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IIpoeedeno xomnaexcny ouinky 36’a3Kie Kpume-
piie onmumanviocmi npouecy Oypinns ceeponosuit
(Mminimymie cobieapmocmi 1 M npoxooxu i numomux
eumpam enepeii) 3a 00nomoz20t0 memody Dappapa-
Ino6epa. Busnaueno, wo cnocmepizacmvcsa noeHa
MYJMUKONIHEAPHICMb MIJHC 00CALONCYBAHUMU KPU-
mepiamu npu 3mMini 0Cb060i cunu Ha 00J0Mo i Hacmo-
mu 1020 o6epmanns. 3anponorHosano oyanicmuuHui
nioxio 00 eupiuenns 3a0aui ONMUMATILHOZO YNPae-
Ainnsa npouecom Gypinna i popmyeannsa xpumepiio
onmumManbHOCMi Ha 3aca0ax exnepzoingopmauiino-
20 nioxoody

Knouoei crosa: onmumanvie ynpasuinus, npo-
yec Oypinna, xpumepii onmuMarbHOCMi, 63AEMO-
36’a3xu, memoo Pappapa-Thodepa
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MUPOBAHUSL KPUMeEPUS ONMUMATLHOCIMU HA OCHOGE
IHEP2OUNPOPMAUUOHI020 NOOX00A

Knoueevie cnosa: onmumanvroe ynpaeienue,
npouecc Gypenus, Kpumepuu oNMUMAILHOCMU, 63A-
umoceasu, memod Dappapa-Iodepa
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1. Introduction

One of the key technologies in the extraction of hydrocar-
bons is the process of drilling wells. This is an irreproducible
non-stationary non-linear stochastic-chaotic process that
evolves over time under the influence of disturbances, which

requires making optimal control decisions under conditions
of a priori and current uncertainty about the parameters and
structure of the object. The object is related to the class of
MI-MO (multiple input-multiple output).

The basic optimality criterion of the well drilling process
is the cost per meter — C-criterion. The models of C-criterion




in the parameter space of a drilling mode (axial force on bit
F, bit rotation frequency ® and the consumption of washing
fluid Q) are typically characterized by a unimodal form [1]:

T
Cx)= %J.CT (u,f,t)dt T)min; N< Nadd.’
0

where T is the duration of drilling a well, teT; Cr is the
current value of the cost per meter of drilling; u are the
controlling actions (drilling mode parameters); f are the con-
trolled and uncontrolled disturbances (strength, hardness,
abrasivity, rock drillability, ductility of rocks, etc.; reservoir
pressures, friction in a column of drill pipes in a well, etc.);

[(B0,0)
we {wmin’mmax};Q € {Qmin’Qmax} 7

Fe {Fmin ’ Fmax};

i=12,..,M’

M is the number of levels of depth in wellbore H, H=
=const is the design depth of wellbore

M
H= Zhi;
i=1

h; is the footage per bit in the i-th run; N is the power spent
for the destruction of rock.

It should be noted that the current value of the cost per
meter of drilling also depends on the price and durability of
rock cutting tools, drilling depth, time spent on the lower-
ing-lifting and auxhilary operations; energy consumed by
the drives of a rig. The impact of each factor on the cost of
drilling is quite significant and it should be taken into ac-
count when optimizing the process of control over drilling
on-line and selecting the criterion of optimal management.

The task of optimizing the process of control over drill-
ing is complicated by the fact that the models employed to
calculate the cost per meter of drilling include the duration
of drilling with one bit and the footage per bit. However,
they can be defined only upon completing the bit run, bits,
which lasts for several tens of hours.

That is why such additional criteria are used as the max-
imum of run drilling speed

V,(X)—g—>max;N<N,

or the maximum of footage per bit

h;(x)—=—>max;N<N_ ;.

When drilling in low depths, there is a significant difference
between the performance indicators obtained when using the
criteria of minimal cost per meter of drilling and maximal run
drilling speed and maximal footage per bit. In the large depths,
however, this difference is very small and it can be neglected.

The use of different optimization criteria, which change
one by one in a certain sequence depending on the depth of
a well, complicates the process of determining the cost per
meter of drilling and estimating the total expenditures on
drilling a well.

However, to measure the cost per meter of drilling a well
in real time is impossible since the conditions of drilling are
not stable. Therefore, it is a relevant scientific-applied task to
identify relations between the cost per meter of drilling and
other indicators, for example, specific summarized energy cost,
which can be controlled on-line using modern technical means.

2. Literature review and problem statement

The problem of automated control over the process of
drilling oil and gas wells has been the object of constant
attention from foreign researchers. 2009 saw successful
implementation of the SCADA Drill system to control the
process of drilling by the company Shell, the ultimate goal
of which was to expand capabilities of the system for dif-
ferent purposes of drilling [2, 3]. Specialists from Schlum-
berger developed a module for the ROPO optimization of
deepening a well. It operates in real time and determines
optimal values for the bit speed rotation and the load on
the bit in a set of complex of restrictions for reaching the
maximum speed of drilling [4]. The Schlumberger compa-
ny developed several programs to accelerate drilling and
control the trajectory of drilling. They aim at improving
productivity as well as overall management of the process
of drilling a well [5].

In 2008, a drilling control automated system was test-
ed on the platform Statfjord C in the Norwegian zone of
the North Sea [6]. This technology aims to reduce the
non-productive time during drilling operations by enter-
ing the operational data into the system directly on the
drilling equipment, automation of auxiliary operations in
the management of drilling and identification of emergen-
cy situations.

Some issues on the automation of the drilling process,
in particular interrelations with other sectors of indus-
try [7], were discussed at the international conference in
Amsterdam. Automation experts studied the role of bits
in obtaining the information about the process of deep-
ening a well [8], the results of testing the drilling process
automation systems on the fields of Argentina [9]. Further
development of the drilling process automation [10], the
prospects of developing the control over drilling in real
time [11] were considered and examined by scientists in
Norway, Argentina, Austria, Mexico, Great Britain, the
USA and other countries.

Significant contribution to the studies into this problem
was made by the Ukrainian scientists. Optimal control over
the process of drilling with one controlling action (axial
force applied to a bit) was explored in article [12]. Paper [13]
proposed a fuzzy model for monitoring the cost of drilling
oil and gas wells. The optimal consumption of a washing
fluid for drilling the wells of diameter 215.9 mm was exam-
ined in article [14]. Development of methods for the signal
identification of rock drillability in real time was outlined
in paper [15].

The development of models for managing the process
of drilling deep wells based on fuzzy logic was proposed
in [16].

At the same time, still insufficiently developed are the
scientific and methodological provisions for assessing the
multicollinearity of basic criteria for the optimal control
over the process of drilling the wells, which are the cost per
meter of drilling and specific energy consumption, as well
as the substantiation of applying the energy-informational
approach to manage the process of drilling in real time.

3. The aim and tasks of the study

The aim of present work is the substantiation for using in
order to control the process of drilling the wells a criterion



of “minimum specific energy consumption” based on the
analysis of interrelations between this criterion and the cost
per meter of drilling.

To achieve the set aim, the following tasks were formu-
lated:

— to analyze interrelations between such criteria of opti-
mal control over the process of drilling the wells as the cost
per meter of drilling and specific energy consumption;

—to establish the degree of completeness of multicol-
linearity among the examined criteria;

—to compile the recommendaions for the criterion of
optimal control over the process of drilling the wells with
regard to the energy-informational approach.

4. Materials and methods of research

The following methods, approaches and techniques for
the study of complex control objects form the methodologi-
cal basis of present work:

— theoretical foundations of analysis of the multicol-
linearity of independent variables and its impact on the
estimation of parameters of mathematical models for the
objects of control;

— criteria and algorithms that are employed to identify
the multicollinearity;

— methods of describing the informational and techno-
logical processes of drilling the oil and gas wells.

Methodological apparatus is the energy-informational
approach and the theory of random processes, based on
which we substantiated the choice of rational criterion for
the optimal control over the process of drilling the oil and
gas wells.

In this paper, we used a totality of methods and tech-
niques:

— the Farrar-Glauber Test — to determine the degree of
multicollinearity;

—the Curve and Expert method and technology — for
examining the informational models;

— graphic method to visualize the resulting theoretical
material.

5. Analysis of multicollinearity among the criteria of
optimal control over the process of drilling the wells

tistical totality of observations of factors — C and w during
a change in the axial force on bit F. We shall introduce the
following designations:

F-Y; CoX; woX,.

Compute the mean values and standard deviations of
variables Xy, Xy. For this purpose, we shall use formula [18]:

ijzz,xij7 812 Z(Xij_xj) , (1)
n n

where X; is the mean value of the j-th variable; X is the in-
dividual value of the j-th variable; j is the number of variable
(j=1, 2); i is the number of point of observation (axial force
on the bit); §; is the standard deviation of the j-th variable; n
is the number of observations (n=16).

We shall consider normalized values of variables C and
w, which are given in Table 1.

In order to analyze, we shall use results of experimental
studies [17] carried out when drilling the wells by the drill-
ing machine 2SBSh-200N with controlled mode parameters.
The type of drive of the rotary table is TP-DTP, technical
performance — up to 90 m/h, mean stability of roller cutting
bits — 391 m (footage per bit), the type of control system is
“Rezhim 2NM”.

The ranges of change in the drilling mode parameters in
the course of active experiment were as follows:

2<F<300, kN; 0,2<m<2,4,s57"; 0,05<Q <0,45, m®/s.

The category of rock strength is f=6+8 by the scale of
Prof. Protodyakonov.

Within the framework of interrelations between the
criteria of optimum control based on the identification of the
phenomenon of multicollinearity, let us first consider the sta-

Table 1
Normalized variables
No Force (F) on Cost per meter of | Specific energy
the bit, kN drilling C consumption w
1 18.25 0.600 0.580
2 37.50 0.550 0.480
3 56.25 0.495 0.405
4 75.00 0.470 0.365
5 93.75 0.430 0.320
6 112.50 0.410 0.310
7 131.25 0.395 0.305
8 150.00 0.380 0.300
9 168.75 0.390 0.308
10 187.50 0.395 0.325
1 206.25 0.410 0.338
12 225.00 0.425 0.370
13 243.75 0.430 0.375
14 262.50 0.430 0.430
15 281.25 0.470 0.520
16 300.00 0.510 0.630

Let us check the existence of multicollinearity between
the cost per meter of drilling C and specific energy con-
sumption w. For this purpose, we shall apply the Farrar-
Glauber algorithm [18—21]. This algorithm has three types
of statistical criteria, according to which the multicol-
linearity is checked from the entire array of independent
variables (y?), of each independent variable with the rest of
the variables (F-criterion) and of each pair of independent
variables (t-criterion).

All the computations are conducted in the MS Excel
software. Let us perform interim calculations and enter the
data in Table 2, 3.



Table 2
Interim calculations

No. Y Xl XZ (Xﬁ*lecan)z (XZi*Xchan)z
1 18.25 0.600 0.580 0.0227 0.0333
2 37.50 0.550 0.480 0.0101 0.0068
3 56.25 0.495 0.405 0.0021 0.0001
4 75.00 0.470 0.365 0.0004 0.0011
5 93.75 0.430 0.320 0.0004 0.0060
6 | 11250 | 0.410 0.310 0.0016 0.0077
7 131.25 | 0.395 0.305 0.0030 0.0086
8 150.00 | 0.380 0.300 0.0048 0.0095
9 168.75 | 0.390 0.308 0.0035 0.0080
10 | 187.50 | 0.395 0.325 0.0030 0.0053
11 | 206.25 | 0.410 0.338 0.0016 0.0035
12 | 225.00 | 0.425 0.370 0.0006 0.0008
13 | 243.75 | 0.430 0.375 0.0004 0.0005
14 | 26250 | 0.430 0.430 0.0004 0.0011
15 | 281.25 | 0.470 0.520 0.0004 0.0150
16 | 300.00 | 0.510 0.630 0.0037 0.0540

Total| 2549.5 7.19 6.361 0.0585 0.1611
Table 3
Interim calculations (continued)
Indicator X X,
Mean value 0.449 0.397
Standard deviation 0.062 0.103

We shall normalize variables X; and X, by using the
“STANDARDIZE” functtion in MS Excel. For this purpose,
let us apply formula [18]:

. Xij _ij

i ﬁgz’ (2

where n is the number of observations in the sample (i=
=1,2,...,n); n=16; m is the number of independent variables
(m=2); X; is the arithmetic mean of the j-th independent
variable; 6% is the dispersion of the j-th independent vari-
able; XU are the normalized independent variables that are
components of matrix X': Xll eX'.

Thus, we received

X

2,4121  1,7602
1,6114  0,7954
0,7306  0,0718
0,3303 -0,3142
-0,3103 -0,7483
—0,6305 —0,8448
—-0,8707 -0,8931
X' = -1,1109 -0,9413
-0,9508 —0,8641|
-0,8707 -0,7001
-0,6305 —0,5747
-0,3903 -0,2659
-0,3103 -0,2177
-0,3103 0,3130
0,3303 1,1813
0,9708  2,2426

The next step of the algorithm is to build a transposed
matrix (X')”, whose elements are the normalized indepen-
dent variables XU, and the computation of correlation ma-
trix, that is, of matrix of moments of the normalized system
of normal equations [18]:

1 1, .. 1,
. , 1 ..
r:(X )T — ru er , (3)
r, T 1

mi m2

where (X")T is the matrix, transposed to matrix X" whose
elements characterize the density of bond between one
independent variable and another; r; =1y are the paired
correlation coefficients.

Let us multiply matrices (X")T and X" using the
“MMULT” function to obtain:

(X)'X' =

15,000 12,499
12,499 15,000|

Find correlation matrix r. To do this, each element of

matrix (X)TX" should be multiplied by S i:
n-1 16-1 15
3 1,000 0,833
10,833 1,000(

Find the determinant of correlation matrix r using the
“MDETERM?” function to obtain:

detr=0,305.
Since det r approaches zero, then there is the multicol-
linearity in the array of explanatory variables.

Define the estimated value of the Pearson criterion y? by
formula [18]:

v :—{n—1—é(2m+5)}ln(detr), (4)
In(detr)=-1,185,
i =—{16—1—%(22+5)}~(—1,185)= 16,003,
At the degree of freedom
k=tmm-ty=1t.2.2-1)=1
=3 =3 =

and the level of significance a=0,05 criterion x,,, =3.8.
Since * >y’ (16.003>3.8), we conclude that there is the
multicollinearity in the array of examined variables.

Next we shall compute F — the Fischer criterion by de-
termining the matrix of C-errors, which is inverse to the cor-
relation matrix r, by using the “MINVERSE” function [18]:

C=r'=(x)x)". 5)

Hence

3272 2,726
“l-2,726 3,272



Using the diagonal elements of matrix C, compute the
F-Fischer criterion for independent variables [18]:

E n—m

(6)

i)

where Cy are the diagonal elements of matrix of C-errors,

m-—1

16-2

F=(3,272-1)] ——
( )( -

J=31,808.

For the level of significance a=0,05 and the degrees
of freedom k,=m-1=2-1=1 and k,=n-m=16-2=14,
using statistical tables, we find critical value of the Fisher
criterion Fipe=4.60. We shall compare the tabular value
Fiaple to the estimated value. F>F 1. (31.808>4.60) and this
means that variables X and X, are multicollinear.

Using matrix C, we shall compute partial coefficients of
correlation by formula [18]:

(N

_ —(-2726)

R L)
o [3,272-3,272

Therefore, the resulting correlation coefficient shows that
there is the multicollinearity between the variables since r9
is close to 1.

Based on the found partial coefficient of correlation, we find
the estimated value of the Student t-criterion by formula [18]:

=0,833.

n—m

Ly

The computed value of t-criterion shall be compared to
the tabular value (t¢ape=2.145) when the level of significance
is =0,05 and the degree of freedom is k,=n-m=14.
Since t19>teaple (5.639>2.145), it can be argued that there is
the multicollinearity in variables X; and X, at a change in
the axial force to the bit from 18.25 to 300 kN.

The existence of multicollinearity between criteria C and
w is confirmed by the information models, built in the Curve
Expert programming environment by the results of experi-
mental studies (Table 4, Fig. 1, 2).

Table 4

Source data for constructing information models
C=f(F); w=f(F)

No. Q C w No. Q C w
1 18.25 | 0.6 0.58 9 168.75| 0.39 | 0.308
2 375 | 055 | 048 10 187.5 | 0.395 | 0.325
3 56.25 | 0.495 | 0.405 11 1206.25| 0.41 | 0.338
4 75 0.47 | 0.365 12 225 | 0425 | 037
5 93.75 | 043 | 0.32 13 [243.75| 0.43 | 0.375
6 1125 | 041 | 031 14 2625 | 043 | 043
7 131.25| 0.395 | 0.305 15 28125 047 | 0.52
8 150 0.38 0.3 16 300 0.51 | 0.63

Next, we analyze the existence of multicollinearity be-
tween the cost per meter of drilling and specific energy con-
sumption w at a change in the bit rotation frequency o from

t, =2 8
12 f_2 "’ ® 0.25 to 2.375 s (Table 5).
12 . . . .
Let us check the existence of multicollinearity between
0.833416=2 the cost per meter of drilling C and specific energy consump-
L= T2 5639, tion w. To check it, we shall again apply the Farrar-Glauber
92 . . .
\J/1-0,833 algorithm. All the computations are in the MS Excel software.
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3
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2
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Fig. 1. Information models: a — the cost per meter of drilling C=f(F); b — specific energy consumption w=f(F)



1,9560  2,6909
1,7778  1,1638
1,1216  0,7139
0,6436 —0,3142
0,2142  -0,3114
-0,1989 -0,0497
-0,5068 —0,3574
-0,7579 -0,6060
X = -0,9361 -0,7659
-1,0820 -0,8487
-1,1468 —-0,8902
-1,0739 -0,8606
-0,8875 -0,7836
-0,6364 —0,6593
-0,2961 -0,5054
0,0846  —0,2983
0,6031 -0,1148
1,1216  0,1161

Table 5
Normalized variables
No.| . Rotation ; Cost per meter of | Specific energy
requency o, drilling C consumption w
1 0.250 0.804 0.865
2 0.375 0.782 0.705
3 0.500 0.701 0.607
4 0.625 0.642 0.531
5 0.750 0.589 0.463
6 0.875 0.538 0.402
7 1.000 0.500 0.350
8 1.125 0.469 0.308
9 1.250 0.447 0.281
10 1.375 0.429 0.267
11 1.500 0.421 0.260
12 1.625 0.430 0.265
13 1.750 0.453 0.278
14 1.875 0.484 0.299
15 2.000 0.526 0.325
16 2125 0.573 0.360
17 2.250 0.637 0.391
18 2.375 0.701 0.430

Perform interim calculations and enter the data in

Table 6, 7.
Table 6
Interim calculations
No. Y Xy Xy | (XtiXimean)? | (X2i—Xomean)*
1 0.250 0.804 0.865 0.0583 0.2067
2 0.375 0.782 0.705 0.0482 0.0868
3 0.500 0.701 0.607 0.0192 0.0387
4 0.625 0.642 0.531 0.0063 0.0145
5 0.750 0.589 0.463 0.0007 0.0028
6 0.875 0.538 0.402 0.0006 0.0001
7 1.000 0.500 0.350 0.0039 0.0036
8 1.125 0.469 0.308 0.0088 0.0105
9 1.250 0.447 0.281 0.0134 0.0167
10 1.375 0.429 0.267 0.0178 0.0206
11 1.500 0.421 0.260 0.0200 0.0226
12 1.625 0.430 0.265 0.0176 0.0211
13 1.750 0.453 0.278 0.0120 0.0175
14 1.875 0.484 0.299 0.0062 0.0124
15 2.000 0.526 0.325 0.0013 0.0073
16 2.125 0.573 0.360 0.0001 0.0025
17 2.250 0.637 0.391 0.0055 0.0004
18 2.375 0.701 0.430 0.0192 0.0004
Total | 23.625 | 10.126 | 7.387 0.2590 0.4852
Table 7
Interim calculations (continued)
Indicator X4 X,
Mean value 0.5626 0.4104
Mean deviation 0.1234 0.1689

Let us normalize examined variables X; and X5 by using

the “STANDARDIZE” function in MS Excel.

Multiply matrices (X")T and X" by using the “MMULT”
function to obtain:

(X)X =

17,000 15,726
15,726 17,000/

Find correlation matrix r. To do this, each element of

matrix (X")'X" should be multiplied by Lszi;
n-1 18-1 17
e 1,000 0,925
710,925 1,000(

Find the determinant of correlation matrix r using the
“MDETERM” function to receive:

detr=0,114.

Since det r approaches zero, then there is the multicol-
linearity in the array of variables X and X,.

Determine the estimated value of the Pearson criterion
¥ by formula (4):

In(detr)=-1,936,
x’ =—{18—1—%(2~2+5)}(—1,936)=30,011.
At the degree of freedom
k=tmm-1)=1t2.2-1=1

=5 =3 =

and the level of significance a=0,05, criterion x2,,. =3.8.
Since x* >y (30.011>3.8), then we conclude that there
is the multicollinearity in the array of variables X; and X5.
We shall determine matrix C, which is inverse to the
correlation matrix r, by using the “MINVERSE” function:

6,932 -6,412
—6,412 6,932




Using the diagonal elements of matrix C, we compute the
F-Fischer criterion for independent variables by formula (6):

F= (6,932—1)(15_12)=94,913.

For the level of significance o.=0,05 and the degrees
of freedom k,=m-1=2-1=1 and k,=n-m=18-2=16,
using statistical tables of the F-distribution, we shall find
critical value of the Fischer criterion Fi,.=4.49. Tabular
value Fiupe shall be compared to the estimated value. F>
>Frable (94.913>4.49) and this means that variables Xy and
X, are multicollinear.

Using matrix C, we compute partial correlation coeffi-
cients by formula (7):

—(-6,412)
b A8
o /6,932-6,932

Therefore, the obtained correlation coefficient shows
that there is the multicollinearity between the variables
since rqo is close to 1.

Based on the obtained partial correlation coefficient,
we find the estimated value of the Student t-criterion by
formula (8):

_0925V18-2

t,= -
120,925

The computed value of the t-criterion shall be com-
pared to tabular value (tiape=1.746) when the level of
significance is a=0,05 and the degree of freedom is
k,=n-m=18-2=16. Since t19>tplc (9.742>1.746), it can
be argued that there is the multicollinearity in variables

=0,925.

X; and X3 at a change in the bit rotation frequency in the
range of 0.25-2.375 s°..

Using experimental data (Table 8), we shall construct in-
formation model for the dependences C=f(») and w=f(®) in
the Curve Expert programming environment (Fig. 2). One
can see that the information models 4th Degree Polinomial
Fit and 3rd Degree Polinomial Fit describe experimental
data with correlation coefficient r=0.998 and standard ap-
proximation error S=0.007 for model C=f(»), and S=0.009
for model w=f(w).

Table 8

Source data for constructing information models
C=f(n); w=f(n)

No. ® C w No. ® C w
1 0,25 | 0,804 | 0,865 10 1,375 | 0,429 | 0,267
2 0,375 | 0,782 | 0,705 1 1,5 | 0421 | 0,26
3 0,5 | 0,701 | 0,607 12 1,625 | 043 | 0,265
4 0,625 | 0,642 | 0,531 13 1,75 | 0,453 | 0,278
5 0,75 | 0,589 | 0,463 14 1,875 | 0,484 | 0,299
6 0,875 | 0,538 | 0,402 15 2 0,526 | 0,325
7 1 0,5 0,35 16 2,125 | 0,573 | 0,36
8 1,125 | 0,469 | 0,308 17 2,25 | 0,637 | 0,391
9 1,25 | 0,447 | 0,281 18 2,375 | 0,701 | 0,43

Next, we consider the multicollinearity of the examined
variables C and w when the third controlling action chang-
es — consumption of a washing solution. The normalized
values of variables are given in Table 9.

|l 2th Degree Polynomial Fit - [m) X Model Information - [4th Degree Polynomial Fit] *
i‘"’” Please press the right mouse button for the S = 000741764 T History T e T FResiduals T . ]
graphing features menu. Press F1 for help. r=0.99861833 e
ot
4th Degree Polynomial Fit Coefficient;
ot 4 2 4= 9.00606553148E-001
b= -2543593776777E-007
- y =d+ bx +Cx 7 |o- amvmainE
L d = 3.46483034661E-001
g 3 e = -5.58401350971E-002
.l A e
w o
2 + +
> o]
o8 1 The parameters for the above model equation are
given to the right in the coefficient list.
o T T T T T
0.0 05 0.9 13 17 2.2 26
X Axis (units) G | cw Help
a
1! 3rd degree Polynomial Fit — O X ||ModelInformation - [3rd degree Patynomial Fit] x
§inio|  Please press the right mouse button for the S = 0.00900294 ]’ Histery T T — ‘|’ Residudls T T —— W
graphing features menu. Press F1 for help. 1 = 0.99883001
02®
3rd dearee Polynomial Fit Caefficients:
08% 4 2 a= 1.14231424145E +000
b= -1.32675679395E+000
- y =+ bx + x| |- soumsmerean
£ 9 d= -7.01864465084E-002
5 3
=
s -
o o
5 + +
> ot
o 1 The parameters for the above model equation are
given to the right in the coefficient list
o2® T T T T T
0.0 05 049 13 17 22 26
X Axis (units) Close Copy Hep |

Fig. 2. Information models: a — the cost per meter of drilling C=f(®); b — specific energy consumption w=f(w)



Table 9
Normalized variables

No. \S;SI}IISILIIII;E (t)i?lilingl COS; r;i)leﬁnmeté:r of | Specific energy

0, m3/h g, consumption, w
1 0.025 0.943 0.344
2 0.050 0.801 0.237
3 0.075 0.700 0.162
4 0.100 0.621 0.126
5 0.125 0.578 0.108
6 0.150 0.552 0.101
7 0.175 0.531 0.110
8 0.200 0.525 0.135
9 0.225 0.522 0.162
10 0.250 0.532 0.195
1 0.275 0.541 0.229
12 0.300 0.550 0.273
13 0.325 0.574 0.312
14 0.350 0.593 0.354
15 0.375 0.628 0.399
16 0.400 0.669 0.450

Perform interim calculations and enter the data in
Table 10, 11.

Table 10

Interim calculations

No. Y Xy Xo | (Xii~Ximean)* | (Xoi~Xomean)?
1 0.025 | 0943 | 0.344 0.1068 0.0128
2 0.050 0.801 0.237 0.0341 0.0000
3 0.075 0.700 0.162 0.0070 0.0048
4 0.100 | 0.621 | 0.126 0.0000 0.0110
5 0.125 | 0.578 | 0.108 0.0015 0.0151
6 0.150 0.552 0.101 0.0041 0.0169
7 0.175 0.531 0.110 0.0073 0.0147
8 0.200 | 0.525 | 0.135 0.0083 0.0092
9 0.225 0.522 0.162 0.0089 0.0048
10 0.250 0.532 0.195 0.0071 0.0013
11 0.275 0.541 0.229 0.0057 0.0000
12 | 0300 | 0.550 | 0.273 0.0044 0.0018
13 0.325 0.574 0.312 0.0018 0.0066
14 0.350 0.593 0.354 0.0005 0.0151
15 0.375 0.628 0.399 0.0001 0.0282
16 | 0.400 | 0.669 | 0.450 0.0028 0.0479

Total | 3.400 9.860 3.697 0.2004 0.1902
Table 11
Interim calculations (continued)
Indicator Xy X
Mean value 0.6163 0.2988
Mean deviation 0.1156 0.0665

Let us normalize the examined variables X; and X, by
using the “STANDARDIZE” function in MS Excel.

2,8269  1,0030
1,5984  0,0527
0,7246 -0,6134
0,0411  -0,9331
-0,3309 -1,0929
-0,5559 -1,1551
-0,7376 —-1,0752
X = -0,7895 -0,8531
-0,8154 —0,6134
-0,7289 -0,3203
-0,6510 -0,0183
-0,5732 -0,3725
-0,3655 0,7188
-0,2012 1,0918
0,1017  1,4915
0,4564  1,9444

Multiply matrices (X*)T and X" using the “MMULT”
function to receive:

(X)'X'=

15,000 5,995
5,995 15,000]

Find a correlation matrix r. To do this, each element of

1 1 1

trix (X)TX" should b Itiplied by —=——=—:

matrix (X)X should be multiplied by 1T 15
1,000 0,399
10,399 1,000

Find the determinant of correlation matrix r by using the
“MDETERM?” function to obtain:

detr=0,84.

Since det r approaches 1, then there is the multicollinear-
ity is lacking in the array of explanatory variables.

Determine the estimated value o the Pearson criterion x>
by formula (4):

In(detr)=-0,174,
x =—{16—1—%(2~2+5)}(—0,174)=2,35.

At the degree of freedom
k—lm(m—1)—l~2-(2—1)—1
=3 =3 -

and the level of significance o=0,05 criterion 2, =3.8.
Since x*<yxiy. (2.35<3.8), we conclude that the mul-
ticollinearity does not exist in the array of explanatory
variables.

Determine matrix C, inverse to correlation matrix r, by
using the “MINVERSE” function:

| 119 -0,475
T 1-0,475 1,19 |



Using the diagonal elements of matrix C, we compute the
F-Fisher criterion for independent variables by formula (6):

16-2

):2,662.

For the level of significance oo=0,05 and the degrees of
freedom k,=m-1=2-1=1 and k,=n-m=16-2=14, by
statistical tables of the F-distribution, we find critical value
of the Fisher criterion Fi,.=4.60. Tabular value Fi,. shall
be compared to the estimated value. F<F . (2.662<4.60)
and this means that variables X; and X5 are not multicol-
linear.

Using matrix C, we compute partial correlation coeffi-
cients by formula (7):

—(-0,475)
Lo \0A0)
2 1,19-1,19

Therefore, the obtained partial correlation coefficient
shows that there is no multicollinearity between the vari-
ables since ;s is not close to 1.

Based on the found partial coefficient of correlation,
we find the estimated value of the Student t-criterion by
formula (8):

- 0,399v16 -2
" J1-0,399”
Computed value of the t-criterion shall be compared to

tabular value (ti,ple=2.145) when the level of significance is
0.=0,05 and the degree of freedom is k,=n—-m=14. Since

=0,399.

=1,631.

tio<teaple (1.631<2.145), then we can definitely state that
there is no multicollinearity in variables Xy and Xj.

For the visual representation of the received result, let
us consider information models C=f(Q),w=f(Q) obtained in
the Curve Expert programming environment by experimen-
tal data (Fig. 3, Table 12).

Table 12

Source data for constructing information models
C=f(Q); w=f(Q)

No. Q C w No. Q C w
1 0.025 | 0.943 | 0.344 9 0.225 | 0.522 | 0.162
2 0.05 | 0.801 | 0.237 10 0.25 | 0.532 | 0.195
3 0.075 | 0.7 | 0.162 1 0.275 | 0.541 | 0.229
4 0.1 0.621 | 0.126 12 0.3 0.55 | 0.273
B) 0.125 | 0.578 | 0.108 13 0.325 | 0.574 | 0.312
6 0.15 | 0.552 | 0.101 14 0.35 | 0.593 | 0.354
7 0.175 | 0.531 | 0.11 15 0.375 | 0.628 | 0.399
8 0.2 | 0.525 | 0.135 16 0.4 | 0.669 | 0.45

An analysis of the information shown in Fig. 3, a, b re-
veals that the approximation of curves C=f(Q) and w=f(Q)
was performed by the information models 4th Degree Poli-
nomial Fit with a high correlation coefficient r=0.999 and
standard error S=0.002. However, the minima of these de-
pendences match different values of controlling action Q: for
chart C=f(Q) — 0.2, and for chart w=£(Q) — 0.1, which is the
reason for the absence of phenomenon of the multicollineari-
ty for the given process.

G 4th Degree Polynomial Fit m]

x

Model Information - [4th Degree Polynomial Fit]

Please press the right mouse button for the § = 0.00283191 . .
E graphing features menu. Press F1 for help. 1 = 0.99977987 T History T Covariance T Residuals T Comments ]
o2
4th Degree Polynomial Fit Coefficients:
02° 1 2 a= 1.12989423077E +000
b= -8.54133795086E 000
7 ol y =+ bx + X7 |o- 4o
2 o d = -1.03233574132E+002
5 3 &= 9.62451377322E 001
: o +dxT+ -
b
<
> o8]
05° 7 The parameters for the above model equation are
given to the right in the coefficient list.
ob® T T T T T
0.0 041 041 02 0.3 04 04
X Axis (units) LClose: | Copy Help
a
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. =d+ bx + X7 |- 3oz
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e o Chj “se
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Fig. 3. Information models: a — the cost per meter of drilling C=f(Q); b — specific energy consumption w=f(Q)



6. Discussion of results of examining the interrelations
between the criteria of optimal control over the process
of drilling the wells

The benefit of results of examining the interrelations
between the criteria of optimal control over the process of
drilling the wells, the cost per meter of drilling and specif-
ic energy consumption, is that they provide for a substan-
tiated choice of criterion of the optimization of the process
of drilling the wells when creating an automated control
system. The established interrelations between the cri-
teria of optimal control make it possible to pass over to
using the indicator controlled in real time (specific energy
consumption) instead of the uncontrolled one — the cost
per meter of drilling and thereby provide solution to the
problem of optimal control over the process of drilling the
wells on-line. Another advantage of the results obtained
is the fact that the close relation between the examined
criteria is observed when the two basic controlling actions
change — the axial force on the bit and the frequency of
its rotation.

The research results can be used in the automated con-
trol systems of rotary drilling of oil and gas wells on offshore
platforms and on land.

The above research is to be improved in the future in
order to refine the relationship criteria of optimal control
over the process of drilling the wells at the change, over a
wide range, of washing fluid consumption under different
drilling methods.

7. Conclusions

1. Based on an analysis of the interrelations of criteria of
optimal control over the drilling process, it was found that
when controlling this process by altering the axial force to
a bit or frequency of its rotation, there is a complete multi-

collinearity between the examined criteria. This solves the
problem of choice as a criterion of optimization of specific
energy consumption and provides its control in real time in
the system of automated control over the process of deepen-
ing the wells with two controlling actions.

2. We established the degree of completeness in the mul-
ticollinearity between the examined criteria:

— at the change of axial force to a bit F:

det 1=0,305; 3% > x%,. (16.003>3.8);

F>Fape (31.808>4.60); to>tipe (5.639>2.145);
— at the change of rotation frequency w:

det r=0,114; x> > 32 (30.011>3.8);

F>Fiaple (94.913>4.49); t1o>teaple (9.742>1.746);
— at the change of washing fluid consumption Q:
det 1=0,84; %* <y’ (2.35<3.8);

F>Fape (2.662<4.60); ts>tupe (1.631<2.145).

3. We proposed a dualistic approach to solving the
problem of optimal control over the process of drilling
the wells in real time. This makes it possible, by applying
the energy-informational approach, to directly process
information on the specific energy consumption, and to
provide intelligent support for the decision-making pro-
cesses when a drilling master defines rational parameters
of a drilling mode. Underlying the proposed approach are
information models in the form of third- and fourth order
polynomials that describe experimental data with cor-
relation coefficients higher than 0.9 and standard errors
lower than 0.01.
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