P pairs of exper-
imental data:

<>A<§> s=1P,

where X_=(%},...%); §. are the vectors of values of input
and output variables in the experiment number s.

Optimization of the number of input terms and output
classes is carried out under the offline mode. In this case, the
preliminary boundaries of d; classes are assigned by an expert.

We shall evaluate the complexity of a fuzzy model (4)
based on the number of rules Z(N, m, R), which are associ-
ated with relation matrix R. We shall assess the quality of a
fuzzy model (4) based on the root mean square error:

E:\/;i[f(f(s,N,m,R)—g’s]

s=1

2

Then the problem of selecting the optimal number of in-
put terms and output classes may be formulated in the direct
and dual statement.

Direct statement. Find such a number of input terms N,
output classes m and fuzzy partition matrix R that provide



the minimum number of rules for a permissible inference
error: Z(N,m,R)— min and E(N,m,R)<E, where E isthe
maximum permissible root mean square error.

Dual statement. Find such a number of input terms N,
output classes m and fuzzy partition matrix R, which pro-
vide minimum inference error for the assigned number of
rules: E(N,m,R)— min and Z(N,m,R)<Z, where Z is the
maximum permissible number of rules.

Optimization of boundaries of output classes is per-
formed under the online mode. In this case, clarification of
the partition method is made by adaptive adding/removing
of terms.

We shall introduce a limitation on the volume of rela-
tions matrix in the following way: k, <k,, m<m, where k,
and m are the maximum number of input terms and output
classes.

Assume:

U=(u,.,ug), V=(Vyey Vi),

are the vectors of arrangement of input terms and output
classes, where u;=1(0) or v;=1(0) correspond to the addition
(removal) of term C; or dj, respectively.

We shall evaluate a complexity of fuzzy model (4) based
on the number of rules Z (U, V, R), which are associated
with relations matrix R. We will assess the quality of fuzzy
model (4) based on root mean square error

E= \/;i[f(XS,U,V,R)—yST.

s=1

Then the problem on the selection of optimum bound-
aries of output classes may be formulated in direct and dual
statement.

Direct statement. Find vectors of arrangement of input
terms U, output classes V and fuzzy partition matrix R, for
which under condition of limitation on the knowledge base
volume Z(U,V,R)— min and E(U,V,R)<E.

Dual statement. Find vectors of arrangement of input
terms U, output classes V and fuzzy partition matrix R, for
which under condition of limitation on the volume of knowl-
edge base E(U,V,R) - min and Z(U,V,R)<Z.

4. 3. Method for the optimization of relational fuzzy
knowledge base

To select the values of controlling variables, the gradient
method is used, which was proposed in [14] for the solution
of problems on discrete optimization of fuzzy knowledge
base. This method implies a coordinate-wise rise along the
surface of objective function in the direction of gradient.
Algorithms for solving the optimization problems have a
unified structure, consisting of two iteration sections [14]. In
the first of them, the first permissible solution by successive
adding of terms with the highest gradients is determined;
in the second, an improvement of the found solution by de-
creasing the complexity of the model is accomplished. For
the current output classes, fuzzy relations are tuned by the
methods proposed in [2].

4. 3. 1. Algorithms of the optimization under offline
mode
Gradients:

Yy(k), i =1,n and y (m),

will be defined as the ratio of infallibility increment AE (k;+1,
¥,) or AE(m+1, ¥,) to the increment in the number of rules
AZ(ki+1, ¥,) or AZ(m+1, ¥,) at increasing the number of
input or output terms in partition matrices:

_AE(k, W) _E(k, ¥)-E(k,+1¥)
CAZ(kY) Z(k L) - Z(k )

Y;(ki)

_AE(m,¥) E(m,¥,)-E(m+1%¥)
AZ(m,¥) Z(m+1,¥.)-Z(m,%F.)

v, (m)

We designate the solution vector, obtained at the tth step
of the optimization algorithm as:

PO = (KO, B,

The algorithm for solving the problem in direct state-
ment is performed in the following sequence:
1. Set the zero-option of a fuzzy model:

=0 WO = (kO m©® g0,
If E(¥©)<E, proceed to step 4.

2. 1f E(P"V)>E, proceed to step 3, otherwise — to step 4.
3. For models

W= (kO +1m©¥) and ¥ = (kOm O +1¥7)

identify gradients y, and y, relative to solution ¥®. Find
the coordinate, for which y=max{y,,y,}, t:=t+1. For vector
YO, assign:

kD =k 41, $O =W, if y=y';

m®© =m" P +1, PO =P, if y=vy..

Proceed to step 2.

4. Decrease the complexity of model ¥® by decreasing
the number of input or output terms at maintaining permis-

sible inference accuracy. Check the conditions for models
W= (ki -1m®¥) and " =(k{’,m® ~1,¥7):

E(¥)<E; ©)

E(¥”)<E. (6)

If conditions (5) and (6) are not fulfilled for any coordi-
nate, consider vector ¥® as the result of solving the problem,
otherwise proceed to step 5.

5. For the coordinates that satisfy conditions (5) and (6),
find the magnitude, by which the number of rules AZ will
decrease. Find the coordinate for which:

A=max{AZ(k"® —1,m"), AZ&K® m® -1)}.

t:=t+1. For vector ¥®, assign:

kV =k —1, ¥ =W, if A=AZ(k,);

m® :=m" -1, O =P if A=AZ(m).

Proceed to step 4.

The algorithm of solving the problem in the dual state-
ment is performed in the following sequence.



1. Set the zero-option of a fuzzy model:

=0, ¥ = (k©,m®, ¥,

If Z(¥”) > Z, proceed to step 4.

2. 1f Z(PM)< Z, proceed to step 3, otherwise — to step 4.

3. The essence of this step coincides with step 3 of the
algorithm for solving the problem in direct statement. Pro-
ceed to step 2.

4. Decrease the complexity of model ¥ for the inclu-
sion in the area of permissible solutions by reducing the num-
ber of input or output terms. Check the conditions for models

W= (kO —1,m®,¥) and ¥”=(k®,m®-1,¥")
Z(¥)<Z; (7)
Z(Y")<Z. (8)

If at least one of the conditions (7) or (8) is fulfilled,
then, among permissible solutions, select a model that pro-
vides a lower inference error, otherwise proceed to step 5.

5. For the coordinates that do not satisfy limitations (7)
and (8), find the increment in deriving error AE. Find the
coordinate, for which

A=min{AE(k"” —1,m®), AE(k",m® -1)}.

t:=t+1. For vector ¥, assign:

k® =k -1, O =9, if A=AE(k,);

m®=m" -1, PO =¥, if A=AE(m).

Proceed to step 4.

4. 3. 2. Algorithms of optimization under the online
mode

Gradients

Yi), T=1N and y)(v)), J =tm,
will be defined as the ratio of infallibility increment AE (u;=1,
¥,) or AE(vj=1, ¥,) to the increment in the number of rules

AZ(ui=1, ¥,) or AZ(vj=1, ¥,) as a result of adding the input
or output term Cy or dj:

AE(u,¥,) E(u,=0¥)-E(u,=1¥)
AZ(u,¥.) Z(u,=1,¥)-Z(u,=0,%)’

Yi(ul)z

AE(v,'¥,) E(v,=0¥)-E(v,=1¥,)
AZ(V, W) Z(v,=L¥)~Z(v,=0¥)

’YSI(VJ):

Designate the solution vector, obtained at the t-th step
of the optimization algorithm as ¥ = (U, V", ¥"), The
algorithm of solving the problem in direct statement is per-
formed in the following sequence.

1. Assign the zero-option of a fuzzy model:

=0, ¥O = (U, VO, ¥©),

If E(P®)<E, proceed to step 4.
2.1f E(¥")>E, proceed to step 3, otherwise — to step 4.

3. For the models where u{”=0 and v{’=0, add an
input or output term as follows:

Y= (u’ +1, VO or ¥/=(UY v +1,P)).

Determine gradients y.(u,) and Yy T(v ;) relative to solu-
tion ¥Y®. Find the term, for which = max{yx,y‘ }, where:

Ty(u”)= HllaX{YIx},

7y (Vi) = max{y;).

t:=t+1. For vector ¥, assign:
uV=1, PO =9 if y=v.;

vig =1, W=, if Y=y}

Proceed to step 2.

4. Improve model ¥® by attaining the required level
of inference accuracy with fewer terms. For the models for
which u” =1 and v{” =1, decrease the complexity by re-
ducing the number of terms in the following way:

W= (0 -1, VO, W= (U, -1, %),

For the inputs and outputs, find such sets of terms Q"
and Q, for which the conditions are fulfilled:

EC¥)<E; ©)
E(¥))<E. (10)
If QV and Q" are empty sets, consider vector ¥®
as the result of solving the problem, otherwise proceed to
step 5.
5. For terms C,;eQ and d, eQ!”, which satisfy con-

ditions (9) and (10) find the magmtude by which the num-
ber of rules AZ decreased. Find the term, for which

AZ=max{AZ},AZ)'},

where
AZE ()= m?X{AZ(u%l)—D};
AZY (V)= maX{AZ(V“) 1}
t:=t+1. For vector ¥, assign:
uV=0, YO =, if AZ=AZL;

=W if AZ= AZ“

M

(t) — 0 \{l(t)

Proceed to step 4.

The algorithm of solving the problem in the dual state-
ment is performed in the following sequence.

1. Set the zero-option of a fuzzy model:

=0, ¥ = (U, VO ¥©),

If Z(¥®)>Z, proceed to step 4.
2.1f Z(P©V) < Z, proceed to step 3, otherwise — to step 4.



3. The essence of this step coincides with step 3 of the
algorithm for solving the problem in direct statement. Pro-
ceed to step 2.

4. Decrease the complexity of model ¥® for the inclusion
in the area of permissible solutions. For models, in which

® _

{’=1, decrease the number of terms in the

u?=1 and v
following way:

Y= (u” — 1, VO P W= (U0, v 190,

For the inputs and outputs, find such sets of terms Q"
and vat), for which the conditions are satisfied:

Z(¥)>Z; (11)
Z(¥)> 1. (12)

If at least one of conditions (11) or (12) is not met, then
choose among permissible solutions a model that provides a
lower inference error, otherwise proceed to step 5.

5. For terms C;eQ% and d;eQ{’, which satisfy con-
ditions (11) and (12), find the magnitude, by which the infer-
ence error AE increases. Find the term, for which

AE =min{AEL, AE)'},
where

AE; (u;”) = min{AE(uf” - D};

AE} (v{)= mjin{AE(Vﬁt) -1}

t:=t+1. For vector ¥, assign:

u” =0, ¥V =¥/, if AE=AEL;

vV =0, WO =W, if AE=AE).

Proceed to step 4.

5. Results of computer experiment

For the model-standard [15, 16], the number of terms is
limited as follows:

The task implied the transformation of the expert zero-
option of a knowledge base to the variant, which provides:
Z—min and E<0.5 in the direct statement; E—min and
7.<30 in the dual statement.

Results of the calculation of optimization problems are
listed in Table 1, where each iteration represents the results
of designing model ¥® for the current number of terms k,
and m® with further arrangement of terms in vectors U®
and VO,

The first acceptable solution of the direct problem is
obtained at step 4 by successive adding of terms with the
highest gradients:

— term cyy4 at step 2 since:

0.6712-0.6104

=0.0152,
16-12

Y (Vy)=

0.6712-0.6380

=0.0166,
14-12

1
Yoy, u) =

0.6712-0.5968
15-12

— terms cy9 and c¢yg at step 3 since:
_ 0.5968-0.5575

Y2 (u,,)= =0.0248;

=0.0098,
=" s
0.5968-0.5310
ViU ) = = — == 0.0329,
9 0.5968 —0.5632
=————=0.0112
Vit 18-15
— class dj at step 4 since:
0.5310-0.4873
=——F=0.0109,
V() 21-17
. 0.5310-0.5250
) =————=0.0015,
Vi (Uy5,u;7) 21-17
V()= 22310205101 g 5070

20-17

Table 1

Calculation of optimization problems

t {ky|ko|m| uyq,.., ujg | uoy,.., toy Viyeury V7 Z E

1(5]4|5(100111001 | 1100110 1101011 12 | 0.6712
215(5|5[100111001 | 1101110 1101011 | 15 | 0.5968
3(7(15|5|110111011 | 1101110 1101011 17 | 0.5310
41715]6|110111011 | 1101110 1111011 | 21 | 0.4873
5(5(5]6|100111001 | 1101110 1111011 19 | 0.5575
6(7(6]6|110111011 | 1111110 1111011 | 22 | 0.4625
717(6|7(110111011 | 1111110 1111111 | 24 | 0.4318
8(19(6|7 | 111111111 | 1111110 1111111 | 28 | 0.3514
919 (7|7 111111111 | 1111111 1111111 | 31 | 0.3007
1017 |77 ]110111011 | 1111111 1111111 | 27 | 0.3819

Model ¥ remains the solution of the direct problem.
Decreasing the complexity leads to model ¥® leaving the
region of permissible solutions. Further increase in the num-
ber of terms in model ¥ provides decreasing the inference
error by AE=0.0248 with increasing the number of rules by
AZ=1.

Solution of the dual problem was continued by adding
terms with the highest gradients:

— term cy3 at step 6 since:

_ 0.4873-0.4509

=0.0182,
23-21

Y, (Vs)

0.4873-0.4716

Y (ug,u,,) = 93 01 =0.0079,
) 0.4873-0.4625
gy )= ——— 2 =0.0248;
Yo (uy) 29-91
— class d5 at step 7 since:
1= 0.4625-0.4318 _ 0.0153,

24-22



0.4625-0.4437
ViU u,) =——— = =0.0047, Table 4
26-22 IF-THEN rules for a direct problem
4625-0.4
Yi(uw):m:&omg; IF THEN
25-22 Rule
— terms c¢y3 and ¢q7 at step 8 since: X4 X y
Y (uu,) = 2A318=03514 ) o0 1,2 {[0.61, 208 or [390, 5.45{ [060.4.00] |y (oo oo
28-24 3 [1.75, 4.12] [0.60,1.97] | "0 1TH4
Y2 (u, )=W= 0.0166. 45 | [0,0.86]or [5.17,6.00] | [1.68,4.00]
x(U 27 9 dy, [0.32,0.80]
7-24 6 [1.75,4.12] [0, 0.87] ' '
Model ¥® remains the solution of the dual problem.
Further increase in the number of terms leads to model ¥ 78| 10 0.861or (317, 6.00] 1[0.60, 197] ds, [0.73, 1.25]
9,10 |[0.61,2.03] or [3.90, 5.45]| [0, 0.87]
leaving the region of permissible solutions, and decreasing the
complexity of model ¥19 — to increasing the inference error 11,12 | [0,086] or [5.17.6.00] | [0,087]
by AE=0.0305 at decreasing the number of rules by AZ=1. 131 14 [1_7’5, 2.79] or [3_3’0, 4.12] [1.678, 2701 | dy, [1.10, 1.97]
Matrices of fuzzy relations in the solutions of direct and 15,16 | [1.75, 2.72] or [3.30, 4.12] | [3.32, 4.00]
dual tasks (Tables 2, 3) are associated with fuzzy rule bases,
presented in Tables 4, 5. Results of structural and parametric 17,18 | [1.75, 2.72] or [3.30, 4.12] | [2.56, 3.50]
tuning of models ¥ and ¥ are shown in Fig. 1, 2. 19| (254,345 | [168,270] | dg [185,2.59]
20 [2.54, 3.45] [3.32, 4.00]
Table 2
Matrix of fUZZy relations for a direct problem 21 [254 345] [256 350] d7 [241 320]
I THEN y
dy dy ds dy ds dy Table 5
ciy 0 0.65 | 072 | 092 0 0 IF-THEN rules for a dual problem
Ciy 0.74 0 0.65 0 0 0
Ci4 0.50 0.84 0 0.69 0.57 0 IF THEN
X1 Ci5 0.72 0.96 0 0 0.92 1.00 Rule
Ci6 0.53 0.82 0 0.70 0.57 0 X1 X9 y
cig 0.77 0 0.63 0 0 0
Cro 0 | 067 | 07t | 095 | o 0 1,2 |[052 1.46] or [4.68, 5541 [0.56, 400] | | 10 (a4
cot 0 0.82 | 071 | 091 0 0 3 [1.32,4.82] [0.56, 1.42] | "0 1T
C99 0.74 0 0.73 0 0 0
Xo | ey | 075 | 063 | 0 | 063 | 094 [ 0 45 | 10,0641 or [5.42,6.00] | [1.30, 400] | ' g 7¢
s | 064 | 052 | 0 0 [ 087 [ 100 6 [1.32,4.82] 10, 0.68]
Cog 0.50 0.61 0 0.61 0.92 0
7,8 | [0,0.64] or [5.42, 6.00] |[0.56, 1.42]
Table 3 9,10 [[0.52, 1.46] or [4.68,5.54]| [0,0.68] | 9> [0-64 1.00]
Matrix of fuzzy relations for a dual problem
11,12 | [0,0.64] or [5.42,6.00] | [0,0.68]
IF THENy 13,14 [[1.32, 2.24] or [3.85, 4.82] | [1.30, 2.18] | dy, [0.92, 1.63]
de [ dy [ ds | ds [ ds [ ds | 15,16 [[1.32, 2.24] or [3.85, 4.82] | [3.37, 4.00]
Ciy 0 0.76 | 0.82 | 0.95 0 0 0
cr | 082] 0 |065] 0 | 0 | 0 | o0 17,18 |[1.32, 2.24] or [3.85, 4.82] | [2.06, 3.45]
21,22 |[2.12,2.76] or [3.34, 3.97] | [3.37, 4.00] | ¢ 1120 =
C4 0.52 | 0.64 0 0 0.83 | 0.92 0 23 (2,12, 3.97] [1.30, 2.18]
X1 ci5 | 0.64 | 0.64 0 0 0.71 | 0.86 | 1.00 ' '
c6 [050 10631 0 | 0 |085]109] 0 24,95 [[2.12,2.76] or [3.34, 3.97] | [2.61, 3.45]
¢7 [ 0521070 | 0 ]070 070 | 0 0 26 [2.64, 3.48] [2.06,2.72] | dg, [2.11, 2.78]
cig 0.81 0 0.64 0 0 0 0 27 [2.64, 3.48] [3.37, 4.00]
Cig 0 0.75 | 0.83 | 0.94 0 0 0
Coq 0 0.82 | 0.71 | 0.93 0 0 0 28 [2.64, 3.48] [2.61,3.45] | d7,[2.65,3.37]
cyp | 0.78 0 0.72 0 0 0 0
0.77 | 0.80 0 0.70 | 0.86 0 0
Xy = For the solutions of a direct and a dual problem, the
cy | 073 | 0.64 0 0 0.83 | 0.76 0 ise “inf lexity” i hieved
=1 o o To77 Toss | 100 compromise “inference accuracy — complexity” is achieve
¢ | 061 ] 0. : : : by adding/removing output class dsand input terms cy3, ci7
e | 050 [080 [ 0 [o70[070[070] 0 | ide,
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Fig. 2. Results of parametric tuning for solving:

a — direct problem; b — dual problem

6. Discussion of results of assessing
the complexity of tuning algorithms for a fuzzy
classification knowledge base

The proposed method, as well as methods [14, 15], rep-
resents the formalization of improving transformations for an
expert fuzzy knowledge base. At the same time, controlling
variables are set, which are the number of input terms, output
classes and rules. Improving transformations make it possible

to formalize the process of generation of fuzzy knowledge
base variants with a subsequent selection by the criteria of
accuracy and costs or by the complexity of the tuning process.

Assume the number of rules (classes) is limited, and the
number of input terms is unknown. Then the number of tun-
ing parameters for the fuzzy classification knowledge base
is 2nZ+2m for two-parameter membership functions [2] or
upper and lower boundaries of interval rules [8—13]. Assume
that in addition to the number of output classes and rules,
the number of input terms is also limited. Then relations
matrices are implanted into the antecedents of fuzzy rules,
and the number of tuning parameters of a relational fuzzy
knowledge base is ZNm+2N+2m [4, 5].

If the number of rules (classes) is subjected to minimi-
zation, we limit the number of terms of input Nt and output
M+ whose linguistic modification provides the required in-
ference accuracy [14—16]. The number of tuning parameters
of the rules generator based on the matrix of fuzzy relations
is N:M;+2N,+2M,. An inverse inference for m output
terms requires the solution of Z optimization problems
with 2n variables for the upper and lower boundaries of the
intervals [16].

Compared with [2, 4, 5, 8-13, 14—16], the proposed
method allows us to decrease the number of tuning param-
eters to Nm+2N+2m for partition matrices and the upper
and lower boundaries of triangular membership functions.
The shortcoming of the method is the necessity of obtaining
linguistic IF-THEN rules, which are associated with a fuzzy
partition matrix.

7. Conclusions

1. The models and methods were developed for the op-
timization design of fuzzy classification knowledge bases
by the criteria “inference accuracy — complexity”. A fuzzy
relational model, which corresponds to a fuzzy classification
knowledge base, was proposed. The prob-
lem on the optimization of a fuzzy knowl-
edge base is reduced to the problem on the
min-max clustering and comes down to
selecting such partition matrices “inputs —
output” that provide the required or ex-
treme levels of accuracy and the number
of rules.

2. The selection of output classes and
input terms is reduced to the problem on
discrete optimization of the algorithm reli-
ability indicators, for the solution of which
we employed the gradient method. This
resolves a general problem in the meth-
ods of min-max clustering related to the
selection of the number of output classes
and minimization of the number of input
terms without losing inference accuracy.
The number and location of hyperboxes are determined by
the relation matrix “input terms — output classes”, and the
sizes of hyperboxes are defined as a result of tuning of the
triangular membership functions. Selection of the number
of input and output terms in partition matrices may be per-
formed both under the offline mode and by adaptive adding/
removing of terms. A transition to the relational fuzzy model
provides the simplification of the process of knowledge bases
tuning both for the assigned and unknown output classes.
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