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cmawn i cman 6uzuny 0J1s1 MPAHCEEPCATLHO-I30MPONHUX
naacmun. Ilpoananizoeano Qynoamenmanvhi po3e’sas-
KU PIBHAHb CMAMUKU MPAHCEEPCATbHO-I30MPONHUX
naacmun, wo nodyodoeani na 6asi ysazanvienoi meopii
{m,n}-annpoxcimauii 0na piznux nabaudicens

Kmouosi crosea: {m,n}-annpoxcimauisn, cunosa ois,
PIBHAHHA CMaAmMuKu, MpanceepcatbHO-i30mponHa niac-
muna, noninomu Jlexcanopa
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Paccmompenvt 3a0auu cmamuxu mpanceepcanisbHo-
U3OMPONHBIX NAACMUH, KOMOPbIE HAXO0AMCS NOO
deticmeuem cocpedomouennou cunvt. Ilposeden ananus
PynoamenmanvHoIx peuwenuil, NOAYUEHHLIX C UCNOJIb-
3068anuem paznuinvix npubausicennvix meopuii. C nomo-
W10 PACCMOMPEHHBIX MEOPULL mMpexmepHas 3adaua meo-
puu ynpyeocmu ceedena k¥ dsymepnou. Paccmompenni
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naacmun, nocmpoennvie Ha 6aze 0000wWENNOU Mmeopuu
{m,n}-annpoxcumayuu 0as pasnvix nPUOIUNCEHUN
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The thin-walled elements of structures (plates and shells)
are the basic bearing elements of many contemporary de-
signs and articles (vessels, aircraft, pipelines, cisterns, etc.).
The action of the concentrated or local force influence on a
thin-walled element causes dangerous stress concentration,
which can lead to the destruction of the structure. That
is why examining the stressed state of plates and shells,
exposed to considerable force influences, has been, and re-
mains, a theoretically and practically relevant task.

Until recently, the strength calculations of the thin-
walled elements of structures have mostly employed the
classical theory, based on the hypothesis about undeformable
normal elements. In recent years, new composite materials
have been utilized in engineering intensively in order to
create protective coatings on the friction surfaces, as well as
to fabricate different parts of equipment. Such materials typ-
ically possess low shear rigidity, which is why the hypotheses
of Kirchhoff theory do not hold for them and the classical
theory yields significant error in the calculations.

The use of contemporary composite materials leads to the
need of constructing the refined theories of plates and shells,
which consider phenomena that are connected to transverse

dislocations and compression. However, solving the problems
on the theory of elasticity based on the refined theories in a
three-dimensional setting is linked with considerable mathe-
matical difficulties. That is why an issue about constructing the
refined theories is closely connected to the problem of bringing
three-dimensional tasks to the two-dimensional ones.

Thus, examining the SSS of plates under the action of
concentrated force influences based on the refined theories
is an important and relevant scientific and technical task.

2. Literature review and problem statement

The analytical solution of the axisymmetrical mixed
problem for the isotropic half-space with the surface, elas-
tically fixed beyond the circular region of the application
of distributed load, is given in article [1]. When solving the
given problem, the procedure of transition from the distrib-
uted load to the concentrated force was substantiated. They
obtained the compact form of precise analytical solution of
the problem on the concentrated force, applied to a half-
space with elastic surface.

Paper [2] explores the problem on the bend of a rectan-
gular plate with rotationally fixed edges under the action of




concentrated force. The focus is on determining the angular
forces and deflections.

The problem on the concentrated force that acts in the
inner part of an infinite plate is solved in article [3]. This
publication examines an isotropic plate of arbitrary thick-
ness, in which the moduli of elasticity are any assigned
functions. Solution of the problem presented is based on
the classical solution for the concentrated force in a thin
elastic plate.

Paper [4] addresses the displacement of a shallow
spherical thin shell under the action of concentrated load.
Deflections under the point of the application of concen-
trated loads on the spherical thin shells are calculated.
This work also analyzes and compares the methods, which
make it possible to obtain the refining calculations of shell
deflections.

The influence of surface stresses on the stressed-strained
state of elastic shell in is investigated in article [5]. In this
study, the surface stresses are represented in the form of a
static load, localized in the ultrathin layers of shell near its
surface. The three-dimensional equations of elasticity are
analyzed by the asymptotic method with the use of several
asymptotic parameters.

Paper [6] presents results of analysis of a flexible plate of
different thickness in accordance with the Kirchhoff model,
the model of first order shift and the three-dimensional elas-
tic model. Numerical algorithms of the method of difference
energy and the method of finite elements are used to solve
the problem. Solution of the contact problem and compara-
tive evaluation of the obtained results are given.

An analysis of the publications over recent time allows
us to conclude that the refined theory of the {m,n}-approxi-
mation has not been commonly applied to study the SSS of
plates and shells, which are exposed to the action of concen-
trated force.

This is linked to the fact that the solutions of prob-
lems on the concentrated influence, employing the theory
of {m,n}-approximation, is connected with the larger
mathematical difficulties than the solution of analogous
problems based on classical theory. The mathematical ap-
paratus, which is based on the application of a specialized
G-function [7], makes it possible to overcome the indicat-
ed difficulties.

Among the publications, which apply a generalized
theory of the {m,n}-approximation and the procedure of
mapping, built with the help of specialized G-function,
those articles should be noted that deal with the con-
struction of fundamental solutions of the equations of
statics for the transversal-isotropic plates based on the
{1,0}-approximation for the state of bending [8] and based
on the {1,2}-approximation for the zero spin stressed state
and the state of bending [9, 10]. Worth noting are also the
publications, in which authors obtained fundamental solu-
tions of differential equations on thermoelasticity of the
{1,0}- and {1,2}-approximation for the transversal-isotropic
plates [11, 12].

3. The aim and tasks of the study

The aim of present study is the analysis of fundamental
solutions of the equations of statics of the transversal-iso-
tropic plates, built on the basis of a generalized theory of

the {m,n}-approximation for different approximations. This
will make it possible to conduct strength calculations of the
thin-walled elements of structures that contain dangerous
stress concentrators in the form of concentrated and local
force impacts.

To achieve the aim, the following tasks were set:

— to analyze the methods for reducing the three-dimen-
sional problems of the theory of elasticity for plates to the
two-dimensional ones;

—to compare fundamental solutions, obtained on the
basis of the {1,0}- and {1,2}-approximation.

4. Materials and the methods for examining
the decrease in order of the three-dimensional problems
on the theory of elasticity

4. 1. System of equations of the theory of elasticity for
transversal-isotropic bodies

The system of equations of the theory of elasticity for the
transversal-isotropic bodies includes:

1) the Cauchy ratios [13]
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2) Hooke’s law for the transversal-isotropic bodies [14]
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where E, E’ are the Young moduli for the directions in the
planes of isotropy and perpendicular to it; v, v/, G, G" are
the Poisson coefficients and the shear moduli, which corre-
spond to these directions;

3) the equations of equilibrium [14]
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where F= (FX,Fy,FZ) is the volume force vector.



4. 2. Description of methods for reducing the three-di-
mensional problems of the theory of elasticity for plates
to the two-dimensional ones

Precise solution of the problems of the theory of elastici-
ty for plates in a three-dimensional setting is associated with
significant mathematical difficulties, in order to overcome
which, the methods of approximation are employed. The
method of decreasing the quantity of independent variables
is one of them. In this case, a transition from the three-di-
mensional problems to the two-dimensional ones is accom-
plished in different ways.

The first group includes the approaches based on the
acceptance of various hypotheses. The most popular are the
hypotheses of classical Kirchhoff theory for plates. The same
group includes an S. P. Timoshenko model, proposed in 1916
for the problems on the dynamics of rods.

Another technique for the reduction of three-dimen-
sional equations to the two-dimensional ones consists in
the expansion of the desired functions into exponential or
functional series along the normal z coordinate and in the
retention of specified sections of these series depending on
the required accuracy and character of the problem. This
approach is used, in particular, by the refined theory of the
{m,n}- approximation [14]. Within the framework of the
given theory, when deriving the two-dimensional equations,
they employ the method of expansion of the desired and as-
signed functions of three-dimensional equations (1), (2) into
the Fourier series by the Legendre polynomials P, =P, (z/h).
Moreover, in the theory of {m,n}-approximation, m charac-
terizes a quantity of retained members of the Fourier series
for the components of SSS in the xOy plane; n is the num-
ber of retained terms of series for the desired and assigned
functions in the direction of the Oz axis. In particular, the
representations of components of the strain tensor within
the {m,n}-approximation take the form [14]
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where P, =P, (z/h) are the Legendre polynomials.

4. 3. Fundamental relationships and mathematical
statement of the problem

We consider a transversal-isotropic plate of thickness 2h
in the rectangular Cartesian coordinate system X, y, z
Concentrated force F¢, applied at the origin of coordinates
(singular point), acts on the plate.

In the case of {1,0}-approximation, the components of
displacement vector and stress tensor are represented as:

u, =uP,+hy P; u, =vP, +hny1; u, =w,Py; 3)
N 3M
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where u, v, w, are the analogs of displacements of the points
of median surface of the plate; v,, v, are the analogs of the
rotation angles of the normal; N, N, S are the analogs of mem-
brane forces; M, M,, H are the analogs of the bending moment
and the torque; Q, Q, are the analogs of transverse forces.

Components of the volume force vector are represented
as [14]
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The equations of statics in the case of {1,0}-approxi-
mation for the transversal-isotropic plates, recorded in the
dimensionless coordinate system (x,=x/h, x,=x/h, x,=x/h),
contain [14]
— equations of Hooke’s law:
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E/G’ is the shear compliance parameter;
— equation of equilibrium
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Let us note that the system of equations, which de-
scribes the zero spin stressed state in the case of {1,0}-
approximation (first three equations (5), first two equa-
tions (6)), is similar to the system of equations, which
describes the flat stressed state of isotropic plates within
the framework of classical theory.

Within the framework of the {1,2}-approximation, the
representation of components of displacement vector u,, u,,
of stress tensor o,, 0, T,, and the components of volume force
vector F, F, takes the same form as in the case of {1,0}-ap-
proxnnatlon (formulas (3), (4)), while the remaining compo-
nents are determined as [14]:

u, =w,PBy+w,P +w,P,;
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where 8(x,,x, ) is the two-dimensional Dirac’s delta function.

5. Results of examining the fundamental solutions,
built with the use of refined theories
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2 of theory of the {m,n}-approximation. The fundamental solution
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G,,(z) is the specialized G-function [7];
— for the {1,2}-approximation
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42,0
+m,

°<1>19(X1,X2,a1)+

1
140, Q,
+1m, A
1

o, 14A,Q
+q4[af+A00}q)21(X2yX1)};

‘o, (Xz’ a1)_ 14(12(1)18 (XQ’X1)+

1

ISOARE . B
Ro== 2(‘)rr,A0 |:q1q)7(X1’X2)+q2q)7(xzvx1)_%)LIO\,CDg(X1,X2):|§
oo

Aal
14% Q

(X1 XQ) m (1)18 (X1 XQ) m;®18(x27xl)}7

17(X1rX2)+

, BQr
a2 =200, a2

196D,Q , 2A
0= o 4= 0D, by = .
AN}

9AA, ' Dy(1-v)

)

, 1
A=B,+ 7"(2)90; A =D,+ 57"(2)90;

3 x,(x? -3x]
(1)1(X1,X2) = Z—SGM (aolr)+1(12r42)GL2 (aor);
x, (3x? -x2
D, (X1 ) Xz) = %Gm (aor) + WG1,2 (aor);
3 x,(x2 =3x}
o, (X1,X2) = _§X1G1,0 (aor)—1(18r22)Gl1 (aor);
1 x, (3% —x}
D, (X1’X2) = _§X2G1,() (aor) - l(&iQZ)Gu (aor);
1 x> x>
CIDS(X1,X2):E GO.O(aOlr)+r72GL1 (aor) ;

x, (X2 —x} 2
@, (vaz) = _2(211"42); @, (X17X2)= %Gm (aor);

Dy (x,,x,)= %GM (agr); @y (x,,%,)=Gy,(a,r);
cD10(x1,x2)=X1(X;;3X§);

@, (x0%,) = ~2%.G & r)_><1(xgr_23xg)% (ayr);
D, (x,x,)= —1sz10 (a, r)—XZ(?);EZ_X;)GM(aJ);
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3 x, (x*=3x?
¢14(X1,X2,c)=2—§G01(cr)+ 1( 12r4 Z)GLZ(CI'),
X, (3x% —x2
D, (x,X,,C) = r22G0’1(Cr)+ 2( 2;4 2)GLZ(cr),
1
D4 (x,,x,)= 2azln%—
1
1 2_ 2
FGo,O(aJ) ! G, (ar);

XX,

D,, (vaz): - Gy (a1r);

D, (X1,X2) = —%Gw (a1r).

Graphs of internal force factors (10), (11) (Fig. 1-8) are
constructed along the X-axis in the dimensionless Carte-
sian coordinate system Xx,, x,, determined with accuracy to
the half-thickness of plate h. Fig. 1-3 show the generalized
membrane forces for a flat problem. Fig. 4—6 show general-
ized bending and twisting moments; Fig. 7-8 — generalized
transverse forces for the state of bending.

N g b2 3 456

20.2]
0,4
-0,6]
0.8

-11
1,21

-1.41

-1,64

Fig. 1. Generalized membrane effort N,:
curve of green color — generalized effort, obtained
within the framework of {1,0}-approximation;
curve of red color — within the framework of
{1,2}-approximation

When conducting the numerical studies, components of
the expansion of volume force vector were determined from

formulas (9), in which

m;=m,=q;=q,=q;=q, =q; =1.

The computations are performed for the following values
of elastic constants of the transversal-isotropic material:

E' =5 v=0,3; v'=0,07; E/G’ =40.
N,
03]

0,254

0,24

0,154

0,1

1 2 3 4 5 6
X
Fig. 2. Generalized membrane effort N,: curve of green
color — generalized effort, obtained within the framework
of {1,0}-approximation; curve of red color — within the
framework of {1,2}-approximation

-0,05

-0,1

-0,154

-0.2+

-0.34

i 2 3 i 3 6
X
Fig. 3. Generalized membrane effort S: curve of green
color — generalized effort, obtained within the framework
of {1,0}-approximation; curve of red color — within the
framework of {1,2}-approximation

3
Mg L 2 374 5 6

021

-1.2]

Fig. 4. Generalized bending moment M,: curve of green
color — generalized moment, obtained within the framework
of {1,0}-approximation; curve of red color — within the
framework of {1,2}-approximation




Fig. 5. Generalized bending moment M,: curve of green
color — generalized moment, obtained within the framework
of {1,0}-approximation; curve of red color — within the
framework of {1,2}-approximation

H

-0,05
-0,11
-0,15
-0.24
025

-0.37

1 2 gt 5 6
Fig. 6. Generalized torque H: curve of green
color — generalized moment, obtained within the framework
of {1,0}-approximation; curve of red color — within the
framework of {1,2}-approximation

Q

-0.24

0,4

0.6

-0.84

1 2 x4 5 6
Fig. 7. Generalized transverse forces Q;: curve of green
color — generalized transverse force, obtained within the
framework of {1,0}-approximation (i=1); curve of red
color — within the framework of {1,2}-approximation (i=10)

We carried out numerical calculations, which make it
possible to compare the fundamental solutions (10), (11),
built on the basis of generalized theory in the variants of
{1,0}- and {1,2}-approximation, respectively. These studies

allowed us to estimate the refinement, introduced by the
use of equations of the {1,2}-approximation for transver-
sal-isotropic plates, exposed to the action of concentrat-
ed force, instead of applying the analogous equations of
{1,0}-approximation.

Q

0,031
0,025

0,02
0.015

0,01

0.005-

0 i T = —
X4
Fig. 8. Generalized transverse forces Q;: curve of green
color — generalized transverse force, obtained within the
framework of {1,0}-approximation (j=2); curve of red
color — within the framework of {1,2}-approximation (j=20)

6. Discussion of results, obtained with the help of
approximated theories

We built fundamental solutions of equations of the
theory of elasticity on the basis of refined theory of the
{m,n}-approximation. The selected theory is the most ac-
ceptable for reducing the three-dimensional equations to the
two-dimensional ones since it is not based on any hypothe-
ses, but employs the method of I. N. Vekua for the expansion
of desired functions into the Fourier series by the Legendre
polynomials [14]. This approach makes it possible to examine
not only the thin plates, but also the plates of medium and
large thickness. In this case, the accuracy of the obtained
solutions depends on the number of retained summands in
the expansions of the assigned and desired functions. In
addition, this theory makes it possible to consider transverse
shearing and normal stresses.

The numerical studies conducted have demonstrated that
the inner force factors of the zero spin stressed state and the
state of bending, obtained with the use of equations of both
the {1,0}- and {1,2}-approximation, have identical character,
and their numerical values differ insignificantly. This research
confirms that the generalized theory in the variant of {1,0}-ap-
proximation makes it possible to ensure sufficiently high ac-
curacy of the approximation of a three-dimensional problem of
the theory of elasticity to the two-dimensional one.

7. Conclusions

1. We examined the methods of reducing the three-di-
mensional problems of the theory of elasticity for plates to
the two-dimensional ones. An analysis of the approaches to
decreasing the quantity of independent variables allowed us
to conclude that when calculating the thin-wall elements of
structures, made of contemporary composite materials, it
is necessary to use the refined theories of plates and shells



for the concentrated force influences. These theories make
it possible to evaluate the phenomena, connected to taking
account of transverse shifts and compression. Since the
classical theory of Kirchhoff-Love does not consider these
phenomena, then this theory yields significant error during
calculations. The refined theories also make it possible to ex-
amine not only the thin plates, but also the plates of medium
and large thickness.

2. We analyzed the fundamental solutions of the equa-
tions of statics, obtained on the basis of generalized theory in
the variants of {1,0}- and {1,2}-approximation for the purpose
of determining the refinement, which is introduced by the
retention of a large number of terms in the expansion series
of the desired functions. The numerical studies are con-

ducted, which confirmed that the expansion of the desired
functions into series by the Legendre polynomials from the
thickness coordinate and the retention of particular sections
of these series makes it possible to obtain a solution of the
problem with required accuracy. The order of the resolving
system of equations depends on the selection of approxima-
tion and at large m and n it can be sufficiently high. The
use in practice of such equations is connected with the con-
siderable mathematical complexities. That is why, depending
on the specific character of the examined problems, one
selects such approximation so that the resolving equations
would take the simpler form and, at the same time, would
reflect the specific character of mechanical behavior of plate
with a sufficient degree of accuracy.
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