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Pospoonstombvcst ma 00Cnioxncyomocs
JiHIUHT ma HeAiHiUHI mamemamuuni moode-
i npouecy menaonpoeionocmi 6 00HOPIOHUX
i wapysamux cepedosuwax i3 GKJIIOUEHHA-
mu. Haeedeni neoonopioni cucmemu nazpisa-
10MbCSL 30CEPEOHCEHUM MENTO0BUM NOMOKOM Y
JIOKATIbHIN 0011aCMi MENHCOBUX NOBEPXOHD KOH-
cmpyxuii. Buceimneno nidxoou 0o posze’s-
3Yyeanns 6i0n0BIOHUX NIHIHUX MaA HeNiHil-
HUX Kpaiosux 3a0au menaonposioHocmi.
Cmeopeno aneopummu ma po3paxyHrKosi
npozpamu, AKi 0aromv 3Mmozy anaxizyeamu
memnepamypHi noas 6 Kyckoe0-00HOPIOHUX
cepedosuwax

Kmouosi cnosa: menaonposionicmo, mem-
nepamype noJie, uyxicopione HacKpizHe KO-
YEHHSl, MEPMOUYMAUBA CUCTEMA, MENTLOBULL
nomik

T u |

Paspabamvieaiomcs u uccaedyromcs au-
Helinble U HeauHeUHble mamemamuuecKue
MoOeiu npouecca menyionpoeooHoCMu 6 00HO-
POOHBIX U CILOUCMBIX CPedax ¢ 6KIOUEHUS-
Mmu. Ipueedennvie neodnopoonvie cucmemol
Hazpeearomcst CoCpedomoUeHHbIM Meni06bIM
NOMOKOM 6 JIOKANbHOU 001acmu 2paHuHbIX
nogepxnocmeil Koncmpyxuuil. Hznoscenowot
no0xo00vl K peweHuro CoOmeemcmeyouux
JUHEUHBIX U HESUHEUHBIX 2PAHUMHBIX 3a0ay
menaonpoeoonocmu. Cozdansvt anzopummot u
pacuemuvle nPoOZPAMMbL, C NOMOUHIO KOMO-
PbIX MOJNCHO AHAAUIUPOBAMb MeMnepamyp-
Hble NS 8 KYCOUHO-00HOPOOHBIX Cpeoax

Kmoueevie caosa: mennonpogoonocmv,
memnepamypHroe noJie, UHOPOOHOE CKBO3HOE
BKIIOUEHUE, MEPMOUYECMEUMETILHASL CUCME-
Ma, menioeou nomox

u] =,

1. Introduction

Efficiency of the processes of heat and mass exchange
affects the temperature regime of the environment and living
premises, as well as operational processes in various techno-
logical installations. That is why, over recent decades, the
theory of heat exchange has intensively developed related
to the needs of thermal power generation, nuclear energy,
space exploration, etc. At present, under development are
the methods of thermal protection in high-speed aerial in-
stallations, in particular for multi-mission space exploration
vehicles. This protection is required also in active areas of
reactors, in magnetohydrodynamic energy generators (in-
stallations for the direct conversion of heat into electrical
energy), gas turbine plants. The processes of heat exchange
are studied under low temperature modes, in particular in
the installations that employ the effect of superconductivi-
ty, for example in magnets, which create large fields. Work
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continues on creating the cryosurgical instruments for
operations involving rapid freezing of separate areas of the
tissue. Progress in this field is largely associated with cor-
rect organization of the heat exchange processes both in the
instrument and in the tissue. There are attempts at creating
installations for the freeze-drying of food products, whose
successful development depends on correct organization of
the sublimation and de-sublimation processes. Methods for
exploring the heat exchange processes on the Earth and in
its atmosphere are being improved, in particular weather
forecasting. Requests from various industries stimulate
sustained and rapid development of research into the area of
heat exchange [1]. Little studied until now are mathematical
models of heat exchange in complex systems where piece-
wise uniform structure and thermal sensitivity (dependence
of thermal-physical parameters on temperature) of their
design elements are not considered [2, 3]. This explains the
relevance of research into improvement of the existing and




creation of new linear and nonlinear mathematical models
of heat exchange for the uniform and layered, inclusive of
design elements, complex systems and development of new
effective methods for solving the boundary problems that
match these models.

2. Literature review and problem statement

Determining the temperature regimes in both uniform
and non-uniform designs attracts attention of many re-
searchers [4, 5].

Paper [1] developed a mathematical model for calculat-
ing the quasi-stationary temperature field in a solid cylinder
of rotation. This cylinder is made of composite material. The
non-linear boundary conditions are assigned, which take
into account a dependence of thermal-physical parameters
of materials on the temperature. Analytical expressions
obtained for determining the temperature fields make it
possible to select the composition of composite materials for
the parts of cylindrical type for a purpose of extending their
operational lifecycle.

One-dimensional (flat, cylindrical-symmetric and spher-
ically-symmetric) nonlinear problems on thermal conductiv-
ity for a given heat flux in the origin of coordinates in the
form of a power function dependent on time were explored.
Approximate solutions were obtained for the indicated prob-
lems with their convergence analyzed [2].

Analytical-numerical solution for a nonlinear problem on
thermal conductivity using the integral method of thermal
balance was found [3]. In order to improve the accuracy
of solution, a temperature function is approximated by the
polynomials of high degrees. To determine coefficients of
the polynomials, additional boundary conditions are intro-
duced. It is shown that such an approach as fast as in the
second approximation leads to a considerable improvement
in accuracy of solving the problem.

Paper [6] received an analytical-numerical solution to
the axisymmetric problem on thermoelasticity for a thick-
wall cylinder under the action of heat flux with the arbi-
trarily assigned boundary conditions. The resulting solution
makes it possible to analyze the effect of thermal and me-
chanical loads on the thermal-mechanical behavior of the
cylinder.

One-dimensional stationary temperature and mechan-
ical problems were solved with a presented interrelation to
determine the thermal and mechanical loads in a hollow
thick-wall sphere. The distribution of temperature is dis-
played by a function of the radial coordinate for the given
general thermal and mechanical boundary conditions at the
inner and outer surfaces of the sphere [7].

Article [8] solved a non-stationary problem on thermal
conductivity and thermoelasticity for functional-gradient
thick-wall spheres. Thermal-physical and thermoelastic pa-
rameters of materials, except for the Poisson coefficient, are
arbitrary functions of the radial coordinate.

Axisymmetric stationary problem on thermal conductiv-
ity and thermoelasticity of the hollow functionally gradient
spheres relative to the heat source was considered. The solu-
tions are obtained as functions of the spatial coordinates for
temperature, the displacement component vector and stress
tensor by using boundary conditions for the radial and an-
gular coordinates [9].

An overview of main literary sources revealed that the
models, which remain insufficiently examined and under-
developed, are those that would consider the piecewise uni-
form structure of designs and their thermal sensitivity. As
the structures are exposed to temperature influences, then,
on certain intervals of temperatures, an impact of thermal
sensitivity on the results of calculating the temperature
fields becomes vivid. This leads to the development of non-
linear models for the process of thermal conductivity and for
their analysis since the solutions of boundary problems that
match these models are more precise than the solutions of
the appropriate linear boundary problems. Calculations of
temperature fields in such systems are applied subsequent-
ly when designing sophisticated systems to provide their
thermal stability. The accuracy of these computations will
affect efficiency of the methods that are used in the process
of design.

3. The aim and tasks of the study

The aim of present work is to create linear and nonlinear
mathematical models for the process of thermal conductivity
for an isotropic plate and a layered plate with a through-in-
clusion, which are heated by heat flux. This will make it pos-
sible to improve accuracy in the calculation of temperature
fields in complex systems and effectiveness of the methods
for their design.

To accomplish the set aim, the following tasks have to
be solved:

—to obtain original equations of thermal conductivity
with discontinuous and singular coefficients with boundary
conditions and their analytical-numerical solutions. These
solutions will allow us to represent a thermal field in arbi-
trary point of the structures “plate — inclusion” and “layered
plate — inclusion”;

— by using the introduced linearizing functions, to lin-
earize the original nonlinear boundary problems on thermal
conductivity. To obtain the ratios for determining these
functions and, for a linear variable coefficient of thermal
conductivity, to derive calculation formulas. These formulas
represent a temperature field in an arbitrary point of the
thermosensitive structures “plate —inclusion” and “layered
plate — inclusion”;

— to devise algorithms and calculation programs for their
numerical realization to analyze temperature modes in a
plate and in a layered plate with an inclusion.

4. Main results of examining the process of thermal
conductivity for piecewise-uniform environments

We shall state the boundary linear and nonlinear prob-
lems on thermal conductivity and describe a procedure to
solve them.

4. 1. Isotropic plate with a through-inclusion

4.1.1. The object of study and its mathematical model

Let us consider a plate of thickness 28, isotropic rela-
tive to thermal-physical parameters, with thermally insu-
lated face surfaces |z|:i6. This plate contains a foreign
through-inclusion of length 2h. It refers to the rectangular
Cartesian coordinate system (0xyz) with the origin in the



center of inclusion. In region Qo={(x, —1,2): |x|<h, |y|<],
|z|<8} of boundary surface K ={(x, -1, z): |x|<o0, |z|<8} of the
plate, the system is heated with heat flux whose surface
density is gy=const, and the other part of this surface of the
plate beyond the inclusion and surface K.={(x, |, z): |x|<co,
|z|<8} are thermally insulated. At the boundary surfaces of
inclusion Ki,={(zh,y, z): [y|<l, |z|<8} is a perfect thermal
contact:

ot ot
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for |x| =h (0 — for the inclusion, 1 — for the plate) (Fig. 1).
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Fig. 1. Cross-section of isotropic plate with
a through-inclusion by plane z=0

In the specified structure, it is required to determine
the distribution of temperature t(x,y) by spatial coordi-
nates, which we obtain by solving equation of thermal
conductivity [10, 11]:

d ot 9t
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with boundary conditions:
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where A(x) is the coefficient of thermal conductivity of a
non-uniform plate,

AMx) =4, + (ke —A)S_(h—[x]); 3)

M and A are the coefficients of thermal conductivity of
material of the plate and the inclusion, respectively; t. is
the ambient temperature; S+({) are the asymmetrical single
functions [12],

1, >0,
S.(£)=40,5%0,5, (=0,
0, {<0.

Introduce function [13]:

T(xy)=Mx)B(x,y) %)

and differentiate it by variables x and y considering expres-
sion for the coefficient of thermal conductivity A(x) (3). As a
result, we shall obtain:

AMx )aﬁ % VB[ | 7h57(x+h)—exzhﬁ+(X—h)]§
Ay )ie aT. (5)
ady

Here

e(X’ y) = t(X7 Y) -t
is the excess temperature;

ds, ©
d¢

is the asymmetrical Dirac delta functions [12].

Substituting expressions (5) in relation (1), we arrive at
a differential equation with partial derivatives with singular
coefficients:

8.(0)=

AT—(hy =26, 8_(x+h)=6| _ 8,(x~h)]=0,  (6)

where A is the Laplace operator in the Cartesian rectangular
coordinate system,

2 9
=—+—7.
ox?  oy?
Therefore, the desired temperature field in the presented

system is entirely determined by equation (6) with boundary
conditions (2).

4.1. 2. Analytical-numerical solution
Let us approximate function t(xh,y) (Fig. 2) by ex-
pression

t(zhy)=t +2(tﬁ1 tS_(y-y,), @)

where yi€]-1; 1], y1<y2<..<yns; t7 (j =1,n) are the unknown
approximated values of temperature.

t(ih,y)“




Substituting expression (7) in equation (6), we shall
obtain:

n—1

AT=(4, —%){[91 + 2, (07, =67)S_(y —y I8 (x+h)—
9*+2(9,+1 9})5(y—yj)]51(x—h)}. ®)

Let us apply the integral Fourier transform by the x co-
ordinate to equation (8) and boundary conditions (2) taking
into consideration relation (4). Upon solving the obtained
boundary problem relative to the representation

TEy== Je Ty

of function T(x,y), and then passing over to the original, we
shall receive the solution of problem (1), (2) in the form:

TGy)=1 [ 2100 -1 )lsing G )
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The unknown approximated values 65 (j=1,n) of excess
temperature will be found by solving the system of 2n linear
algebraic equations obtained from expression (9).

Therefore, the desired temperature field in a plate with
a through-inclusion is expressed by formula (9). From this
formula we receive temperature value in arbitrary point of
the structure “plate — inclusion”.

4. 2. Isotropic multi-layer plate with a through-inclusion

4. 2.1. The object of study and its mathematical model

Let us consider an isotropic layered plate of thickness
258 with thermally insulated face surfaces |z| =3. This plate
consists of n layers that differ in geometric (width) and
thermal-physical (coefficient of thermal conductivity) pa-
rameters. It refers to the rectangular Cartesian coordinate
system (0Oxyz) with the origin at one of its boundary sur-
faces. The plate contains a through-inclusion. At boundary
surface Ko={(x, 0, z): [x|<o0, [z|<8} of the plates in region

centrated heat flux with surface density qo. Another part
of this surface beyond the inclusion and boundary surface
K, ={(x, yn, 2): [x|<o0, |z|<8} are thermally insulated. At the
surfaces of layers Ki={(x, yj, 2): |x|<o0, [z|<8} (j=1n-1) and
inclusion K.={(xh, y, z): 0<y<y,, |z|<8} is an ideal thermal
contact:

Lo,
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for y=yj(j=1,n-1);
025 (=T
ax =50

for |x|=h, where 0 is for the inclusion, j is for the j-th layer
of the plate (Fig. 3).
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Fig. 3. Cross-section of isotropic multi-layered plate with a
through foreign inclusion by plane z=0

In the specified structure, it is necessary to determine
the distribution of temperature t(x,y) by spatial coordi-
nates, which we shall receive by solving the equation of
thermal conductivity [10, 11]:

d ot, 9

ot
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aX[ (x y)aX]+ay[ (x y)ay] (10)
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20
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M) = Y[ A+ (R -2)S (=D NGy L) (12)
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is the coefficient of thermal conductivity of a non-uniform plate;
A, A, are the coefficients of thermal conductivity of materials
of the j-th layer of the plate and the inclusion, respectively;

¥o=0; N(yvyH): Sf(y_yjf1)_s+(y_yj)'
Introduce function [13]:

T(x,y):

and differentiate it by variables x and y, considering the ex-
pression for coefficient of thermal conductivity (12).

A(x,y)8(x,y) (13)



As a result, we shall obtain:

%(Xy)ae aT 8, (- h)i(%o—%)N(yyyj,1);
MX, )a—e %_

n-1
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Considering expressions (14), original equation (10)
will take the form:

(|X| h)Z(XO _kj)N(y’yH)_
—g[xj+(xo —x_i)s,(h—|x|)]x
x[e y:yJBQ(y—yj)].

Therefore, the desired temperature field in the pre-
sented system is fully determined by equation (15) with
boundary conditions (11).

v O (v =y )- (14)

Y=Yint ul (y Vi ) -6

(15)

4. 2. 2. Analytical-numerical solution
Approximate functions 8(xh,y),8(x,y;) by expres-
sions [14]:

m—1
8(h,y)=60" + Y (8 —6")S_(y—y{");
k=1

p-1
B(x,y;) =07+ Y (6} —6{")S_(x-x)), (16)
I=1

X€|—x#—h[U]h;x+[;

t—1
B(x,y;)=067+ Y (6} —6{")S_(x—x,), xe[-h;h];

1=t
where yD*€lyiiyil; viP '<yr O'<<yma D5 xi€]-x
X[, X1<X9< . Xy, X<X9<..<X(-1; I, t, P is the number of
partitions of intervals Jy;.;yi[, [-hsh], ]=x«=h[U]h; x«[m
respectively; 0,00 (k=1,m), 6P (1=1,p+t), (j=1n)
are the unknown approximated values of temperature;
X, is the value of the x coordinate, in which temperature
t(x, y) is almost equal to ambient temperature t..

Substituting expressions (16) in relations (15), we

shall receive:
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Let us apply the integral Fourier transform by the x co-

ordinate t
regard to

o equation (17) and boundary conditions (11) with
ratio (13). Upon solving the obtained boundary

problem relative to representation T(&,y) of function of
T(x,y) and then passing over to the original, we shall receive
the solution to problem (10), (11) in the form:
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The unknown approximated values of excess
temperature 89" (k=1,m) and 6 (I1=1,p+t),
(j=1,n) will be found by solving the system of
n(m+p+t) linear algebraic equations obtained
from expression (18). Therefore, the desired tem-
perature field in a layered plate with a through-in-
clusion is expressed by formula (18). From this
formula we obtain temperature values in arbitrary
point of the structure “layered plate — inclusion”.

)_

y—yj)—N(yyyf) v,

4. 3. Isotropic thermosensitive plate with a
through-inclusion

4. 3. 1. The object of study and its mathe-
matical model

Let us consider a thermosensitive (thermal
parameters depend on temperature) plate, iso-



tropic relative to the thermal parameters, which contains a
through-inclusion (Fig. 1). With regard to thermal sensitiv-
ity of the system at the surfaces of inclusion Ki={(£h,y,z):
—I<y<l, |z|<8}, conditions for the perfect thermal contact will
be written in the form:

ot ot

t0=t1,ko(t)a—;=k1( )81 for |x|=h.

The distribution of temperature t(x,y) by spatial co-
ordinates, taking into account thermal sensitivity, will be
obtained upon solving the nonlinear equation of thermal
conductivity [10, 11]:

9 dt, 9 ot
—[Mx, ) — ]+ —| M(x,t)— | = 19
SIMx )aX1+ay[ (x >ay] (19)
with boundary conditions:
—o, & Zo & oy,
N ol
ot
A (t)=—| =-q,S_(h-|x]), 20
o )ay . q,S_(h—|x)) (20)

where A(x,0)=M () *+[1o()-A(D)]S (h—|x]) is the coefficient

of thermal conductivity of a non-uniform thermosensitive

plate; Lo(t), A(t) are the coefficients of thermal conductivity

of materials of the inclusion and the plate, respectively.
Introduce a linearizing function [15, 16]:

ﬁ(x,y)z[(TY)k1(C)dC+S_(x+h)><
t(x,y)
x [ [2@-M©]de+
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t(xy)
+5,(x=h) [ A= (©]dg,

t(hy)
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upon differentiating which by variables x and y, we shall
obtain:

ot 99
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+{[k0(t)—k1(t)]§;} S (x+h)-
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—{[M(t)—ut)]g;} S,(x=h). (22)
x=h

Considering expressions (22), the original equation (19)
will take the following form:

Am;{[x (- x(t)] H

0
—ay{[xo(t>—x1<t)]ay}

Boundary conditions with the use of relation (21) will
be written as:

S_(x+h)-
h

S,(x—h)=0. (23)
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Linearizing function (21) allowed us to reduce a non-lin-
ear boundary problem (19), (20) to the partially linearized
equation (23) with discontinuous coefficients with bound-
ary conditions (24), (25).

4. 3. 2. Analytical-numerical solution

Let us approximate function t(zh,y) by variable y
(Fig. 2) with expression (7) and substitute it in relations
(23), (25). As a result, we shall receive a linear differential
equation with partial derivatives relative to the linearizing
function:

Ad=
n—1

(t50 =t )[Ro(t) =R () S (h=[x)¥’ (y-y;)  (26)

=
with boundary condition:

09
—|  =-q,S_(h-|x].

27
o, (27)

Let us apply the integral Fourier transform by the x
coordinate to equation (26) and boundary conditions (27).
Upon solving the obtained boundary problem relative to
representation

(§ y)= J- B(x,y)edx

of function 9(x,y), and then passing over to the original, we
shall receive the solution to problem (26), (27) in the form:
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X[ shogl she(1-y,)-
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A system of nonlinear equations will be obtained by
using relations (21), (28) to determine the unknown approx-
imated values of temperature t; (j=1,n).

The desired temperature field for the specified system
will be defined by using the resulting nonlinear equation
employing relations (21), (28).




4. 3. 3. A partial example

In order to solve many practical problems, the following
dependence of thermal conductivity coefficient on the tem-
perature is applied [17, 18]:

A=) (1-k,t), (29)
where A%,k is the reference and temperature coefficients
of thermal conductivity of materials for an inclusion (m=0)
and a plate (m=1).

Considering ratios (29), from expressions (21), (28)
we shall obtain formulas for determining the tempera-
ture t(x,y):

—inregion Q, of the inclusion:

txy)

where
A y,t)= i{M(tH [ (D)= A, (DIS_(h—[x)IN(y,y,,)

is the coefficient of thermal conductivity of a non-uniform
plate; Aj(t), Ao(t) are the coefficients of thermal conductivity
of materials of the j-th layer of the plate and the inclusion,
respectively; yo=0; N(y,yj-0) =S+ (y-y;-1)-S+(y-y)).

Introduce a linearizing function [13]:
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—in region Q = ﬂ(x,y,z) : |x| >h, |y| <], |z| < 6} of the
plate (beyond the inclusion):
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Formulas (30), (31) completely describe a temperature
field in the thermosensitive structure “plate — inclusion”.

4. 4. Isotropic thermosensitive multi-layered plate
with a through-inclusion

4. 4. 1. The object of study and its mathematical model

Let us consider an isotropic thermosensitive layered
infinite plate with a through-inclusion (Fig. 3). With re-
gard to thermal sensitivity of the system at the surfaces of
layers Ki={(x, yj, 2): [x|<o0, |z]<8} (j=1n-1) and inclusion
K.={(zh, y, 2): 0<y|<y,, |z|<8} of the plate, conditions for the
ideal thermal contact will be written in the form:

at. at.,
4=t x.i(t)a*};: j+1(t) 8;71’

where y=y; (j=1n-1);

ot,

ot —
ty=t;, Ko(t)g—kj(t)a—xj (j=1,1) for |x|=h.

In the specified structure, it is necessary to determine
the distribution of temperature t(x, y) by spatial coordinates,
which we shall obtain upon solving the nonlinear equation of
thermal conductivity (19) with boundary conditions:

ol
b= X e OY |y,
ot
)"o(t)ai =—q087(h—|x|), (32)
y y=0

<]

t(xy;)
MOAE +S,(y=-yy) [ M@

0

(33)

By differentiating expression (33) by variables x and y,
we shall obtain:

ot 99
}"(X’y’t)aix_aix_E(XvY)y
Ay, 028 =20 E ), (34)
dy dy
where
FL(6y)=S.(x ~h)x
xﬁ{[(%(t)—%(t))iﬁ] S.(v-y,0-
at
—[(ko(t)—?»j(t))a—] S+(y—yj)},
X Ny,
Fz(X’Y)=Sf(h—|X|)i[(7~o(t)—l_;(t))gf;] N,y )
= Ii=h

Considering expressions (34), the original equation (19)
takes the following form:

>0

]
- 35
dy’ ox (35)

[F )1+ {F, ()] =0.
y

Boundary conditions (32) using ratio (33) will be writ-
ten as:

:Oyai

00
=0
dy

" ax

9

Wi =-q,S_(h—[x]). (36)

x> Y=Ya y=0



Linearizing function (33) allowed us to reduce a non-
linear equation of thermal conductivity (19) to the partially
linearized equation (35) with discontinuous coefficients and
completely linearized boundary conditions (36).

4. 4. 2. Analytical-numerical solution
Let us approximate functions t(+h, y), t(x, yj) by expres-
sions:

m-1
thy) =t + 3 () -t)S (y -y,
k=1

p-1
ey =t + Y (] - t")S_(x-x)), 37)
11
where yi O"€lyi yil: yi ©'<ys "< <ynq O x€lh; xo[;
X(<X9<...<Xp.; M, P is the number of partitions of intervals
1yi-yil and Jhx[, respectively; t0™ (k=1,2,..,m), t (1=1,p)
are the unknown approximated values of temperature; x, is
the value of the x coordinate, in which temperature is almost
equal to zero (to be found from the corresponding linear
boundary problem).
By substituting expressions (37) in relation (35), we
shall obtain a linear differential equation with partial deriv-
atives relative to linearizing function 9(x,y):

n p-l m-1

A=Y [ Y FP(B (x-x)=S_(h=[x) Y E (] (38)

=t 1=t k=1

Here
FV () = (620 =t D (620 = A (ED) I8 (v = v

EP ()=t =t (457 = A ()18, (v =y ) -
~(t =t (LD = A (DS, (v =y)-

Let us apply the integral Fourier transform by the x
coordinate to equation (38) and boundary conditions (36).
Upon solving the obtained boundary problem relative to
representation ﬁ(&,y) of function 9(x,y), and then passing
over to the original, we shall receive the solution to problem
(38), (36) in the form:

) ::jé{i{gsini(x—Xl)(((1—ch§(y—yj1 ))S+ (y —YH)+

0

e she(y, —y“)) (6 =67 ) (2=, 1557) -

~(1-ch&(y-y))S,(y-y)+

chéy S . _
* ey ShE0. -y, >j(tm — ) (Aot Mtﬂi))} -
m—1

—~2sin&hcos&x Y, (61 =t (A (1)) =, (£ ) x
k=1

X(ch&(y =y ).y =y )= (62 —t) (Ao (2 =2, ()

The desired temperature field for the specified structure
will be defined by using the resulting nonlinear equation
with ratios (33), (39).

4. 4. 3. A partial example

Let us apply a dependence of thermal conductivity coef-
ficient on the temperature in the form:

A =20(1-k,t), (40)
where Al,k_ are the reference and temperature coefficients
of thermal conductivity of materials for the inclusion (s=0)
and the j-th layer of the plate (s=j), j=1,n. From expres-
sions (33), (39) we shall obtain formulas for determining the
temperature t(x,y) for a two-layer plate (n=2) in region Q=
={(x,y): |x|>h, 0<y<y;} of the first layer beyond the inclusion:

1- 1—2%(19“31)
1

t= s
k,

(41)

in region Qo={(x,y): [x|>h, yi<y<ys} of the second layer be-
yond the inclusion:

1- 1—2%(1%132)
t= 2

, (42)

T

in region Q3={(x,y): [x|<h, 0<y<y,} of the inclusion of the
first layer:

1- 1—25(19“33)

t= k° , (43)
0

in region Q;={(x,y): |x|<h, y;<y<y»} of the inclusion of the
second layer:

1- 1—2%@9“&4)
0

t= . (44)
k()

:
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A system of nonlinear equations will be obtained T A [

using relations (33), (39) for determining the unknown
approximated values of temperature t{" (k=1,m) and
ti” (1=1,p).

the values of temperature t(x,0) will be found by formula
(31); t(zh)y) , t(x,y1) — by formula (41).



Formulas (41), (44) fully describe a temperature field in
the thermosensitive two-layered infinite plate with a foreign
through inclusion.

5. Analysis of the obtained numerical results

Let us consider a two-layered plate with uniformly
distributed heat sources at the surfaces of layer interface
(Fig. 4). Suppose that at the boundary surfaces of plate
y=-y1, y=Yy3, temperature is t;=0 °C, ty=700 °C, respectively.
Material of the plate’s layers is steel U12 and 08.

T 1
| |
| 1
N oo
\ |
L 0 ]
! I
! I
1 I
I

I

|

i @ Y2

1

»y
Fig. 4. Two-layered plate

In the temperature range of [0 °C; 700 °C] these mate-
rials are described by the following dependences of thermal
conductivity coefficient on the temperature:

A()= 47,5W(1 - 0,000371‘5),
Km K

W 1
A, (t)=64,5——1-0,00049—t |.
.(©) Km( < ) (45)

We performed numerical calculations of temperature
field for a linear model (constant thermal conductivity coeffi-
cient of materials of layers of the plate; A4=38.7W/(Km), ko=
=48.7W/(Km)) (Fig. 5, curve 1). The distribution of tempera-
ture for a nonlinear model (linearly variable thermal conduc-
tivity coefficient of materials of layers of the plate, expressed
by ratios (45)) is shown in Fig. 5 (curve 2); y1=y;=1 m.

t, C|
600 _—

400 ] %

200

-1 —0,6 -0,2 0,2 0,6 y,m

Fig. 5. Dependence of temperature t on the y coordinate for
a stable (curve 1) and linearly variable (curve 2) coefficient of
thermal conductivity of materials of layers of the plate

Behavior of the curves indicates conformity of the math-
ematical model with a real physical process because at the
surfaces of layer interface of the plates (x=0) we observe how
conditions for an ideal thermal contact are satisfied (tempera-

ture jump is missing). The results obtained for the chosen
materials by a linear dependence of thermal conductivity
coefficient on the temperature differ from the results obtained
for a stable coefficient of thermal conductivity by 15 %.

6. Discussion of results of examining the mathematical
models for the thermal conductivity process

In the process of developing and examining the linear
and nonlinear mathematical models of the thermal conduc-
tivity process for designs that are geometrically described by
the presented piecewise uniform structures, we established
that the numerical results of temperature field for the exam-
ined materials in the case of a stable thermal conductivity
coefficient and a linearly variable one differ by 15 %. This
indicates that taking into account the dependence of ther-
mal-physical parameters on the temperature of materials
of design elements in complex systems is important, as the
results obtained with the use of nonlinear models are more
accurate. Important in the studies presented is also the con-
sideration of piecewise-uniform structure of the elements in
designs, which considerably complicates the solution of the
appropriate linear and nonlinear boundary problems, but
the solutions to these problems describe the distribution of
temperature more adequately in terms of real process.

7. Conclusions

1. We developed a mathematical model for calculating
the temperature field in an isotropic plate with a through-in-
clusion. The analytical-numerical solution constructed for
the entire system as a single entity allows us to analyze the
distribution of temperature in the inclusion and in the plate
using spatial coordinates.

2. A mathematical model for the calculation of tempera-
ture field in an isotropic layered plate with a through-inclu-
sion is built. The analytical-numerical solution constructed
for the entire system as a single entity makes it possible to
analyze the distribution of temperature in the inclusion and
in the layers of plate using spatial coordinates.

3. We devised a non-linear mathematical model for the
calculation of temperature field in a thermosensitive isotro-
pic plate with a through-inclusion. A linearizing function
is introduced, which allowed us to linearize the original
non-linear boundary problem on thermal conductivity and
obtain, for a linearly variable thermal conductivity coeffi-
cient, calculation formulas for determining the temperature
field in an inclusion and in a plate.

4. A non-linear mathematical model for the calculation
of temperature field in a thermosensitive isotropic layered
plate with a through-inclusion is developed. We introduced
alinearizing function, which made it possible to linearize the
original non-linear boundary problem on thermal conductiv-
ity and receive, for a linearly variable thermal conductivity
coefficient, calculation formulas for determining the tem-
perature field in an inclusion and in the layers of plate.
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