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1. Introduction

For balancing of high-speed rotors in motion, in the 
process of exploitation, passive auto-balancers are ap-
plied [1, 2].

For application of passive auto-balancers, it is necessary 
to know whether it is principality possible and on what rota-
tion speeds to balance by them in motion the rigid or flexible 
rotor installed on the certain supports. Analytically the 
problems of determining the conditions for the occurrence 
of auto-balancing are solved for the concrete type auto-bal-
ancers [1, 3–10]. Therefore, the received results have special 
case character.

The solution of similar tasks becomes considerably com-
plicated in cases of rotor balancing by: 

– multi-corrective weight auto-balancers;
– multi-row ball or roller balancers; 
– several auto-balancers in several correction planes, etc. 
These difficulties make it possible to overcome the em-

pirical criteria [2, 11, 12]. The conditions for the occurrence 
of auto-balancing received with their application are applica-
ble for any type auto-balancers.

2. Literature review and problem statement

The conditions for the occurrence of auto-balancing at 
static balancing of a two-support rotor by one auto-balancer 
were found in the cases:

– isotropic supports and two-ball balancer [3];
– anisotropic supports and two-ball balancer [4];
– isotropic supports and multi-ball balancer [5].
The conditions for the occurrence of auto-balancing 

at dynamic balancing of a two-support rotor by two auto- 
balancers were found in the cases:

– isotropic supports and two-ball balancers which mass 
is much less than the mass of the rotor [6];

– isotropic supports and two-ball balancers [7];
– anisotropic supports and two-ball balancers [8];
– the rotor installed in the massive case withheld by elas-

tic supports, and multi-ball balancers with identical balls [9];
– the flexible rotor on isotropic supports and multi-ball 

balancers with identical balls [10].
The conditions were received by research of the stability of 

the so-called basic motions. These are steady-state motions of a 
rotor-auto-balancer system on which an auto-balancing occurs.
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The search for conditions for the occurrence of auto-bal-
ancing by allocation of the steady-state motions of the 
rotor-auto-balancer system and research of their stability is 
a complex and cumbersome mathematical problem. The ap-
proach is not effective in the cases of balancing the rotor by: 

– multi-corrective weight auto-balancers; 
– several auto-balancers (excess quantity); 
– multi-row ball or roller balancers etc. 
The second drawback of this approach is that the condi-

tions for the occurrence of auto-balancing are obtained for 
the specific type of auto-balancer. For another type of au-
to-balancer, it is necessary to receive these conditions anew.

Paper [2] proposed the engineering (empirical) criterion 
for the occurrence of auto-balancing with the balancing of 
the rotor by an auto-balancer of any type in one correction 
plane. In accordance with the criterion, the occurrence of 
auto-balancing depends on the reaction of the rotor to an 
elementary imbalance applied in the correction plane. The 
auto-balancing will occurr when and only when, on average 
at one rotation of the rotor, the sagging of rotor in the plane 
of correction will be directed opposite to this imbalance. 
It is assumed that the mass of the auto-balancer is much 
less than the mass of the rotor. By applying the criterion, 
analytical conditions for the occurrence of auto-balancing 
were obtained when balancing of rotor that performs planar, 
spherical, spatial motions by one auto-balancer of any type.

Paper [11] proposed the empirical criterion of stability 
of the main motion in the case of rotor balancing (both 
elastic and rigid) by several auto-balancers of a particular 
type. Its effectiveness was demonstrated when determining 
the stability conditions of the main motions at balancing 
of artificial Earth satellites, stabilized by rotation, by one 
or two auto-balancers. This criterion is the most effective 
for the analysis of stability of the main motions and their 
families. But there is a caveat. In the studies, the type of 
auto-balancers is considered. That is why the studies remain 
cumbersome while the obtained results are applicable only to 
a particular type of auto-balancers.

In the paper [12] the empirical criterion of stability of 
the main motion was modernized for obtaining conditions 
for the occurrence of auto-balancing, suitable for any type 
of auto-balancers. Application of the new criterion and its 
efficiency were illustrated on the problem of balancing of a 
rigid axisymmetric rotor with a fixed point and an isotropic 
elastic support by several auto-balancers (excess quantity).

In this paper, the empirical criterion for the occurrence 
of auto-balancing is applied to an axisymmetric rotor on two 
isotropic elastic supports. As the result, the conditions of 
the static or dynamic balancing of the rotor by any quantity 
of passive auto-balancers of any type are defined. The task 
is relevant for extractors, centrifuges, separators, etc. The 
rotors of such machines can be loaded with a large amount 
of the treated raw material, which creates large imbalances. 
Therefore, it is expedient to balance them with several auto- 
balancers, including multi-row balancers.

3. The purpose and tasks of the research

The purpose of this work is to obtain the conditions 
under which several passive automatic balancers of any type 
will balance statically or dynamically a rigid axisymmetric 
rotor on two isotropic elastic supports. 

To achieve this purpose, it is necessary to solve the fol-
lowing research tasks:

– to construct the physical and mathematical model of 
a rigid axisymmetric rotor on two isotropic elastic supports 
with elementary unbalances, applied in the future suspen-
sion points of the auto-balancers;

– to receive the functional that determines the conditions 
for the occurrence of auto-balancing with application of the 
empirical criterion for the occurrence of auto-balancing;

– to find the conditions for the occurrence of auto-bal-
ancing in the case of dynamic balancing of the rotor (in two 
and more correction planes);

– to find the conditions for the occurrence of auto-bal-
ancing in the case of static balancing of the rotor (in one 
correction plane).

4. Methods of searching the conditions for  
the occurrence of auto-balancing

The empirical criterion for the occurrence of auto-bal-
ancing is used [12]. The criterion is intended to answer the 
question – whether it is possible in principle and under what 
conditions to balance automatically the concrete rotor by n 
passive auto-balancers of any type. According to the criteri-
on, for the occurrence of auto-balancing it is necessary and 
sufficient that at any elementary imbalances the condition 
is satisfied:

T n

j j
j 10

1
s (t) r (t) dt 0.

T =

 
⋅ <  

∑∫
   	 (1)

                                         
,

where t is the time; js


 is the elementary rotor unbalance lying 
in the j-th correction plane and applied at the corresponding 
point j on the longitudinal axle of the rotor / j 1,n/;=  jr



 is the 
vector of deviation of the point j from its position in the motion-
less rotor, caused by elementary rotor unbalances 1 ns ,..., s ;

 

 T is 
the period in case the motion is periodic or another characteris-
tic time interval (time of one or several rotations of rotor, time 
interval considerably larger than 1, etc.).

The criterion is applied in the following sequence:
1) a physical-mechanical model of a rotor with elementa-

ry rotor unbalances applied at the future suspension points 
of auto-balancers, is described;

2) differential equations of motion of the unbalanced 
rotor are derived;

3) steady-state motion of a rotor, which corresponds 
to the applied elementary imbalances, is searched for as a 
particular solution of the heterogeneous system of equa-
tions of motion;

4) a functional of the criterion for the occurrence of au-
to-balancing is built;

5) conditions for the occurrence of auto-balancing are 
determined from the condition of negativity of the functional.

Let us note that, as a rule, the functional of the cri-
terion is a quadratic form of the elementary imbalances. 
The negative definiteness of this form can be investigated 
by using Sylvester’s criterion. The result is the conditions 
of two types. The first ones impose limitations on the 
mass-inertia characteristics of a rotor. The second ones 
are the range of angular rates of rotation of the rotor, on 
which auto-balancing will occur provided the first condi-
tions are satisfied.
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5. Results of the researches to determine the conditions 
for the occurrence of auto-balancing for an axisymmetric 

rotor on two isotropic supports

5. 1. Description of a physical-mechanical model of 
the rotor

The scheme explaining the way of definition of motion of 
a rotor on a rigid weightless shaft and elastic supports is giv-
en in Fig. 1. In Fig. 1, a, the position of a motionless rotor is 
shown. For the description of its motion, we use the immov-
able right rectangular coordinate system Kxyz. It begins in 
a center of mass of a motionless rotor. The axis z is directed 
on a rotor axis of rotation, and axes x and y are directed 
perpendicular to this axis (Fig. 1, a). Similar axes, Guvw are 
rigidly connected with the rotor. In the initial position, the 
Guvw axes coincide with the axes Kxyz.

Coordinates x, y set the translatory motion of the rotor 
together with the center of mass – point G (Fig. 1, b). Rezal’s 
angles a, b define the turn of the longitudinal axis of the 
rotor around the point G (Fig. 1, c). We consider that the 
rotor rotates around the longitudinal axis with constant an-
gular speed w. Then, the rotor angle of rotation around this 
axis φ=ωt, where t is the time.

                           a                                                  b

                         c                                 d                          e

Fig. 1. The model of an unbalanced axisymmetric rotor on 
two isotropic elastic supports: a – the scheme of the rotor 
with points of application of elementary unbalances to the 
longitudinal axis of the rotor; b – forward displacement of 
the rotor together with center of mass G; c – turns of the 
rotor around the center of mass G on Rezal’s angles a, β; 
d – the turn of the rotor around the longitudinal axis at 
an angle wt; e – the turn of the elementary unbalance js



 
together with the rotor

It is supposed that the rotor is axisymmetric. Then, the 
axial moments of inertia of the rotor relative to the main 
central axes xG, hG, zG parallel to the axes x, h, z (and the uG, 
vG, wG axes parallel to the axes u, v, w) are respectively equal 
to A, A, C.

5. 2. Differential equations of motion of the rotor
With application of the Lagrange’s equations of the 

second kind or the main theorem of dynamics, it is pos-

sible to receive the following differential equations of 
motion of the rotor [2]:

n2
11 14 j jj 1

Mx k x k s cos( t ),
=

+ + β = ω ω + φ∑

n2
11 14 j jj 1

My k y k s sin( t ),
=

+ − α = ω ω + φ∑

n2
33 14 j j jj 1

A C k k y s z sin( t ),
=

α + ωβ + α − = −ω ω + φ∑



n2
33 14 j j jj 1

A C k k x s z cos( t ),
=

β − ωα + β + = ω ω + φ∑



 	 (2)

where

11 1 2k k k ,= +  14 2 2 1 1k k l k l ,= −  2 2
33 1 1 2 2k k l k l .= +  	 (3)

Let us introduce complex variables:

z x iy,= +

i .ψ = α + β  	 (4)

Let us multiply the second equation in (2) by imaginary 
unit i and add to the first one. Let us multiply the fourth 
equation in (2) by imaginary unit i and add to the third one. 
We will obtain the following differential equation of motion 
of the rotor in the complex form:

2 i t
11 14Mz k z ik S e ,ω+ − ψ = ω

2 i t
33 14A iC k ik z iI e ,ωψ − ωψ + ψ + = ω  	 (5)

where

j
n i

jj 1
S s e ,φ

=
= ∑

j
n i

j jj 1
I s z e .φ

=
= ∑

 	
(6)

Let us note that:

n

x j jj 1
S s cos ,

=
= φ∑ n

y j jj 1
S s sin ,

=
= φ∑

n

uw j j jj 1
I s z cos ,

=
= φ∑ n

vw j j jj 1
I s z sin ,

=
= φ∑  	 (7)

the static moments and the products of inertia of the rotor, 
which define, respectively, its static and moment unbalances.

If there are two or more correction planes, the static 
moments and products of inertia are independent. If all 
auto-balancers have a common correction plane ( jz z, / j 1,n /= =

jz z, / j 1,n /= = ), then:

n

uw j j xj 1
I z s cos zS ,

=
= φ =∑  n

vw j j j yj 1
I z s z sin zS .

=
= φ =∑ 	 (8)

In this case, the static moments and products of inertia 
are dependent.

5. 3. The steady-state motion of the rotor, which cor-
responds to the applied elementary unbalances

We look for the partial solution of a system of differential 
equations (5) in the form:
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i tz De ,ω=  i tEe .ωψ =  	 (9)

Substitution of (9) into (5), after reduction by i te ω  gives 
the following system of the algebraic equations for the defi-
nition of D, E:

2
211 14

2
14 33

D Sk M ik
.

E iIik k (A C)

     − ω −
= ω     − − ω     

 	 (10)

The determinant of this system is the frequency equation 
and has the form:

2 2 2
11 33 14

4 2 2
11 33 11 33 14

( ) (k M )[k (A C) ] k

M(A C) [(A C)k Mk ] k k k .

∆ ω = − ω − − ω − =

= − ω − − + ω + −
	
(11)

Let us introduce designations:

2 2
D 33 14( ) {[k (A C) ]S Ik },∆ ω = ω − − ω −

2 2
E 11 14( ) i [(k M )I Sk ].∆ ω = ω − ω −              (12)

Then, the solution of the system of equations (10) has 
the form:

D ED ( ) / ( ), E ( ) / ( ).= ∆ ω ∆ ω = ∆ ω ∆ ω  		  (13)

We investigate the solutions of the equations (11).
Let us note that:

2 2 2
11 33 14 1 2 1 1 2 2

2 2
2 2 1 1 1 2 1 2

k k k (k k )(k l k l )

(k l k l ) k k (l l ) 0.

− = + + −

− − = + >             (14)

1. In the case of a long rotor, A>C and the 
frequency equation (11) gives two resonance fre-
quencies, such that:

Let us introduce the partial frequencies:

p1 11k / M,ω = p2 33k / (A C).ω = −  	 (16)

For real rotor systems ωp1<ωp2 and therefore:

ω1<ωp1<ωp2<ω2. 	 (17)

In the case under consideration, the determinant (11) 
can be presented in the form:

2 2 2 2 2
p1 p2 14

2 2 2 2
1 2

( ) M(A C)( )( ) k

M(A C)( )( ).

∆ ω = − ω − ω ω − ω − =

= − ω − ω ω − ω
 	

(18)

On above resonance speeds of the rotor rotation (ω>ω2), 
the determinant Δ(ω)> 0.

2. In the case of a spherical rotor, A=C and the determi-
nant (11) takes the form 

2 2
33 11 33 14( ) Mk k k k 0,∆ ω = − ω + − =

from which we find the only resonance frequency:

2
1 11 33 14 33(k k k ) Mk .ω = −  	 (19)

In the case under consideration, the determinant (11) 
can be presented in the form:

2 2
33 1( ) Mk ( ).∆ ω = ω − ω  	 (20)

On above resonance speeds of rotor rotation (ω>ω1), the 
determinant Δ(ω)<0.

3. In the case of a short rotor, A<C and the equation (11) 
gives one resonance frequency, such that:

In the case under consideration, the determinant (11) can be 
presented in the form:

2 2 2 2 2
p1 p2 14

2 2 2 2
1 2

( ) M(C A)( )( ) k

M(C A)( )( ),

∆ ω = − ω − ω ω + ω − =

= − ω − ω ω + ω
 	 (22)

where

p2 33k / (C A),ω = −

On above resonance speeds of rotor rotation 
(ω>ω1), the determinant Δ(ω) <0.

5. 4. Construction of the functional of criteri-
on for the occurrence of auto-balancing

Let us introduce the complex displacements of 
the points j:

j jx x z ,= + β j jy y z ,= − α  

i t
j j jz iz (D iz E)e .ωρ = − ψ = −  	 (24)

Projections on the x, y axis of the j-th elementary imbal-
ance vector:

jx j js s cos( t ),= ω + φ  

jy j js s sin( t ).= ω + φ  	 (25)

Let us introduce a complex representation of imbalance:

j

j jx jy j j

i( t )
j j j

s s is s cos( t )

is sin( t ) s e .ω +φ

= + = ω + φ +

+ ω + φ =  	 (26)

Taking into account (6), (24), (26), the integrand of the 
functional (1) is reduced to the form:

2 2
11 33 11 33 11 33 142

1

2 2
11 33 11 33 11 33 142

2

(A C)k Mk [(A C)k Mk ] 4M(A C)(k k k )
,

2M(A C)

(A C)k Mk [(A C)k Mk ] 4M(A C)(k k k )
.

2M(A C)

− + − − + − − −
ω =

−

− + + − + − − −
ω =

−
(15)

2 2
11 33 11 33 11 33 142

1

(C A)k Mk [ (C A)k Mk ] 4M(C A)(k k k )
.

2M(C A)

− − + + − − + + − −
ω =

−
(21)

2 2
11 33 11 33 11 33 142

2

(C A)k Mk [ (C A)k Mk ] 4M(C A)(k k k )
.

2M(C A)

− − + − − + + − −
ω =

−
(23)
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j j

n n

j j j j j j
j 1 j 1

n
i( t ) i( t )i t i t

j j j j
j 1

s (t) r (t) (s s ) / 2

[s e (D iz E)e s e (D iz E)e ]/ 2

D E D E 1 1
S i I S i I (DS DS) i(EI EI).

2 2 2 2 2 2

= =

ω +φ − ω +φ− ω ω

=

⋅ = ρ + ρ =

= + + − =

= + + − = + + −

∑ ∑

∑

 

Since

2
2

33 14

1
(DS DS) {2[k (A C) ]SS k (IS IS)},

2 2 ( )
ω

+ = − − ω − +
∆ ω

2
2

11 14

1
i(EI EI) [2(k M )II k (SI SI)],

2 2 ( )
ω

− = − ω − +
∆ ω

the integrand takes the form:

n

j j
j 1

2
2 2

33 14 11

s (t) r (t)

{[k (A C) ]SS k (IS IS) (k M )II}.
( )

=

⋅ =

ω
= − − ω − + + − ω

∆ ω

∑  

Since

2 2 2 2
x y uw vwSS S S , II I I ,= + = +

uw vw u v

uw vw u v uw u vw v

IS IS (I iI )(S iS )

(I iI )(S iS ) 2(I S I S ),

+ = − + +
+ + − = +

the integrand of the functional is reduced to the form:

2n
2 2 2

j j 33 x y
j 1

2 2 2
14 uw u vw v 11 uw vw

s (t) r (t) {[k (A C) ](S S )
( )

2k (I S I S ) (k M )(I I )}.

=

ω
⋅ = − − ω + −

∆ ω

− + + − ω +

∑  

 	

(27)

Let us introduce the matrix and the vector:

2
11 14

2
11 14

2
14 33

2
14 33

k M 0 k 0

0 k M 0 k
K ,

k 0 k (A C) 0

0 k 0 k (A C)

 − ω −
 − ω − =
 − − − ω
 − − − ω 

 

uw

vw

u

v

I

I
J .

S

S

 
 
 =
 
  

 	 (28)

Then

2 Tn

j j
j 1

J KJ
s (t) r (t) ,

( )=

ω
⋅ =

∆ ω∑  

and the criterion for the occurrence of auto-balancing (1) 
takes the form:

2 / 2 Tn

j j
i 10

J KJ
s (t) r (t) dt 0,

2 ( )

π ω

=

 ω ω
⋅ = < π ∆ ω ∑∫  	 (29)

where T=2π/ω is the time of one turn of the rotor.

5. 5. Determining conditions for the occurrence of 
auto-balancing

5. 5. 1. Dynamic balancing of the rotor
In the case under consideration, two or more auto-balancers 

are located not in one correction plane. Therefore, Iuw, Ivw, Su, Sv 
are independent. The necessary condition for the fulfillment of 
inequality (29) for any nonzero elementary imbalances is the 
sign definiteness of the quadratic form:

T 2 2 2
33 x y

2 2 2
14 uw u vw v 11 uw vw

J KJ [k (A C) ](S S )

2k (I S I S ) (k M )(I I ).

= − − ω + −

− + + − ω +
 	

(30)

Let us apply Sylvester’s criterion to the matrix K [2] and 
consider two possible cases.

1. The quadratic form (30) is positive definite if and only 
if, when:

2
1 11k M 0,∆ = − ω >

2 2
2 11(k M ) 0,∆ = − ω >

2
3 11(k M ) ( ) 0,∆ = − ω ∆ ω >

2
4 ( ) 0.∆ = ∆ ω >

These conditions are equivalent to such two conditions:

2
1 11k M 0,∆ = − ω >  ( ) 0.∆ ω >  

Thus, if the quadratic form (30) is positive definite, then 
TJ KJ 0,>  ( ) 0.∆ ω >  In this case, the criterion for the occur-

rence of auto-balancing (29) is not fulfilled.
2. The quadratic form (30) is negative definite if and only 

if, when:

2
1 11k M 0,∆ = − ω <

2 2
2 11(k M ) 0,∆ = − ω >

2
3 11(k M ) ( ) 0,∆ = − ω ∆ ω <  2

4 ( ) 0.∆ = ∆ ω >

These conditions are equivalent to such two conditions:

2
1 11k M 0,∆ = − ω <  ( ) 0.∆ ω >

Thus, if the quadratic form (30) is negative definite, then 
TJ KJ 0,<  ( ) 0.∆ ω >  In this case, the criterion for the occur-

rence of auto-balancing (29) is fulfilled.
In order that, under the condition 2

1 11k M 0,∆ = − ω <  the 
condition ( ) 0∆ ω >  be satisfied, it is necessary that the fol-
lowing condition be satisfied: 2

33k (A C) 0.− − ω <  It is only 
performed if the rotor is long and rotates at the frequency 
greater than the second partial one:

p1 33A C, ( k / (A C)).> ω > ω ω > −

At the same time, the condition ( ) 0∆ ω >  will be satisfied 
only at above resonance rotational speeds of the rotor.

Thus, dynamic balancing of the rotor by two or more 
auto-balancers (located in two or more correction planes) 
is possible only for the long rotor at above resonance rota-
tional speeds:
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2A C, .> ω > ω  	 (31)

The similar result for the case of balancing the rotor on 
two isotropic elastic supports by two two-ball balancers 
was obtained in [8]. For this, the differential equations of 
motion of the rotor-auto-balancer system were derived, the 
main motion of the system was singled out, its stability was 
investigated. 

5. 5. 2. Static balancing of the rotor
In the case under consideration, one or more auto-bal-

ancers are located in one correction plane. Therefore, Iuw, Ivw, 
Su, Sv are dependent. Taking into account (8), the quadratic 
form (30) takes the form:

T 2
33 11 14

2 2 2 2
u v

J KJ [k z k 2k z

(A Mz C) ](S S ).

= + − −

− + − ω +

The condition for the occurrence of auto-balancing (29) 
is transformed to the form:

2 T
2 2

33

2 2 2
2 u v

11 14 2

J KJ
[(A Mz C) k

( )

(S S )
k z 2zk ] 0.

( )

ω
= − + − ω − −

∆ ω
+ ω

− + <
∆ ω

 	

(32)

Let us first consider the case of the fast-rotating rotor  
( 1ω >> ). At high speeds:

2 4( ) M(A C) ,∆ ω ≈ − ω

2 T 2
2 2
u v

J KJ A Mz C
(S S ).

( ) M(A C)
ω + −

≈ − +
∆ ω −

 		  (33)

From (32), (33), it follows that an auto-balancing:
– occurs at such two variants of the relations between 

the parameters:

1) C>A+Mz2,

2) C<A; 	 (34)

– does not occur at such relation:

A<C<A+Mz2. 	 (35)

Thus, at the high speeds of the rotor rotation: 
1) long rotors C<A are automatically balanced for an 

arbitrary arrangement of the correction plane;
2) short rotors C>A are automatically balanced if the 

distance z from the rotor center of mass to the correction 
plane does not exceed:

maxz (C A) / M;= −  	 (36)

3) spherical rotors C=A cannot be balanced.
Let us consider different cases of rotors on the entire 

range of angular speeds of the rotor rotation.
1. The case of the long rotor C<A. Let us introduce the 

additional speed of the rotor rotation:

2
33 11 14

2

k k z 2zk
.

A Mz C
+ −

ω =
+ −



 
	

(37)

As 2
11 33 14k k k 0,− >  then

2 2
33 11 14 33 11

2
11 33 33 11

k k z 2zk k k z

2z k k ( k z k ) 0

+ − > + −

− = − ≥

and ω  is the real positive number.
It is possible to show that for any z:

1 2ω ≤ ω ≤ ω  	 (38)

and the equality sign is satisfied only for two values of z 
(once at the left and once on the right hand).

The condition for the occurrence of auto-balancing (32) 
takes the form:

2 T

2 2 2 2 2 2
u v

2 2 2 2
1 2

J KJ
( )

(A Mz C)(S S )
0.

A C ( )( )

ω
=

∆ ω
+ − + ω ω − ω

= − ⋅ <
− ω − ω ω − ω



 
(39)

The auto-balancing will occurr at the rotation of the rotor 
with the angular speeds located: between the first resonant 
speed and additional speed; over the second resonant speed:

1 2( , ) ( , ).ω ∈ ω ω ω +∞

  	 (40)

2. In the case of the spherical rotor A=C, and:

2
11 33 14

1
33

k k k
,

Mk
−

ω =

2
33 11 14

2

k k z 2zk
,

Mz
+ −

ω =

2 2
33 1( ) Mk ( ).∆ ω = ω − ω

 	
(41)

Let us note that as:

2
2 2 33 14

1 2
33

(k k z)
0,

Mk z
−

ω − ω = ≥

 so 1.ω ≥ ω

The condition for the occurrence of auto-balancing (32) 
takes the form:

2 2 2 22 T 2 2
u v

2 2
33 1

z (S S )J KJ
0.

( ) k
ω +ω ω − ω

= <
∆ ω ω − ω



 	
(42)

The auto-balancing will occur between the first resonant 
speed of the rotor rotation and additional speed:

1( , ).ω ∈ ω ω  	 (43)

It is seen from (41) that with increasing z, the speed ω  
increases without limit. Therefore, it is expedient to coun-
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terbalance the spherical rotor statically by one auto-balancer 
located as close as possible to the rotor center of mass.

3. The case of the short rotor A<C. We consider the 
possible cases, depending on the choice of z (cross-sections, 
where the auto-balancers will be installed).

a) z: A+Mz2>C. With the account of (22), (37), the 
condition for the occurrence of auto-balancing (32) takes 
the form:

2 2 2 22 T 2 2
u v

2 2 2 2
2 1

(A Mz C)(S S )J KJ
0.

( ) M(C A)( )
+ − + ωω ω − ω

= ⋅ <
∆ ω − ω + ω ω − ω



 	 (44)

The auto-balancing will occur between the first resonant 
velocity and additional velocity:

1( , ).ω ∈ ω ω  	 (45)

It is seen from (37) that the auto-balancing region can be 
arbitrarily expanded at high speeds if

z (C A) / M.→ −

b) z: A+Mz2<C. Let us introduce the parameter:

2
33 11 14

2

k k z 2zk
.

C A Mz
+ −

ω =
− −

  	 (46)

Then the condition for the occurrence of auto-balancing 
(32) will take the form:

2 2 2 22 T 2 2
u v

2 2 2 2
0 1

(C A Mz )(S S )J KJ
0.

( ) M(C A)( )
− − + ωω ω + ω

= ⋅ <
∆ ω − ω + ω ω − ω



 	 (47)

The auto-balancing will occur over the first resonant 
velocity:

1( , ).ω ∈ ω +∞  	 (48)

The results of this subparagraph coincide with the re-
sults obtained in [2] in the case of the static balancing of the 
rotor by one auto-balancer.

6. Discussion of the obtained conditions for  
the occurrence of auto-balancing

The dynamics of the rotor with the elementary unbalances 
applied at the future points of the suspension of auto-balanc-
ers, mounted on two isotropic elastic supports, is described by 
a system of four linear differential equations of motion.

The functional of the criterion for the occurrence of auto- 
balancing is a quadratic form of the static moments and the 
products of inertia of the rotor, which determine, respective-
ly, its static and moment imbalances.

In the case of the axisymmetric rotor on two isotropic 
elastic supports, the dynamic auto-balancing (in two or more 
correction planes) is possible only in the case of a long rotor. 
There can be any quantity of auto-balancers (correction 
planes). The long rotor has two resonant rotational speeds. 
The auto-balancing occurs at above resonance speeds. This 
result was obtained for the first time for the excess number of 

auto-balancers. It coincides with the results obtained in [6] 
for the case of two two-ball balancers.

In the case of an axisymmetric rotor on two isotropic elastic 
supports, the static auto-balancing (in one correction plane) is 
possible at any quantity of auto-balancers in such cases.

If the rotor is long, then it has two resonant speeds and 
one additional speed, located between the resonant ones. 
The auto-balancing occurs between the first resonant speed 
of rotor rotation and additional speed, and over the second 
resonant speed.

If the rotor is spherical, then it has one resonant speed 
and the additional speed, which is higher than the resonant 
one. The auto-balancing occurs between resonant and addi-
tional speeds.

If the rotor is short, then the conditions for the occur-
rence of auto-balancing depend on the distance between the 
rotor center of mass and the correction plane. If this distance 
does not exceed the boundary size (36), then the rotor has 
the only resonant speed and the auto-balancing occurs at 
above resonance speeds. Otherwise, the rotor has one reso-
nant and one additional speed, which is higher than the res-
onant one. The auto-balancing occurs between these speeds.

The additional speed is due to the installation of the au-
to-balancers on the rotor. Upon transition to it, the behavior 
of auto-balancers changes. At slightly lower rotor rotational 
speeds, the auto-balancers reduce the rotor imbalance, and 
at slightly higher ones – increase it.

These results for the excess quantity of auto-balancers 
are received for the first time. They coincide with the results 
received in [3] for the case of one two-ball balance.

The empirical criterion for the occurrence of auto-balanc-
ing makes it possible to obtain these conditions in the “zero 
approximation”, since it does not take into account the type 
and mass of auto-balancers. More precise conditions (in the 
“first approximation”) make it possible to obtain the empirical 
criterion for the stability of the main motion [11]. However, 
the calculations are bulkier, and the results are less general.

In the future, it is planned to obtain, with the help of the 
empirical criterion of the occurrence of auto-balancing, the 
conditions for balancing the rotor by any number of passive 
auto-balancers in the framework of:

– various flat models of the rigid rotor (modeling the bal-
ancing of flat rotors like disks of manual grinders, CD/DVD 
disks, impellers of axial fans, etc. by multi-row auto-balanc-
ers, auto-balancers with various corrective weights etc.);

– the models of the flexible rotor.
At the same time, a comparison of the results received 

with the use of the empirical criterion, with the known re-
sults received by other methods is planned.

7. Conclusions

The empirical criterion for the occurrence of auto-bal-
ancing is an effective method for determining the conditions 
under which auto-balancers of any type can balance the cer-
tain rotor. For the axisymmetric rotor on two isotropic elas-
tic supports, using the method, the following is established.

1. The dynamics of the rotor with the elementary un-
balances applied at the future points of the suspension of 
auto-balancers is described by a system of four linear differ-
ential equations of motion.

2. The functional of the criterion for the occurrence of 
auto-balancing is a quadratic form of the static moments and 
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the products of inertia of the rotor, which determine, respec-
tively, its static and moment imbalances.

3. The dynamic auto-balancing of the rotor (in two or 
more correction planes by several passive auto-balancers) is 
possible only in the case of the long rotor. There can be any 
of auto-balancers. The long rotor has two resonant rotational 
speeds. The auto-balancing occurs at above resonance speeds.

4. The static auto-balancing of the rotor (in one correction 
plane) is possible at any quantity of auto-balancers in such cases.

If the rotor is long, then it has two resonant speeds and 
one additional speed, located between the resonant ones. 
The auto-balancing occurs between the first resonant speed 
of rotor rotation and additional speed, and over the second 
resonant speed.

If the rotor is spherical, then it has one resonant speed 
and the additional speed, which is higher than the resonant 

one. The auto-balancing occurs between resonant and addi-
tional speeds.

If the rotor is short, then the conditions for the occur-
rence of auto-balancing depend on the distance between 
the rotor center of mass and the correction plane. If this 
distance does not exceed the certain boundary size, then 
the rotor has the only resonant speed and the auto-balanc-
ing occurs at above resonance speeds. Otherwise, the rotor 
has one resonant and one additional speed, which is higher 
than the resonant one. The auto-balancing occurs between 
these speeds.

The additional speed is due to the installation of the auto- 
balancers on the rotor. Upon transition to it, the behavior 
of auto-balancers changes. At slightly lower rotor rotational 
speeds, the auto-balancers reduce the rotor imbalance, and 
at slightly higher ones – increase it.


