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However, the analysis of existing technical solutions, 
development and improvement of methods for obtaining the 
effective metal oxide catalysts remain relevant.

2. Literature review and problem statement

In the heterogeneous catalysis, the most common are the 
catalysts based on titanium dioxide in the form of powders 
with different dispersiveness [11]. The higher catalytic prop-
erties in this case are demonstrated by the the nano-struc-
tured oxide systems that have large specific surface [12].

It should be noted, however, that from the point of view 
of the application convenience, a better technological form 
of a catalyst are the thin-film oxide coatings, formed directly 
on the main metal-carrier by the method of plasma-electro-
lytic oxidizing (PEO).

A plasma-electrolytic treatment of titanium in the elec-
trolytes of different composition makes it possible to obtain 
in one stage the uniform coatings of titania. The matrix of 
base metal is incorporated with the oxides of components of 
electrolyte, as well as the products of thermochemical and 
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1. Introduction

Intensive economic activity and increase in the pro-
duction capacities of different sectors of industry lead 
to the growth of the pollution of air and water basins by 
toxic substances of different nature and chemical stabili-
ty. Given this, the organization of removal of natural and 
technogenic contaminators from air and aqueous medium 
is impossible without the use of effective and accessible 
catalysts.

At present, however, there is no a universal device or a 
substance, which makes it possible to solve the indicated 
problem. Nevertheless, the attention of researchers is drawn 
among many applied materials to the oxides of titanium 
[1]. Catalysts based on TiO2 possess a wide spectrum of 
functional properties, because of which they are effectively 
employed in the organic synthesis [2], chemical [3] and paint 
and varnish industry [4], in the systems of air [5, 6] and wa-
ter purification [7, 8]. Of particular scientific interest, due 
to the high chemical inertness, affordability, low toxicity of 
the products of purification, are the photocatalysts based on 
TiO2 [9, 10].
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electrochemical transformations. The composition and prop-
erties of the formed oxide layers depend on the nature of ox-
idized metal, parameters of the electrolysis process and the 
components (dopants) of the utilized electrolytes [13, 14]. Of 
special interest is the oxide systems with nonstoichiometric 
composition, since the rate of electrochemical and chemical 
processes grows at an increase in the degree of deviation 
from the stoichiometry.

In order to enhance the functional properties of the ob-
tained oxide systems, the composition of surface layers can 
additionally be introduced with the nonmetals, the transi-
tion, rare and trace elements.

In article [15], PEO of titanium in orthophosphoric acid 
with the addition of copper nitrate made it possible to ob-
tain porous oxide coatings of titanium phosphates with the 
inclusions of copper ions. Such coatings possess bactericidal 
properties. 

The authors of [16] received composite coatings Ti/
TinOm∙ZrxOy that demonstrate photocatalytic properties by 
oxidizing the titanium in electrolytes with the addition of 
zirconium oxide.

In order to increase the catalytic activity, it is also ex-
pedient to introduce ions of the polyvalent metals into the 
composition of materials [17]. 

The authors of [18] formed on the alloys of titanium and 
aluminum the oxide-phosphate coatings doped with nickel 
and iron at the anodic and anode-cathode polarization of 
working electrodes. The increased chemical and thermal 
resistance characterizes the obtained systems. 

In paper [19], the mixed oxide systems doped with man-
ganese are synthesized by the oxidizing in the electrolyte 
based on potassium permanganate.

To obtain the PEO-coatings on valve metals, it is also pos-
sible to use polyphosphate electrolytes. In paper [20], authors 
obtained the oxide coatings of nickel and zinc with a broad 
range of the concentrations of dopants. Article [21] is devoted 
to the formation of mixed oxide systems TixZnyOz from the 
alkaline electrolytes based on diphosphate with the addition 
of zinc oxide. In paper [22], silicate electrolyte with the addi-
tion of cobalt acetate was used to obtain the oxide coatings 
of titanium with cobalt. The PEO of titanium was conducted 
in one stage at effective current density 10–20 A/dm2 during  
10 min. In order to increase the catalytic activity of coatings 
in the CO oxidation reaction, the impregnation and annealing 
of the obtained oxide systems were additionally used.

In order to optimize the technological process of obtain-
ing the catalytically active materials, it is expedient to use 
plasma-electrolytic oxidizing. This regime of synthesis of the 
mixed oxide systems makes it possible to incorporate, in one 
stage, active constituents into the matrix of oxide of a base 
metal. This will allow receiving functional materials with the 
high content of dopants and with a wide scope of application.

3. The aim and tasks of the study

The aim of present work is a single-stage formation on 
the titanium alloys by the method of plasma-electrolytic ox-
idizing of TiO2 functional coatings with metals of iron triad.

To achieve the set aim, the following tasks are to be 
solved:

– to substantiate the selection of components of electro-
lytes for obtaining the TiO2 oxide coatings with metals of 
iron triad;

– to propose the mode of plasma-electrolytic oxidizing 
for receiving the catalysts based on titanium oxide with 
transition metals;

– to establish a relation between the composition of 
electrolyte and the content of alloying additives in the oxide 
coatings;

– to examine the composition, morphology and proper-
ties of the obtained metal-oxide systems.

4. Procedure for obtaining the oxide coatings of titanium 
dioxide with metals of iron triad, a study of  

the composition, morphology and properties

4. 1. Electrolytes and PEO modes
The coatings with complex oxides TiOx∙MOy (M= 

=Fe, Co, Ni) were formed on the alloys of titanium VT1-0 
and OT4-1 by the method of PEO under galvanostatic mode 
with the use of the direct current source B5–50 at current 
density 1–5 A/dm2, voltage 120−160 V. Electrochemical 
treatment was conducted in the solutions that contained 
diphosphate, citrate of alkali metal, as well as the cations of 
coprecipitated metals Fe2+, Co2+, Ni2+ (Table 1). The process 
of oxidizing was carried out for 30−60 minutes at constant 
agitation of the electrolyte. The flow circulation cooling 
maintained temperature within the limits of 20−25 ºС.

Table 1

Composition of electrolytes and parameters of the synthesis 
of oxide systems

No.

Electrolyte composition
Current 
density i, 

A/dm2

Voltage 
sparking 

Us, V

Maximum 
voltage, 
Umax, V

Compo-
nents

Concen-
tration, 

mol/dm3

1
K4P2O7 

Na3C6H5O7 
FeSO4

0.3 
0.1 
0.1

1.0−5.0

75−80 120−135

2
K4P2O7 

Na3C6H5O7 
CoSO4

0.3 
0.1 
0.1

80−85 130−140

3
K4P2O7 

Na3C6H5O7 
NiSO4

0.3 
0.1 
0.1

90−95 145−160

A pretreatment of the samples included mechanical 
cleaning from the technological impurities, degreasing in 
the 0.2–0.3 M solution of NaOH, etching in the mixture of 
acids 0.1–0.3 M HF and 0.3–0.9 M HNO3, washing with 
the distilled water.

4. 2. Methods of examining the oxide coatings of tita-
nium dioxide with metals of iron triad

In order to explore the morphology of surface of the ob-
tained catalytic materials, we used the scanning electronic 
microscope ZEISS EVO 40XVP (Germany). Chemical 
composition of the surface oxide layers was determined on 
the energy-dispersion spectrometer Oxford INCA Energy 
350 (Great Britain) with the integrated programming envi-
ronment SmartSEM.

Research of corrosion behavior of titanium alloys with 
the oxide coatings was conducted by the method of imped-
ance spectroscopy using the automatic alternating-current 
bridge P-5083 (Ukraine) in the range of frequencies 20–
1×105 Hz in the medium of 0.1 M NaCl by sequential scheme 
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with the use of auxiliary electrodes – the coplanar plates 
made of corrosion-resistant steel X18H10T [23]. 

Catalytic activity of the oxide systems was tested in the 
reaction CO oxidation in CO2. Experimental studies were 
carried out using the laboratory bench in a tubular flowing 
reactor, as it is indicated in article [24].

5. Results of obtaining the oxide coatings on the alloys of 
titanium

As was previously demonstrated [19, 24], the use of 
diphosphate electrolytes for the PEO of aluminum and tita-
nium alloys makes it possible to obtain oxide systems with 
different content of metals in a coating.

In order to form the mixed oxides of TiO2 with metals of 
iron triad (Fe, Co, Ni), the composition of working solutions is 
introduced with an additional ligand – citrate-ion. This ensures 
an increase in the stability and operation period of the utilized 
electrolytes due to the formation of sufficiently stable complex-
es of the composition [MCit]– [25], and it also contributes to 
the more uniform distribution of metals-dopants in coatings. 

The chronograms of interelectrode voltage for the mixed 
oxide coatings (Fig. 1) take a classical form with three char-
acteristic sections. In the pre-spark region (section 1), the 
U(t)-dependences are practically linear since in the first  
2–3 minutes there occurs the formation of the barrier titani-
um oxide with the current output close to 100 %. 

In the electrolytes that contain Fe(II) and Co(II), the 
oxidation of particles and formation of the mixed oxides of 
TiO2∙M3O4 occurs even in the pre-spark region (Fig. 1).

With the onset of sparking (section 2), an increase in 
the voltage considerably slows down as a result of the break-
down of TiO2 barrier film, the rate of formation of titania is 
lowered, and the oxides of M3O4 dopants undergo thermal 
decomposition. A transition into the region of micro-arcs 
(section 3) is characterized by insignificant change in the 
voltage and by relative stability of the process while the 
range of PEO voltages is in the interval of 120−160 V.

Fig. 1. Chronograms of interelectrode voltage of the systems 
based on titanium oxides and metals of iron triad:  

1 – pre-spark region, 2 – region of sparking, 3 – region of 
micro-arcs. Ion-dopant concentration in the electrolyte is  

0.1 mol/dm3. Current density is 1 A/dm2

It was established that the dependence of spark voltage 
on the concentration of dopant is linear for all electrolytes 
(Fig. 2). The spark voltage grows in a series Fe<Co<Ni.

Dependences of the rate of change in voltage dU/dt on 
the applied voltage (Fig. 3) are also analogous for all dopants 
by form.

Fig. 2. Dependences of spark voltage on the concentration of 
dopant in the diphosphate-citrate electrolyte:  

1 – Fe2+; 2 – Co2+; 3 – Ni2+

Fig. 3. The rate of change in the interelectrode voltage of  
the mixed oxide coatings vs the voltage. The concentration 

of dopant is 0.1 mol/dm3. Current density is 1 A/dm2

The extremum, related to the thermal dissociation of the 
oxides of polyvalent metals, occurs in the transition to the 
region of sparking on all dependences. 

Results of microscopic examinations of the morphology 
of coatings TiOx∙FeOy; TiOx∙CoOy and TiOx∙NiO testify to 
the formation a toroidal structure of surface (Fig. 4); in this 
case, the porosity of coatings is lower in comparison with the 
oxide systems TiOx∙MnOy [24].

In the course of studies of the element composition of 
the coatings, synthesized on the alloy OT4-1, we discovered 
(Table 2) the traces of manganese.

Table 2

Element composition of coating with the mixed oxides on  
the alloy OT4-1

Electro-
lyte

Element composition, % by mass

С О Na P K Ti Mn Fe Co Ni

1 5.98 46.06 1.24 17.07 5.56 18.38 0.19 5.23 − −

2 6.22 44.54 1.39 16.60 7.24 15.82 0.23 − 7.76 −

3 6.24 46.28 0.58 16.59 4.94 21.65 0.22 − − 3.17

On the alloy OT4-1, we also obtained a mixed oxide 
system, which includes all metals form the family of iron  
(Fig. 5). The formed coating has the following composition, % 
by mass: Ti – 16.54; O – 44.73; P – 16.7; Fe – 2.05; Co – 
2.74; Ni – 2.36, the rest are impurities.
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Fig. 5. Microphotographs of the surface of coating with  
the mixed oxides TiOx·(FeCoNi)Oy on OT4-1:  

a – magnification ×200; b – magnification ×500

According to the results of testing the corrosion resis-
tance of the mixed TiO2 coatings with metals of iron triad, 
we determined the deep corrosion indices kh (Fig. 6).

Fig. 6. Deep corrosion index of metal oxide 
systems TiOx·MOy in 0.1 M NaCl

Testing the catalytic activity of coat-
ing with the mixed titanium oxides with 
nickel, cobalt and iron is carried out in 
the model reaction of oxidation of carbon 
oxide (II). It was established that the 
ignition temperature Ti, which matches 
the start of effective work of the catalyst, 
is in the interval of 250−270 °С, whereas 
for platinum it is 200 °C. The oxide sys-
tems TiOx∙CoOy, TiOx∙NiO, TiOx∙FeOy at  
420 °С ensure the degree of CO conver-
sion at 68 %, 57 % and 46 %, respectively 
(Table 3). Complete conversion of carbon 
mono-oxide on these materials is achieved 
at temperature higher than 500 °С.

Table 3

Characteristics of coating with the mixed oxides

Electrode 
material

Content of alloying 
component ω, % by 

weight

Conversion 
degree Х, %

Ignition tem-
perature Тi, °С

Pt [25] 100
100 200

Ptexp 100

TiOx∙CoOy Co–7.7 68 280

TiOx∙NiO Ni–3.2 57 270

TiOx∙FeOy Fe–5.2 46 290

6. Discussion of the composition, morphology and 
properties of the oxide coatings on titanium alloys

The character of chronograms of the interelectrode 
voltage (Fig. 1), the antibatic dependence of spark voltage 
on the concentration of dopant in the electrolyte (Fig. 2), 
as well as impact of the nature of cation-dopant on the 
spark voltage (Fig. 3), all are predetermined by a number 
of circumstances. 

First, iron and cobalt, in contrast to nickel, are the poly-
valent metals; therefore, they can form a number of oxides 
with variable composition, including those nonstoichiomet-
ric (M3O4) that are the systems of the spinel type. It should 
be noted that the stability of oxidation degree +3 decreases 
in a series Fe>Co.

Second, the oxides of different composition differ by the 
value of specific resistivity (Table 4), which depends on the 
number of cation vacancies and oxygen in a crystal lattice, 
as well as on temperature. The thermal resistance of oxides 
is reduced both with the increase in the metal oxidation 

  
a                                                                  b 

 
 
 
 
 
 
 
 
 
 
 

c  
Fig. 4. Microphotographs of the surface, and the composition of oxide coatings 

on ВТ1-0: a – TiOx·FeOy; b – TiOx·CoOy; c – TiOx·NiO. Magnification ×200
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number and in a series: Fe3O4>Co3O4; the oxides of the 
MO composition prove to be the most thermoresistant.

Table 4

Specific resistivity and thermal resistance of the oxides of 
iron triad metals 

Metal Oxide
Specific resistivity ρ 

(Ω∙cm) at 293 K
Thermal resistance

Fe

FeO
105–108 

semiconductor of the 
p-type

–

Fe2O3 105–108 1500–1690 K 
6Fe2O3→4Fe3O4+O2

Fe3O4

4∙10–3 

degenerated  
semiconductor

T>1900 K 
2Fe3O4→6FeO+O2

Co
CoO 106–1010 –

Co3O4 4∙103–105 1200–1230 K 
2Co3O4→6CoO+O2

Ni
Ni1–xO 106–1013 –

NiO 1013–1015 –

A decrease in dU/dt in the pre-spark region (Fig. 2) is 
caused by the oxidation of the cations of dopants and by 
incorporation in the composition of the surface layer of more 
electro-conductive oxides and hydroxides. For the nick-
el-containing electrolytes, the appearance of an extremum is 
caused by the formation of cation vacancies and by the cor-
responding increase in the specific electrical conductivity. 
Further reduction in the rate of change in voltage in the re-
gion of sparking and micro-arc discharges is connected with 
an increase in the thickness of coatings and the introduction 
of the oxides of dopants during a stable degree of oxidation.

An analysis of surface morphology of the synthesized 
oxide systems (Fig. 4) allows us to draw a conclusion that 
the highest content of dopant and the minimum size of grain, 
other conditions being equal (identical concentration of salts 
in the electrolyte and unchanged modes of electrolysis), are 
demonstrated by the systems TiOx∙CoOy.

At the surface of systems TiOx∙CoOy (Fig. 4, a) there 
appear spheroids, as a result it becomes more developed 
and relief. The nickel-containing mixed oxides are charac-
terized by the formation of larger globules, which overlap 
pores (Fig. 4, c). 

An analysis of the element composition of oxide systems 
(Fig. 4) indicates the inclusion in the matrix of Titania of 
alloying metals Fe, Co, Ni, as well as phosphorus and potas-
sium. The content of dopants in coatings grows with an in-
crease in the current density and ratio of the concentrations 
of ligands diphosphate/citrate. 

Manganese is included into the composition of alloy 
OT4-1 in the amount of 0.7−2.0 % by mass. That is why the 
presence of this element in the coatings (Table 3) is prede-
temined by the formation of its oxides in the process of PEO. 
There is a possibility of an alternative two-stage path for the 
inclusion of manganese into the composition of coatings. The 
ionization of manganese and the transition into the electro-
lyte with the formation of complex particles occur at the ini-
tial stage. At the second stage, under the action of electrical 
discharges, there is the incorporation of manganese oxides 
into the composition of the formed layers.

Compositional analysis of the mixed oxide system TiOx× 
×(FeCoNi)Oy reveals that the content of dopants in a coat-

ing differs unessentially since the salt concentration in the 
electrolyte is identical. A smaller amount of iron is explained 
by the formation in the solution of more stable complexes 
Fe(II) with both ligands [26, 27]. The stability of electrolyte 
in this case substantially grows. The complexes of cobalt 
with citrate- and pyrophosphate ions are the least stable, 
which explains its content in the coating, the largest in the 
row of the indicated metals. The morphology of surface of a 
multicomponent oxide includes elements of all three types of 
the structures: microporous, characteristic for TiOx∙CoOy, 
globular relief of TiOx∙NiO and toroidal of TiOx∙FeOy.

Results of testing the corrosion resistance of oxide 
systems testify to the high protective properties of the coat-
ings, which contain oxides Fe, Co and Ni. The TiOx∙CoOy 
coatings manifest the largest corrosion resistance among the 
systems being investigated. 

An analysis of the catalytic activity of coating with the 
mixed oxides in the reaction of CO oxidation testifies to an 
increase in the conversion degree in the row:

FeOy<NiO<CoOy<Pt

and reduction in the ignition temperature in the row:

FeOy>CoOy>NiO>Pt.

Based on the aforementioned, it is possible to argue that 
Pt, the oxides of FeOy and NiO demonstrate high catalytic 
activity in the reaction of oxygen release with the formation 
of the O–O bond. The CoOy system is distinguished by high 
activity in the oxidation processes, which are accompanied 
by the destruction of the O–O bond. This particular influ-
ence ensures an increase in the rate of CO oxidation to CO2.

Thus, the mixed oxide systems TiOx∙MOy (M=Mn, Fe, 
Co, Ni) of the varied thickness and morphology, obtained as 
a result of PEO of titanium alloys, can find their application 
in the catalytic systems of air and water purification.

7. Conclusions

1. We substantiated the choice of component composi-
tion of PEO electrolytes of titanium alloys for the formation 
of coating with the mixed oxides with metals of iron triad. 
The citrate-pirofosfatnye electrolytes are proposed with the 
addition of sulfates of iron triad metals for the formation of 
oxide systems with a varied content of dopants. The intro-
duction of an additional ligand contributes to an increase 
in the stability, operation period of working solutions and 
to the more uniform distribution of metals-dopants in the 
coatings.

2. A technique for obtaining the metal-oxide catalysts 
TiOx∙MOy (M=Fe, Co, Ni) by the method of plasma-electro-
lytic oxidizing is proposed. The electrochemical treatment 
of titanium alloys in the citrate-diphosphate electrolytes 
at voltage 120–160 V makes it possible to form the mixed 
metal-oxide systems with the content of iron triad metals 
at 3–8 at. %. It is shown that the antibatic dependence of 
spark voltage on the concentration of dopant in an electro-
lyte is caused by an increase in electrical conductivity of the 
growing mixed oxide as a result of the higher conductivity 
of oxides of dopants.

3. Depending on the nature of dopant, the surface of 
coating with mixed oxides has a different structure. The Ti-
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Ox∙CoOy coatings are microporous, the TiOx∙NiO coatings 
have a globular relief, the TiOx∙FeOy coatings are toroidal. 
The porosity and size of the grains of coating with the mixed 
oxides grow in the row of dopants cobalt – nickel – iron.

4. The obtained oxide coatings are characterized by the 
developed toroidal surface, enhanced corrosion resistance 
and high catalytic activity in the carbon (ІІ) oxide conver-
sion reaction.
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Розроблено епоксикомпозитні матеріали 
триботехнічного призначення, які здатні реа-
лізувати ефект вибіркового перенесення під 
час трибовзаємодії. Досліджено вплив різно-
функціональних наповнювачів на зносостій-
кість епоксикомпозитів, що експлуатуються в 
жорстких умовах навантажувально-швидкіс-
них режимів трибовзаємодії. Визначено хіміч-
ний склад і проаналізовано структуру трибо-
поверхонь епоксикомпозитних матеріалів та 
контртіла. Встановлено послідовність етапів 
формування фрагментів захисної мідної плівки 
на дотичних поверхнях триботіл

Ключові слова: епоксикомпозитний матері-
ал, порошок оксиду міді, хімічний аналіз, вибір-
кове перенесення, трибоповерхня, контртіло

Разработаны эпоксикомпозитные материа-
лы триботехнического назначения, которые спо-
собны реализовать эффект выборочного пере-
носа при трибовзаимодействии. Исследовано 
влияние разнофункциональных наполнителей на 
износостойкость эпоксикомпозитов при жест-
ких условиях нагрузочно-скоростных режимов 
трибовзаимодействия. Определен химический 
состав и проанализирована структура трибо-
поверхностей эпоксикомпозитных материалов 
и контртела. Установлена последовательность 
этапов формирования фрагментов защитной 
медной пленки на соприкасающихся поверхно-
стях триботел

Ключевые слова: эпоксикомпозитный мате-
риал, порошок оксида меди, химический анализ, 
выборочный перенос, трибоповерхность, кон-
тртело
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