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1. Introduction

In most of the ports of the Black and Azov Seas, large-ca-
pacity tankers and bulk carriers, as well as some passenger 
vessels, have to be additionally loaded, unloaded or fuelled 
outside of the ports protected by water basins. 

The water areas of ports in Ukraine are shallow-water. 
The ships that are docked on outer anchorage are under the 
influence of the rough sea and, at the same time, they prevent 
the propagation of waves. A wave field around the ship at the 
port roads is essentially three-dimensional; it represents a 
superposition of incoming and diffracted waves. The height 
of waves in specific points of the field depends on the loca-
tion of points around the ship.

The complexity of evaluating the interaction between a 
ship and such waves is associated with the non-stationarity 
of the region, which is filled with fluid, and the non-linearity 
of boundary condition at the free surface of the fluid. The 
solution of the diffraction problem in a general form is com-
plicated. Solving the particular problems requires refine-
ment and specialization of boundary conditions. 

With respect to ships, a diffraction problem is tackled 
rarely, since overcoming the difficulties associated with the 
practical evaluation of characteristics of a wave field around 
the body of a vessel requires special processing of the com-

puting aspects of the obtained theoretical results. At the 
same time, for determining the hydrodynamic forces acting 
on a ship in pitching, as shown in articles [1, 2], a solution of 
a simpler task of radiation will suffice.

Characteristics of the waves around the vessel, which is 
anchored at the open port roads, are to be considered when 
planning the operation of auxiliary ships. Auxiliary vessels 
are tugs, bunkering vessels, pilot and harbor boats, as well 
as oil/garbage collector boats and boom crafts. The work of 
these vessels is related to safe navigation (transfer of people 
and cargo from one ship to another) and environmental safe-
ty (elimination of oil and petroleum spills). 

The height of waves imposes restrictions on the opera-
tion of auxiliary ships. Determining the transformation of 
waves on outer anchorage is necessary for their safe opera-
tion, which is why this is a relevant task.

2. Literature review and problem statement 

In recent years, most of the existing solutions of diffrac-
tion problem have focused on assessing the impact of waves 
on the stationary or movable offshore structures. 

Article [3] examined diffraction and refraction of waves 
in a fluid with defined depth. The problem is solved by 
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the finite element method using discrete non-local (DNL) 
boundary conditions. The examined objects are a channel 
of rectangular cross section, circular cylindrical island with 
a parabolic bottom around it. The characteristics of wave 
fields are presented.

A diffraction problem is important, in particular, for 
the equipment that employs the energy of ocean waves to 
generate electricity – Oscillating Water Column (OWC). 
Paper [4] presented a first order analytical solution of the 
problem on diffraction of ocean waves on the hollow-body 
vertical cylinder in the ocean with defined depth. In article 
[5], authors defined a wave field for the same object, created 
by a swinging cylinder, and solved a combined problem on 
diffraction-radiation.

Article [6] investigated numerical simulation (CFD) of 
the interaction between waves and a vertical cylinder. The 
Reynolds equation of the averaged turbulent fluid flow is 
solved (Reynolds Averaged Navier-Stokes, RANS). They 
modeled regular and irregular waves of small and finite am-
plitude (second-order Stokes) in the numerical testing pool. 
The results of determining the wave fields and wave forces 
are presented. 

Paper [7] is devoted to the experimental study of in-
fluence of waves on a floating cylinder. In a small-sized 
wave flume, ocean waves are simulated. They examine their 
interaction with the floating cylinder, docked to the shore. 
The characteristics of waves and motion of a floating body 
are presented.

Article [8] describes numerical modeling of the interac-
tion between nonlinear waves and a system of two vertical 
circular cylinders. One of them is rigidly fixed to the bottom, 
the second floats. Authors identified characteristics of wave 
forces and moments, as well as displacement of the floating 
cylinder. In connection with the operation of tension leg 
platforms (TLPs), the problems are solved on the impact of 
waves on the groups of vertical cylinders. 

Paper [9] described the solution of potential problems 
of first and second orders by the method of finite elements. 
Vertical motions of vertical circular cylinders are examined. 
Wave fields and wave loads are determined for a single cyl-
inder and the groups of two and four cylinders.

Article [10] demonstrates interaction between nonlinear 
waves and a vertical cylinder and the group of four cylinders. 
Authors employed the method of finite differences (FDM), 
methods of finite elements (Weakly Nonlinear and Weakly 
Dispersive FEM, Fully Nonlinear and Weakly Dispersive 
FEM). They defined the elevation of a free surface and coef-
ficients of hydrodynamic forces at propagation and collision 
of separate waves. Results of the calculations are presented, 
as well as a comparison to experimental data. 

Worth noting here is a complete analytic solution, pre-
sented in paper [11], of second order nonlinear diffraction 
problem for the two-dimensional stationary rectangular 
cylinders at the free surface of the fluid with defined depth. 
Authors determined the magnitudes of vertical and hori-
zontal forces of first and second orders. The likelihood of 
solution is confirmed by a comparison with experiments and 
calculations of other authors.

Article [12] presented a solution of the problem on dif-
fraction of monochromatic and bichromatic waves on a sta-
tionary horizontal cylindrical body that crosses free surface. 
The depth of the fluid is infinite, the incident waves are lat-
eral or scant. Diffraction potential is used to determine the 
forces acting on the floating oil tank (a body with semi-el-

liptical waterlines in the bow part, rectangular frames in the 
middle part and prismatic stern). 

An analysis of the above research results reveals that 
wave fields are defined around the objects of simplified 
forms.

Paper [13] considers a two-dimensional nonlinear po-
tential problem on the fluctuations of cramped contour in 
the fluid of limited depth. Boundary conditions on the con-
tour and the free surface of fluid are non-linear. Nonlinear 
forces are determined with an accuracy to the second order. 
Calculations are performed for different cramped contours. 
The influence of change in the relative depth on the value of 
nonlinear forces is investigated. 

Article [14] addresses a three-dimensional potential 
problem on the fluctuations of a vessel in the liquid wtih 
limited depth and its solution by a numerical method. The 
influence of change in the depth on the values of attached 
masses and damping coefficients is examined; results of 
calculations of the given magnitudes for different types of 
vessels are presented.

Paper [15] defined the potential of radiation and dif-
fraction potential in the pitching of a vessel moving in the 
significantly shallow water. The method used is the matched 
asymptotic expansion method (MAEM). The potentials of 
radiation for longitudinally-horizontal, vertical, and pitch-
ing fluctuations were determined at motion in the quiet 
water. The expression for the components of diffraction po-
tential at vertical pitching is presented.

Article [16], by employing the improved matching meth-
od, defined the wave profiles around the ship that moves in 
deep water. The region, which is filled with fluid, is divided 
into a near-field and a far-field, which applies a radiation 
condition while the boundary condition at free surface is 
considered to be linear. The vessel is replaced with a system 
of features. Characteristics of these features and the poten-
tial of speeds of the near field are determined by a double 
technique. The first is the use of conditions on free surface 
and on the body in the near-field. The second is using the 
continuity of speed potentials and its derivative by a normal 
in the transition through the interface (matching surface).

For ships, a diffraction problem is solved when determin-
ing the wave loads in deep water or for determining the hy-
drodynamic forces in pitching in the shallows; wave profiles 
around the ship are not investigated. 

The waves around the ship significantly differ from the 
waves at a significant distance from the ship. A wave field is 
transformed around the large tonnage vessels at the outer 
anchorage. This must be considered when assessing the safe-
ty of operation of auxillary (relatively small) vessels.

Thus, the study of wave diffraction processes at diffrac-
tion of regular waves of small amplitude that is incident 
under an arbitrary angle on the hull of a large tonnage ship, 
which floats without a run on the outer anchorage, is a rel-
evant issue. Considering that under conditions of limited 
depth of the anchorage the occurrence of long waves that can 
cause noticeable pitching of a large tonnage ship is highly 
unlikely, the latter is considered stationary. 	

A choice of linear wave theory for solving the diffraction 
problem is predetermined by the following considerations.

First, the waves that come from deepwater areas of the 
open sea is transformed in a complex way in the shallows –  
the waves transform from three-dimensional into the two-di-
mensional ones. Big waves are reduced, while small waves 
increase in length and height [17]. 
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Second, in the case of moderate waves, calculations of 
seaworthiness of a vessel using the linear theory yield fully 
acceptable results [2].

3. The aim and tasks of the study

The aim of present work is to determine the character-
istics of a wave field that occurs around the ship, which 
floats idling at outer anchorage and that is exposed to 
incident waves of small amplitude. A presence of these 
characteristics provides for the enhancement of safety of 
operation of auxiliary vessels at outer anchorage. These 
data should also be used when carrying out search-and-
rescue operations and elimination of oil spills in open 
water area.

Taking into account the accepted assumptions used to 
determine the characteristics of a wave field around the ship, 
the following tasks are to be solved:

– to determine the potential of speeds of perturbed 
fluid motion caused by the diffraction of waves of small 
amplitude that are incident under an arbitrary angle to a 
stationary vessel under conditions of shallow water;

– to define in the specified points around the ship 
the amplitudes of waves caused by the incident waves 
and their diffraction on the vessel as an obstacle in wave 
propagation.

4. Materials and methods of examining the diffraction of 
regular waves of small amplitude on a stationary ship in 

shallow waters

4. 1. Statement of diffraction problem
Let us consider the interaction between a stationary 

vessel of length L floating in shallow water of depth H with 
the wave of small amplitude, which is incident under an ar-
bitrary angle. Denote length of the wave l, wave amplitude 
as a, wave propagation speed as c. The fluid is considered 
perfect, heavy, incompressible, its traffic – potential. 

We shall introduce a rectangular Oxyz coordinate sys-
tem, associated with the vessel. The Oxz plane coincides 
with the non-perturbed free surface of the fluid. The Ox axis 
is directed towards the bow; Oy – towards the right board; 
Oz is vertically upward. The location of the ship relative to 
the incident wave is defined by the course angle b between 
the Ox asis and a vector of wave’s speed.

Perturbed fluid motion is described by the potential of 
velocities ( )E x,y,z,tΦ . The region of its determining E is 
limited by the bottom of water reservoir D, wetted surface 
of a ship S and free surface of the fluid S (part of the plane 
z=0 outside the waterline of a stationary ship). Given the 
linearity of the problem, we shall represent the potential 

( )E x,y,z,tΦ  in the form of a sum:

( ) ( ) ( )E * dx,y,z,t x,y,z,t x,y,z,t ,Φ = Φ + Φ 	 (1)

where ( )* x,y,z,tΦ  is the potential of speeds of the system 
of regular incident waves that the vessel is exposed to; 

( )d x,y,z,tΦ  is the potential of velocities of wave motion of 
the fluid, caused by the diffraction of incident wave, on the 
hull of the ship. 

The potential of incident waves’ speeds in the coordinate 
system related to a ship is written in the following form [1]:

(2)

where g=9.81 m/s2; σ is the frequency of the incident wave; 
α0 is the wavenumber (form frequency), which in shallow 
waters is defined as the only real positive root of transcen-
dental equation:

	 (3)

Let us represent formula (2) in the form:

	 (4)

	 (5)

Potential ( )d x,y,z,tΦ  of speeds of diffracted wave mo-
tion is a solution of the following boundary problem:
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2 2 2

d
2 2 2 x,y,z,t 0,

x y z

æ ∂ ∂ ∂
+ + Φ = ∂ ∂ ∂ 

 ( )x,y,z E;Î 	 (6)

( )
2

d
2 g x,y,0,t 0,

t z

æ ∂ ∂
− Φ = ∂ ∂ 

 ( )x,y ;ÎS 	 (7)

( ) ( )d *x,y,z,t x,y,z,t
,

N N

∂Φ ∂Φ
= −

∂ ∂
 	 (8)

( )d x,y,H,t
0,

z

∂Φ
=

∂
 ( )x,y ; ;Î −¥ ¥   	 (9)

( )d

r
grad x,y,z,t 0,lim

→¥
 Φ =   ( )x,y,z E,Î  2 2r x y ,= + 	 (10)

where N is the outward normal to the surface S. 
Similarly (4) ( )d x,y,z,tΦ  is represented in the form of 

a sum:

( )
( ) ( ) ( ) ( )

d

d d
c s

x,y,z,t

x,y,z cos t x,y,z sin t .

Φ =

= Φ σ + Φ σ 	 (11)

Further on, index d in the expressions of diffraction po-
tentials is omitted to simplify the record. 

Article [18] stated a general hydrodynamic problem on 
the potential of perturbed fluid velocities at motion of a 
ship in waves in a restricted fairway. A stepwise lineariza-
tion of the given problem was carried out. Solution of the 
corresponding linear problems by the MAEM method is 
described.

The above boundary problems differ from the corre-
sponding problems on the potential of radiation [18] only 
by the form of boundary condition on the vessel hull. 
Therefore, to determine the potential of velocities of the 
diffracted motion of fluid, we used the method similar to 
the one employed in [18]. 

Consider a structure of the normal derivative on the 
ship hull. We assume that a ship is an extended body, whose 
transverse dimensions are small compared to its length while 
the longitudinal distances at which noticeable changes in the 
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form of the hull occur, are finite. Given this, we shall refine 
the type of a normal derivative from the potential on the 
wetted surface S. It follows from (8) and (11):

( )

( ) ( ) ( ) ( )c s

x,y,z,t

N
x,y,z x,y,z

cos t sin t .
N N

∂Φ
=

∂
∂Φ ∂Φ

= σ + σ
∂ ∂

	 (12)

According to [18], in the problems on radiation, the 
expressions for boundary conditions on the ship hull in the 
case of its vertical fluctuations contain a multiplier сos(N,z), 
and in the case of cross-horizontal fluctuations – сos(N,y). 
By analogy, we shall group the constituents of normal de-
rivatives of the potentials that contain these multipliers. 
According to formulas (5) and (12):

( )c EV OD
C C

x,y,z
B B ;

N

∂Φ
= +

∂
	 (13)

( )s EV OD
S S

x,y,z
 B B ;

N

∂Φ
= +

∂
	 (14)

	 (15)

	 (16)

The linearity of a boundary problem for the diffraction 
potential, as well as an analysis of the structure of the normal 
derivative from the potential on the wetted surface of a ship 
indicate that this potential is advisable to represent in the 
form of a sum:

( ) ( )
4

i
i 1

x,y,z,t x,y,z,t .
=

Φ = Φ∑ 	 (17)

Consequently, the diffracted potentials ( )i x,y,z,tΦ  are 
determined by the MAEM method, similar to [18].

4. 2. Determining the potentials of diffracted wave 
motion

According to the procedure for appying the MAEM 
method, we shall conditionally split the region filled with 
fluid into the following zones: external, where (y/L)=O(1), 
and internal, where (y/L)=O(e), e<<1.

Boundary transition ε→0 at y and z, fixed in the external 
zone, transforms the hull into a segment D={–L/2£x£L/2, 
y=z=0}. Region E is transformed into region 0E  (a layer of 
fluid 0£z£H with a cut-out segment D). Free surface S turns 
into plane 0S  (plane z=0 with a cut-out segment D). 

In each zone, separate boundary problems are stated, 
consequently their solutions asymptotically converge on the 
boundaries of zones, forming an approximate solution of the 

problem, uniformly applicable over the entire region, which 
is filled with fluid.

4. 2. 1. Solving the boundary problems in external 
zone

As shown in [18], at ship fluctuations by the sinusoidal 
law, a function of radiation contains not only sine, but also 
cosine, component, and vice versa. That is why we shall rep-
resent potentials ( )i x,y,z,tΦ in the form of a sum:

( )
( ) ( ) ( ) ( )

i

c s
i i

x,y,z,t

x,y,z cos t x,y,z sin t .

Φ =

= Φ σ + Φ σ 	 (18)

In the external zone (that is region 0E ), we state the 
boundary problems for amplitude functions ( )c

i x,y,zΦ  and 
( )s

i x,y,zΦ . The problems include conditions of harmony, the 
boundary conditions at the free surface of fluid 0,S  at the 
bottom of reservoir D, condition of attenuation of diffracted 
waves at an infinite distance from the ship. The potentials 
should also satisfy the fundamental radiations. Boundary 
conditions at the wetted surface of a ship are not formulated 
because this surface does not belong in the external zone. It 
is known only that at diffraction on the ship hull of longitu-
dinal waves, the potential of perturbed velocities is continu-
ous, and its normal derivative is discontinued while passing 
through the diametral plane of the ship. At diffraction of 
transverse waves, the normal derivative form the potential is 
continuous, while the potential is discontinued when passing 
through the diametral plane. Thus, the bondary conditions 
of the following form are formulated:

( ) cc
1

f , x L / 2, 0 z H;
x, 0,z

y 0, x L / 2, 0 z H;

± £ £ £∂ Φ ± = ∂ > £ £
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y
∂
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∂
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( ) ss
3

f , x L / 2, 0 z H;
x, 0,z

y 0, x L / 2, 0 z H;

± £ £ £∂ Φ ± = ∂ > £ £
	 (24)

( )c
4 x, 0,z 0,Φ ± =  x ,−¥ £ £ ¥  0 z H;£ £ 	 (25)

( ) ss
4

p , x L / 2, 0 z H;
x, 0,z

0, x L / 2, 0 z H.

± £ £ £Φ ± = 
> £ £

	 (26)

Note also that

( ) ( )H L O .a= e

In this case, solutions of the boundary problems are 
applicable both for the moderate shallow waters (boundary 
transition α→0 is executed, then:

( )
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( ) ( )
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EV
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0S

0

0

0

B ag cos N,z

ch HB

sin xcos ysin ,
sh z H
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( ) ( )H L O 1=

and for the considerable shallow waters (then α→1 and 
( ) ( )H L O= e ). 

We shall employ the Fourier method to the boundary 
problems for potentials ( )c

i x,y,zΦ  and ( )s
i x,y,zΦ  in each of 

the regions y>0 and y<0. Decompose the potentials segment 
[0; H] along the full orthogonal system of functions [18]:

	 (27)

	

(28)

1 2a < a <  is the sequence of real positive roots of tran-
scendental equation:

( ) 2gTg H .a a = −σ 	 (29)

Note that the system of functions (27) is the same that 
was applied in solving the problems in [4, 5, 11] taking into 
account the transformations of coordinates. 

By using a condition of harmony, the boundary condi-
tions in rectangle 0£z£H, –L/2£x£L/2, as well as the prin-
ciple of radiation, we shall receive a solution of the problems 
in the external zone. Then: 

– for components of the potentials even along y:
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– for components of the potentials odd along y:
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(33)

where ( )2 2R x y ,= − x +  x, z are the variables of integration 
along the length of a ship and depth, respectively; J0, N0, K0 
are the Bessel, Neumann, and Macdonald functions of zero 
order of real argument, respectively.

4. 2. 2. Solving the boundary problems in internal zone
Let us perform a boundary transition ε→0 when y and 

z are fixed in the external zone. Introduce the “stretched” 
coordinates Y=y/e, Z=z/e. With accuracy to low O(e), the 
motion in the internal zone can be considered as two-di-
mensional. The potential of speeds of the diffracted wave 
movement – a harmonic function Y and Z – should satisfy 
the following differential system:

( )
2 2

2 2 Y,Z 0,
Y Z

æ ∂ ∂
+ Φ = ∂ ∂ 

 ( ) ( )Y,Z E x ;Î 	 (34)

( )1k Y,0 0,
Z
∂æ + Φ =  ∂

 
2

1k ,
g

eσ
=  ( )1

Y b x ;
2

> 	 (35)

( )Y,H
0,

Z

∂Φ
=

∂
 ( )Y ; ;Î −¥ ¥   	 (36)

( ) ( )Y,Z
B Y,Z ,

N

∂Φ
=

∂
 ( ) ( )Y,Z L x ,Î 	 (37)

where region E(x) is the band 0£Z£h with a cut-out in the 
form of a frame contour L(x), the coordinates of points of 
which are (Y, Z); b(x) is the width of the frame along a wa-
terline; h is the depth of water. 

The magnitudes b(x) and h are taken in a linear scale of 
the internal zone.

The given boundary problem does not state boundary 
conditions at an infinite distance from the ship Y→∞, that 
is, on the outer border of the internal zone. These conditions 
are set at the stage of converging the solutions of boundary 
problems of the internal and external zones at their border. 
Therefore, the solution can be found with accuracy to some 
arbitrary additive function. The merging technique accepted 
in the present paper, according to [18], allows us to find a 
solution without determining this function, as for merging 
the solutions we apply the asymptotics of speed potential at 
the outer border of the internal zone. 

The asymptotics of speed potentials Φ(Y, Z) are written 
in the form: 

– for the components even along Y:

	 (38)

– for the components odd along Y:

	 (39)

where 

	 (40)

P and Q are the real functions k, defined by formulas:

( )
( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 0

1

1

b
2

1 1 2 1k Y

b 1 1 2 1
2

P k

Q k

T Y sin k Y T Y cos k Y
2 e dY;

T Y cos k Y T Y sin k Y

− ς

−

 =


  + =  
 −   

∫ 	 (41)

where æ0(Y) is the equation of contour L(x);

( ) ( )

( ) ( )

1
2

0 0 0

1
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Z z N cos z H ;

−

−
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
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( ) ( ) ( ) 2

0
1 1

d Y
T k A Y B Y 1 ;

dY+ +

 ς
= + +  

  
	 (42)

( ) ( )0
2 1

d Y
T k A Y ;

dY+

ς
= 	 (43)

A+(Y) is the value of speed potential on contour L(x);
B+(Y) is the value of a normal derivative from the poten-

tial on contour L(x).
The value of the normal derivative B+(Y) is defined by 

the boundary condition. Potential A+(Y) on the contour 
is unknown as it is actually a solution of the problem. In 
accordance with the practice of applying the Kochin func-
tions in wave problems [18], instead of A+(Y), formulas 
(42) and (43) are substituted with the value of the potential 
at infinite frequency. This potential is the solution to the 
boundary problem in the internal zone, which consists of 
equations (34), (36), (37), and instead of condition (35), 
we accept:

( )Y,0 0,Φ =  ( )1
Y b x .

2
> 	 (44)

For the components of speed potentials odd along Y in 
accordance with boundary conditions (19), (20), (23), (24), 
not the potential itself is needed but its derivative along Y. 
We shall obtain from (38):

	 (45)

4. 2. 3. Merging the solutions. Formulas for a speed 
potential 

In order to merge the solutions, we use a method of 
boundary merging – “the inner boundary of the external 
boundary equals the outer boundary of the internal bound-
ary” [19]. 

In chapter 4. 2. 1, the solution of problem on the diffrac-
tion of oblique waves on the hull of a stationary elongated 
ship in the external zone was derived on the assumption that 
in band –¥£x£¥, 0£z£H the conditions (19)–(26) are sat-
isfied. The value of functions fc,s and pc,s will be determined 
from the solution of problem in the internal zone. Let us 
return to (38) and (45) to the external variables y=eY and 
z=eZ. In this case, l0h proceeds to a0H, V(l0) – to V(a0H), 
while the potentials and their derivatives at y=±0 will take 
the form:

– for the components even along y:

	 (46)

– for the components odd along y :

	 (47)

Therefore,

	 (48)

	 (49)

The resulting formulas for the components of speed poten-
tial of the diffracted wave motion are derived at substituting 
the functions fc,s and pc,s from (47) and (48) into (30)–(33). 

It should be noted that functions Qc,s and Pc,s, which are 
icluded in (48) and (49), do not depend on the vertical co-
ordinate. Consider internal integrals in (30)–(33). For the 
components of potentials that contain functions ( )0Z ,ς  upon 
substitutions and transformations, we obtain:

	 (50)

where it is written to simplify the record

	 (51)

For the components of potentials that contain function
( )mZ ,ς  we receive:

	 (52)

where it is written to simplify the record

	 (53)

because the functions of system (27) are orthogonal. 
Therefore, other terms in formulas (31) and (32) are con-
verted to zero. 

When computing functions Qc,s and Pc,s, we use the 
corresponding formulas for normal derivatives of potentials 
at the wetted surface of a vessel, in particular: EV

CB  for Qc; 
EV
SB  – for Qs; 

OD
CB  – for Pc; OD

SB  – for Ps.
Note also that for the components of potentials odd 

along y in the resulting formulas, instead of Bessel function 
( )0 0J Ra  and Neumann function ( )0 0N Ra  of zero order of 

real argument, we use first order Bessel function ( )1 0J Ra  
and Neumann function ( )1 0N Ra  [20], respectively. 

Solution of the problem on the cosine component of the 
potential is given in article [21].

4. 4. Determining the characteristics of a wave field 
around a ship

A theoretical solution of the diffraction problem, derived 
above, is used for determining the amplitudes of wave in the 
assigned points around the hull of a ship, which floats idling 
in the shallow waters. 

The equation of a wave profile is written in the follow-
ing form:

( )E
B

1 d
z x,y,0,t .

g dt
 = Φ  	 (54)

Considering (1), (2), (4), (11), (17), formula (54) takes 
the form:

( ) ( )B c sz r cos t r sin t ,= σ + σ 	 (55)

where the amplitude functions are equal to, respectively:

( )
( ) ( ) ( ) ( )

EV

0 0
0 0 0

Y,Z ~
Y

V
Q ch Z h cos Y .

2

∂
Φ ±

∂
l l

 ± l l − l 

( ) ( ) ( ) ( )0 0EV
0 0

Q
0,z ch z H V H ;

Y 2

a a∂  Φ ± = ± a − a ∂

( ) ( ) ( ) ( )0OD
0 0

P
0,z ch z H V H .

2

a
 Φ ± = a − a 

( )
( ) ( ) ( )c 0c 0

0 0
s s 0

Q x,f
ch z H V H ;

f 2Q x,
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( ) s s s s
c 1 2 3 4r acos ;= Θ + ς + ς + ς + ς

( ) c c c c
s 1 2 3 4r asin .= Θ − ς − ς − ς − ς 	 (56)

The components of diffracted waves c,s
i ,ς  i=1, 2, 3, 4, tak-

ing into account the substitution z=0 and function evenness 
( )0ch Ha  are determined by formulas:

( ) ( ) ( )
L
2

c 0
1 0 c 0 0 0

L
2

E H Q , N R d ;
2g

−

σa
ς = a x a a x∫ 	 (57)

( ) ( ) ( )
L
2

1 0c 0
2 0 c 0

L
2

N R
y E H P , d ;

2g R
−

aσa
ς = a x a x∫ 	 (58)

( ) ( ) ( )
L
2

c 0
3 0 s 0 0 0

L
2

E H Q , J R d ;
2g

−

σa
ς = a x a a x∫ 	 (59)
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2

1 0c 0
4 0 s 0

L
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J R
y E H P , d ;

2g R
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1 0 c 0 0 0
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2

E H Q , J R d ;
2g

−
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ς = − a x a a x∫ 	 (61)
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L
2

1 0s 0
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2g R
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ς = − a x a x∫ 	 (62)
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3 0 s 0 0 0

L
2

E H Q , N R d ;
2g

−

σa
ς = a x a a x∫ 	 (63)
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L
2

1 0s 0
4 0 s 0

L
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N R
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2g R
−

aσa
ς = a x a x∫ 	 (64)

where it is written to simplify the record

( ) ( ) ( )

( ) ( )

0
0 0

0
02

0

V H
E H ch H

2
1

.
2 H

2th H
ch H

a
a = −a =

= a + a
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The amplitude of waves is determined by formula:

2 2
c sr r r .= + 	 (66)

When performing calculations, each frame contour L(x) 
is given in the form of sets of points. The points divide the 
contour into fairly small elements, each of which is consid-
ered as a straight-line segment. 

Functions Qc,s and Pc,s are computed for each frame 
contour L(x), that is for fixed x. Calculation formulas are 
transformed considering the replacement of variables in (41) 
at the stage of merging the solutions and trnasition from the 
integration to the summation by points. 

It should be noted that the employed calculation tech-
niques are not related to any special form of frame contrours.

5. Results of examining a wave field around a ship

Using the formulas given above, we calculated wave 
amplitudes in the assigned points of observation around a 
ship. These points form a grid, coordinates of the points are 
within |x|£L, |y|£L points inside the contour of the waterline 
of a ship are excluded. A step by abscissas and ordinates of 
the grid is 0.0125L. Such an arragement of points is chosen 
according to the results of numerical experiments; it pro-
vides a satisfactory accuracy of subsequent calculations at 
the smallest volume of source data. 

In the grid’s nodes, we determine the cosine and sine 
components of rc ans rs (56), which are consequently em-
ployed for the calculation of wave amplitudes (66).

As the object of research we chose a wave field around a 
bulk carrier of “Zoya Kosmodemyanskaya” type. The hull of 
this ship is a typical representative of the class of large ton-
nage bulkers and tankers. Its features are a tuber-like bow, 
transom stern, a long cylindrical insert with vertical sides, 
a flat bottom. Principal dimensions of the vessel: length 
L=201.6 m, width B=19.8 m, draught T=11.73 m.

Calculations of waves’ amplitudes were performed for the 
following characteristics:

– relative water depth H/T=1.1, 1.3, 1.5, 2.0;
– course angles of incident waves β=90º, 120º, 135º,  

150º, 180º;
– relative wavelength λ/L=0.5, 0.6, 0.7, 0.8, 0.9, 1.0.
Using results of the calculations for all combinations of 

water depth, length of waves and course angles of waves, 
we obtained relative wave amplitudes r r / a.=  The points 
of observation are around the hull of the ship in a square 
field |x|£L, |y|£L. We built lines of equal amplitudes at step 

r 0.1.D =
As an example, Fig. 1, 2 show the wave fields around the 

hull of the ship.

Fig. 1. Wave field around the hull of the vessel  
H/T=1.1, λ/L=0, β=120º

The distributions of relative wave amplitudes are shown 
around the hull of the ship in a square box |x|/L£1, |y|/L£1 
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at relative depth of water area H/T=1.1, relative length of 
waves λ/L=0.5, and course angles of incident waave β=120º 
and β=150º, respectively. 

The following patterns are established: 
1. At transverse and oblique wave near the ship from the 

side of incidence, the standing waves appear. Wave antinodes 
are at a distance from each other that roughly equals a half 
the wavelength.

2. The arrangement of antinodes depends on the course 
angle of waves, in particular:

– at β=90º, the antinodes are located in the region of a 
middle frame, perpendicular to the incident waves’ velocity 
vector;

– at oblique angles (β=120º, 135º, 150º), the antinodes 
are shifted to the stern, the angles between the antinodes 
and an incident waves’ velocity vector are blunt; the shorter 
the incident wave the larger the shift of antinodes towards 
the stern.

3. Increase in the relative wave ordinates r r / a=  de-
pends on the course angle of waves and wavelengths. The 
largest values r 1.45=  are at β=90º and λ/L=0.5. The 
longer the waves and the larger the course angle of waves, 
the less wave ordinates are. Thus, at β=90º and λ/L=1.0 
r 1.12= .

4. Among the antinodes, there are zones of reduction 
in wave coordinates – we observe value r 0.8 0.9≈ ÷ . It 
should be noted that r 1.0<  does not mean reducing the 
level of water, but the moderation of fluctuations in a 
given area.

5. At the waves incident from the bow (β=180º), an in-
crease in the wave ordinates of the order r 1.3=  is observed 
before the ship.

6. The magnitudes of reduction in the wave ordinates in 
a region of shadow are approximately r 0.4=  at λ/L=0.5, 
r 0.6=  at λ/L=0.8 and r 0.8=  at λ/L=1.0.

6. Discussion of results of determining a wave field 
around a ship

An analysis of the calculated wave fields reveals that at 
transverse and oblique waves near a ship, there occur the 
standing waves from the side of incidence. In this case:

– the slope of waves in this region increases by about 
twice compared with the region of hydrodynamic shadow 
or the region at a considerable distance from the hull of 
the vessel;

– the arrangement of antinodes in the examined 
range of lengths and course angles of waves changes 
little at depth of the water area;

– the depth influences the magnitude of growth and 
reduction in the wave ordinates, in particular: the lower 
the depth, the larger the magnitude r  and the bigger the 
difference between the maximum and minimum relative 
amplitudes is.

It was also established that in the region of a hydrody-
namic shadow, the standing waves are missing. In this case:

– location and length of the region of shadow is 
mainly determined by the magnitude of course angle of 
waves and the wave length and almost does not depend 
on the depth of water area;

– the shorter the incident waves the less the depth 
of water area, the more pronounced is the weakening of 
fluctuations in the region of a hydrodynamic shadow, 
but the zone of maximum attenuation is also narrower;

– the magnitude of waves’ attenuation in the region of 
a shadow mostly depends on the wavelengths and course 
angle of waves, and to a lesser extent on the depth.

The longer the incident waves, the smaller are the 
changes in the wave field caused by a vessel. 

The results obtained are preliminary, as they were 
received using the linear theory. Their refinement is 
implied at the next stage of study that will address solu-
tion of the problem on the diffraction of oblique waves of 
ultimate amplitude on the hull of a stationary elongated 
vessel under conditions of shallow water.

7. Conclusions

1. The present work reports a solution by the MAEM 
method of the problem on diffraction of oblique waves of 
small amplitude on a vessel under conditions of significant 
shallow water. By applying this method, we for the first time 
obtained the formulas for the potential of speeds of diffract-
ed wave motion of fluid in the assigned points near the hull 
of the ship. The vessel is considered to be elongated and mo-
tionless. A shape of the frame contours of the vessel may take 
U-shaped, V-shaped, tuber-shaped form. The methodogy of 
solution and the results obtained represent a further devel-
opment of the MAEM method for the study and solution of 
boundary problems on the hydrodynamics of a ship.

2. We obtained the equation of a wave profile for a com-
bination of incident waves and the diffracted waves. The 
calculations are performed of the amplitudes of waves in the 
preset points of observation around the ship. The variable 
parameters are the depth of water area, wave length and a 
course angle of waves. We analyzed the transformation of 
the incident waves on the hull of the ship and around it. 
Examples are given of the distributions of relative wave am-
plitudes around the hull of the ship.

 

Fig. 2. Wave field around the hull of the vessel H/T=1.1, λ/L=0, 
β=150º
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