┏-

-0

Розглянуто модель взаємозв'язку показників надійності і основних значимих параметрів двокаскадного термоелектричного охолоджуючого пристрою заданої конструкції, який працює в режимі найбільшої енергетичної ефективності при послідовному з'єднанні каскадів. Одержані співвідношення, які дозволяють визначити основні параметри і показники надійності при різнім співвідношенні елементів в каскадах, робочому діапазоні перепадів температур для проектування охолоджувачів підвищеної надійності

Ключові слова: термоелектричні охолоджуючі пристрої, показники надійності, перепад температури, енергетична ефективність

D-

Рассмотрена модель взаимосвязи показателей надежности и основных значимых параметров двухкаскадного термоэлектрического охлаждающего устройства заданной конструкции, работающего в режиме наибольшей энергетической эффективности при последовательном электрическом соединении каскадов. Получены соотношения, позволяющие определить основные параметры и показатели надежности при различном соотношении элементов в каскадах, рабочем диапазоне перепадов температур для проектирования охлаждающих устройств повышенной надежности

Ключевые слова: термоэлектрические охлаждающие устройства, показатели надежности, перепад температуры, энергетическая эффективность

1. Introduction

The application of cascade thermoelectric devices (CTED) is predetermined not only by the need to achieve a maximally possible level of cooling, but also to improve cost efficiency. In some cases, a designer has a number of chosen structures of CTED at his disposal, constructed based on the standardized modules. It is necessary to determine maximally possible energy effectiveness at the assigned temperature differential, to select such current mode in the operation of CTED that it would match the maximum of energy effectiveness of CTED of the assigned design (regime E_{max}). The relevance of providing the maximum of energy effectiveness is caused by the need to reduce the mass-and-size indicators in the systems that provide thermal modes of the thermally loaded elements.

2. Literature review and problem statement

Expansion in the scope of application of thermoelectric coolers [1, 2] leads to more stringet requirements to energy and reliability indicators. Since the refrigeration capacity of

UDC 621.362.192

DOI: 10.15587/1729-4061.2017.99988

DEVELOPMENT OF A MODEL FOR PREDICTING THE RELIABILITY INDICATORS IN THE DESIGN OF CASCADE THERMOELECTRIC COOLERS

V. Zaykov

PhD, Head of Sector Research Institute "STORM" Tereshkova str., 27, Odessa, Ukraine, 65076 E-mail: gradan@i.ua

V. Mescheryakov Doctor of Technical Sciences, Professor, Head of Department Department of Informatics Odessa State Environmental University Lvivska str., 15, Odessa, Ukraine, 65016 E-mail: gradan@ua.fm

Yu. Zhuravlov PhD, Senior Lecturer Department of technology of materials and ship repair National university "Odessa maritime academy" Didrikhsona str., 8, Odessa, Ukraine, 65029 E-mail: zhuravlov.y@ya.ru

coolers depends first of all on the thermoelectric effectiveness of material of thermoelements, considerable efforts of designers are concentrated in this direction [3, 4]. The most impressive results are achieved in the field of nano-technologies [5, 6], however, there is still a long way to go before the implementation of industrial production of such materials. Furthermore, improving the effectiveness of thermoelectric materials does not fully solve the given problem, since the reliability of functioning of coolers is not a less important indicator [7, 8]. The capability to resist mechanical impacts is one of the components of coolers reliability [9]. A transition to the planar technologies in the production of thermoelectric coolers [10, 11] and the corresponding reduction in the mass-and-size indicators does not resolve the task either. New problems occur that are related to the influence of resistances of thermoelements and the increased thermal conductivity [12]. Moreover, when we take into account the existing market for thermoelectric coolers [13], then it becomes obvious that it is necessary to search for the ways of improving the energy and reliability indicators of the existing thermoelectric modules. The models of interrelation between the indicators of thermoelectric effectiveness and reliability, presented in [14], as well as the influence of regimes on the indicators of reliability [15], allow us to argue about the expediency of the given developments. For this purpose, it is necessary at the assigned temperature range to determine basic significant parameters, namely, relative operating currents and relative temperature differentials in the cascades, and then to estimate reliability indicators of energy-efficient CTED.

3. The aim and tasks of the study

The aim of present work is to develop a model that would make it possible to evaluate the efficiency of functioning and predicting the reliability indicators of a two-stage TED of the chosen design.

To achieve this objective, it is necessary to solve the following tasks:

 to develop a model of interrelation between reliability indicators of CTED and the design and energy indicators under the mode of the highest energy effectiveness;

- to analyze the model to identify conditions for improving the efficiency of CTED of different designs.

4. Development and analysis of the model of a cascade thermoelectric cooler

4. 1. Development of a reliability-oriented model of CTED

In order to solve the set problem, we shall use known relationships [16]. The refrigeration capacity Q_0 of a two-cascade CTED can be written in the form

$$Q_0 = n_1 I_{max1}^2 R_1 (2B_1 - B_1^2 - \Theta_1),$$
(1)

where I_{max1} is the maximum operating current, A; $I_{max1} = e_1 T_0 / R_i$; n_1 is the quantity of thermoelements in the first cascade, pieces; T_0 is the temperature of the heat-absorbing joint of the first cascade, K; e_1 is the coefficient of thermal EMF of the branch of thermoelements of the first cascade, V/K; R_1 is the electrical resistance of the branch of thermoelement of the first cascade, color; B_1 is the relative operating current of the first cascade, rel. un, $B_1 = I / I_{max1}$; θ_1 is the relative temperature drop in the first cascade, rel. un.

$$\theta_1 = (T_1 - T_0) / \Delta T_{max1},$$

where T_1 is the intermediate temperature, K; ΔT_{max1} is the maximum temperature differential in the first cascade, K.

Sequential electrical connection of cascades defines the equality of operating currents in the cascades, which can be written in the form

$$I_{max1} B_1 = I_{max2} B_2,$$
 (2)

where B_2 is the relative operating current of the second cascade, rel. un.,

$$B_2 = 1/I_{max2};$$

 $I_{max2} = e_2 T_1/R_2;$

where e_2 is the coefficient of thermal EMF of the branch of thermoelements of the second cascade, V/K; R_2 is the electri-

cal resistance of the branch of thermoelement of the second cascade, Ohm.

A general temperature differential on a two-stage CTED can be written in the form

$$\Delta T = \Delta T_1 + \Delta T_2 = \Delta T_{\max 1} \theta_1 + \Delta T_{\max 2} \theta_2, \qquad (3)$$

where ΔT_1 is the temperature differential in the first cascade, K, $\Delta T_1 = T_1 - T_0$; ΔT_2 is the temperature differential in the second cascade, K, $\Delta T_2 = T - T_1$; θ_2 is the relative temperature differential in the second cascade, rel. un.,

$$\theta_2 = (T - T_1) / \Delta T_{max2},$$

where $\Delta T_{\rm max2}$ is the maximum temperature differential in the second cascade, K.

A condition of the thermal joining of cascades can be written in the form

$$\frac{n_{1}}{n_{2}} = \frac{I_{\max 2}^{2}R_{2}(2B_{2} - B_{2}^{2} - \Theta_{2})}{I_{\max 1}^{2}R_{1}\left[2B_{1}\left(1 + \frac{\Delta T_{\max 1}}{T_{0}}\Theta_{1}\right) + B_{1}^{2} - \Theta_{1}\right]},$$
(4)

where n is the quantity of thermoelements in the second cascade, pieces

Refrigeration coefficient of a two-stage CTED can be written in the form

$$E^{N=2} = \frac{Q_0}{W_1 + W_2},$$
(5)

where W_1 is the power of consumption of the first cascade, W,

$$W_{1} = 2n_{1}I_{max1}^{2}R_{1}B_{1}\left(B_{1} + \frac{\Delta T_{max1}}{T_{0}}\Theta_{1}\right),$$
(6)

where W_1 is the power of consumption of the second cascade, W,

$$W_{2} = 2n_{2}I_{max2}^{2}R_{2}B_{2}\left(B_{2} + \frac{\Delta T_{max2}}{T_{1}}\Theta_{2}\right).$$
 (7)

By using relations (1)-(7), refrigeration coefficient can be written in the form

$$E^{N=2} = \frac{2aB_{1}b - aB_{1}^{2}c + 2a^{2}B_{1}^{3}\frac{\Delta T_{max1}}{T_{0}} - a\frac{\Delta T}{\Delta T_{max2}}}{2B_{1}^{2}X - 2B_{1}^{3}Y + 2B_{1}H\frac{\Delta T}{\Delta T_{max2}}},$$
(8)

where

$$\begin{split} &a = \frac{n_1 I_{max1}^2 R_1}{n_2 I_{max2}^2 R_2}; \\ &b = \frac{\Delta T_{max1}}{\Delta T_{max2}} + \frac{I_{max1}}{I_{max2}}; \\ &c = \frac{\Delta T_{max1}}{\Delta T_{max2}} + 2a \left(1 + 2\frac{\Delta T_{max1}}{T_0}\right) + \frac{I_{max1}^2}{I_{max2}^2}; \end{split}$$

$$\begin{split} \mathbf{X} &= \left(\frac{\Delta T_{\max 1}}{\Delta T_{\max 2}} + \mathbf{a}\right) \left(\mathbf{a} + \frac{\mathbf{I}_{\max 1}^2}{\mathbf{I}_{\max 2}}\right) - \\ &- 2\mathbf{a} \frac{\Delta T_{\max 1}}{T_0} \frac{\mathbf{I}_{\max 1}}{\mathbf{I}_{\max 2}} \frac{\Delta T_{\max 2}}{T_1} \frac{\Delta T_{\max 2}}{\Delta T_{\max 2}} + \\ &+ 2 \left(\frac{\mathbf{I}_{\max 1}}{\mathbf{I}_{\max 2}} \frac{\Delta T_{\max 2}}{T_1} \frac{\Delta T_{\max 2}}{\Delta T_{\max 2}} - \mathbf{a} \frac{\Delta T_{\max 1}}{T_0}\right); \\ \mathbf{Y} &= \left(\mathbf{a} + \frac{\mathbf{I}_{\max 1}^2}{\mathbf{I}_{\max 2}^2}\right) \left(\frac{\mathbf{I}_{\max 1}}{\mathbf{I}_{\max 2}} \frac{\Delta T_{\max 2}}{T_1} - \mathbf{a} \frac{\Delta T_{\max 1}}{\Delta T_{\max 2}} + \mathbf{a} \frac{\Delta T_{\max 1}}{T_0}\right); \\ \mathbf{H} &= \mathbf{a} \left(\frac{\mathbf{I}_{\max 1}}{\mathbf{I}_{\max 2}} \frac{\Delta T_{\max 2}}{T_1} + \frac{\Delta T_{\max 1}}{T_0}\right). \end{split}$$

Functional dependence

 $E^{N-2}=f(B_1),$

has a maximum for different designs of TED (n_1/n_2) and temperature differentials $\Delta T=60$ K; 70 K; 80 K; 90 K at T=300 K, $n_1=9$, $l_2/s_2=l_1/s_1=10$.

With an increase in temperature ΔT , the optimum magnitude of relative operating current B_1 shifts toward larger values.

From condition $\frac{dE^{N}}{dB_{1}} = 0$ we shall obtain a relation for

determining the optimum magnitude of relative operating current B_1 , corresponding to the maximum of refrigeration coefficient E^N of the TED of assigned design (n_1/n_2) and to the temperature differential ΔT :

$$B_{1}^{4}\left(Yc - 2aX\frac{\Delta T_{max1}}{T_{0}}\right) - 4B_{1}^{3}\left(Yb + aH\frac{\Delta T_{max1}}{T_{0}}\frac{\Delta T}{\Delta T_{max2}}\right) + B_{1}^{2}\left(2Xb + Hc\frac{\Delta T}{\Delta T_{max2}} + 3Y\frac{\Delta T}{\Delta T_{max2}}\right) - 2B_{1}X\frac{\Delta T}{\Delta T_{max2}} - \left(\frac{\Delta T}{\Delta T_{max2}}\right)^{2} = 0.$$
(9)

Presented relation (9) makes it possible to determine the magnitude of optimum relative operating current B_1 that provides for the maximum refrigeration coefficient E^N at the given values of ratio n_1/n_2 and temperature differential ΔT .

Next, we determine relative temperature differentials in cascades $\theta_1 \ \mu \ \theta_2$, using a successive approximation method, taking into account the temperature dependence of parameters (one-two approximations siffice):

$$\Theta_{1} = \frac{B_{1}^{2} \left(a + \frac{I_{\max 1}^{2}}{I_{\max 2}^{2}} \right) - 2B_{1} \left(\frac{I_{\max 1}}{I_{\max 2}} - a \right) + \frac{\Delta T}{\Delta T_{\max 2}}}{\frac{\Delta T_{\max 1}}{\Delta T_{\max 2}} + a - 2aB_{1}\frac{\Delta T_{\max 1}}{T_{0}}};$$
(10)

$$\Theta_2 = \frac{\Delta T}{\Delta T_{\text{max}2}} - \frac{\Delta T_{\text{max}1}}{\Delta T_{\text{max}2}} \Theta_1$$
(11)

and, according to expression (1), refrigeration capacity Q_{01} for the assigned design (n_1/n_2) of TED in regime E_{max} at the assigned Δ T.

In accordance with [16], for a two-stage TED, the magnitude of relative failure rate can be written in the form

$$\frac{\lambda_{\Sigma}}{\lambda_{0}} = \frac{n_{1}B_{1}^{2}(\Theta_{1} + C_{1})\left(B_{1} + \frac{\Delta T_{\max 1}}{T_{0}}\Theta_{1}\right)^{2}}{\left(1 + \frac{\Delta T_{\max 1}}{T_{0}}\Theta_{1}\right)^{2}}K_{T_{1}} + \frac{n_{2}B_{2}^{2}(\Theta_{2} + C_{2})\left(B_{2} + \frac{\Delta T_{\max 2}}{T_{1}}\Theta_{2}\right)^{2}}{\left(1 + \frac{\Delta T_{\max 2}}{T_{1}}\Theta_{2}\right)^{2}}K_{T_{2}},$$
(12)

where λ_0 is the nominal failure rate, 1/h; C₁, C₂ are the relative thermal load of the first and second cascades, rel. un.,

$$C_{1} = \frac{Q_{01}}{n_{1}I_{max1}^{2}R_{1}};$$
$$C_{2} = \frac{Q_{0} + W_{1}}{n_{2}I_{max2}^{2}R_{2}},$$

 K_{T_1} and K_{T_2} is the coefficient of significance taking into account the effect of reduced temperature [16]. The analytical model obtained provides the possibility to analyze a relation between the relative failure rate and the energy and design indicators of a thermoelectric cooler in the working range of functioning temperature.

4. 2. Analysis of results of modeling the reliability and energy indicators

The calculated data on the basic parameters are given in Tables 1–4 for $l_2/s_2=l_1/s_1=10$; T=300 K; Δ T=60 K; 70 K; 80 K; 90 K; $n_1=9$; $n_1/n_2=1.0$; 0.67; 0.5; 0.33; 0.2; 0.1 and the averaged value of effectiveness of thermoelectric modules $z_{\rm w}=2.5\cdot10^{-3}$ 1/K; $\lambda_0=3\cdot10^{-8}$ 1/h; t=10⁴ h.

At the decrease in ratio n_1/n_2 at the assigned value of temperature differential ΔT =60 K:

– the magnitude of intermediate temperature T_1 decreases (Fig. 1, pos. 1);

- relative operating current of the first cascade B_1 increases (Fig. 1, pos. 2);

- relative operating current of the second cascade B_2 increases (Fig. 1, pos. 3);

– relative drop in temperature of the first cascade θ_1 decreases (Fig. 1, pos. 4);

- relative drop in temperature of the second cascade θ_2 increases (Fig. 1, pos. 5);

the magnitude of operating current I increases (Fig. 1, pos. 6);

- refrigeration coefficient of TED has an absolute maximum at $n_1/n_2{=}0.44$ (Fig. 2, pos. 1);

- refrigeration coefficient of the first cascade ε_1 increases (Fig. 2, pos. 2), and of the second cascade ε_2 decreases (Fig. 2, pos. 3);

– the point of intersection of dependence charts of the refrigeration coefficients of cascades ϵ_1 and ϵ_2 corresponds to $n_1/n_2=0.44$ (Fig. 2);

– refrigeration capacity Q_{01} (Fig. 2, pos. 4) and its relative magnitude C_1 (Fig. 2, pos. 5) increase;

– the total magnitude of failure rate λ_{Σ} increases (Fig. 3, pos. 3);

– the failure rates of the first λ_1 and the second λ_2 cascades also increase (Fig. 3, pos. 1, 2);

– total probability of failure-free operation P_{Σ} decreases (Fig. 4, pos. 3);

- the probability of failure-free operation of the first (P_1) and the second (P_2) cascade decreases (Fig. 4, pos. 1, 2).

Table 1

Results of calculation of the basic parameters and indicators of reliability of two-cascade TED of different designs under the mode E_{max} at ΔT =60 K

n_1/n_2	B ₁	B_2	I, A	T ₁ , K	θ_1	θ_2	ε ₁	ε2	Е	Q ₀₁ , W	C ₁	W1, W	W_2 , W	W _T , W	U_{Σ} , V	$\lambda_{\Sigma} \cdot 10^{-8}$, 1/h	Р
1.0	0.41	0.38	1.91	279.8	0.61	0.22	0.1	1.13	0.051	0.09	0.05	0.89	0.86	1.75	0.92	1.18	0.999882
0.67	0.43	0.405	2.0	272.8	0.51	0.31	0.35	0.83	0.133	0.32	0.17	0.92	1.49	2.4	1.21	1.79	0.99982
0.5	0.44	0.42	2.10	268.3	0.44	0.37	0.50	0.64	0.151	0.46	0.24	0.93	2.15	3.1	1.5	2.4	0.99976
0.45	0.447	0.43	2.13	267.2	0.427	0.40	0.54	0.59	0.148	0.50	0.27	0.94	2.44	3.4	1.6	2.9	0.99971
0.33	0.45	0.44	2.14	262.5	0.35	0.46	0.70	0.45	0.146	0.64	0.34	0.92	3.45	4.37	2.0	3.7	0.99963
0.2	0.45	0.45	2.13	257.0	0.27	0.55	0.92	0.27	0.114	0.79	0.42	0.86	6.05	6.9	3.2	6.5	0.999352
0.1	0.455	0.46	2.2	253.4	0.21	0.62	1.05	0.14	0.069	0.91	0.49	0.86	12.4	13.2	6.0	13.3	0.99867

Table 2

Results of calculation of the basic parameters and indicators of reliability of two-cascade TED of different designs under the mode $\rm E_{max}$ at $\Delta T{=}70~\rm K$

n_{1}/n_{2}	B_1	B_2	I, A	Т ₁ , К	θ_1	θ_2	ε ₁	ε2	Е	Q ₀₁ , W	C ₁	W1, W	W ₂ , W	W_{Σ} , W	U_{Σ} , V	$\lambda_{\Sigma} \cdot 10^{-8}$, 1/h	Р
0.67	0.53	0.49	2.43	270.3	0.69	0.34	0.12	0.68	0.044	0.15	0.086	1.28	2.114	3.4	1.4	4.3	0.99957
0.50	0.54	0.50	2.45	264.6	0.60	0.41	0.26	0.53	0.0767	0.33	0.19	1.26	3.0	4.26	1.7	5.5	0.99945
0.37	0.55	0.53	2.51	260.0	0.55	0.50	0.40	0.40	0.083	0.45	0.25	1.26	4.3	5.6	2.2	7.8	0.99922
0.33	0.547	0.53	2.52	258.7	0.50	0.52	0.40	0.36	0.0823	0.50	0.29	1.26	4.85	6.11	2.42	9.0	0.99910
0.20	0.57	0.55	2.64	253.6	0.42	0.61	0.51	0.23	0.0673	0.66	0.39	1.28	8.5	9.8	3.7	15.8	0.99842
0.10	0.573	0.56	2.66	248.2	0.33	0.71	0.66	0.12	0.0433	0.82	0.49	1.25	17.7	18.9	7.1	31.9	0.99682

Table 3

Results of calculation of the basic parameters and indicators of reliability of two-cascade TED of different designs under the mode $E_{_{max}}$ at $\Delta T{=}80~K$

n_{1}/n_{2}	B ₁	B ₂	I, A	Т ₁ , К	θ1	θ_2	ε ₁	ε2	Е	Q ₀₁ , W	C ₁	W ₁ , W	W ₂ , W	W_{Σ}, W	U_{Σ} , V	$\lambda_{\Sigma} \cdot 10^{-8}, 1/h$	Р
0.50	0.65	0.60	2.9	263.4	0.85	0.45	0.03	0.44	0.0089	0.051	0.033	1.71	4.0	5.71	1.97	12.3	0.99877
0.33	0.67	0.63	3.0	257.1	0.73	0.56	0.14	0.31	0.030	0.25	0.16	1.75	6.55	8.3	2.75	19.7	0.9980
0.20	0.68	0.65	3.1	250.2	0.60	0.67	0.26	0.19	0.034	0.45	0.29	1.72	11.5	13.2	4.3	32.5	0.99676
0.10	0.70	0.69	3.2	245.2	0.51	0.78	0.35	0.10	0.023	0.61	0.40	1.75	24.9	26.7	8.4	71.9	0.99283

Table 4

Results of calculation of the basic parameters and indicators of reliability of two-cascade TED of different designs under the mode $\rm E_{max}$ at $\Delta T{=}90~\rm K$

n ₁ /r	2 B ₁	B_2	I, A	Т ₁ , К	θ1	θ_2	ε ₁	ε2	Е	Q ₀₁ , W	C ₁	W ₁ , W	W ₂ , W	W_{Σ}, W	U_{Σ} , V	$\lambda_{\Sigma} \cdot 10^{-8}, 1/h$	Р
0.20	0.83	0.77	3.6	249.4	0.89	0.71	0.05	0.16	0.0067	0.12	0.085	2.3	15.1	17.4	4.9	64.9	0.99353
0.10	0.84	0.81	3.7	243.6	0.77	0.83	0.12	0.08	0.0081	0.28	0.21	2.3	32.4	34.7	9.4	140	0.9861

Fig. 1. Dependence of the intermediate temperature T_1 , relative operating currents B_1 and B_2 , relative temperature differentials θ_1 and θ_2 in the cascades and the magnitude of operating current I of two-cascade thermoelectric coolers

Fig. 2. Dependence of general refrigeration coefficient E and on the cascades ε_1 and ε_2 , refrigeration capacity Q_{01} and C_1 of two-stage thermoelectric coolers under the mode E_{max} on the ratio n_1/n_2 at T=300 K; Δ T=60 K; n_1 =9; $(I/s)_i$ =10: $1 - E = f(n_1/n_2); 2 - \varepsilon_1 = f(n_1/n_2); 3 - \varepsilon_2 = f(n_1/n_2);$ $4 - Q_{01} = f(n_1/n_2); 5 - C_1 = f(n_1/n_2)$

At the decrease in ratio $n_{_1}\!/n_{_2}$ at the assigned value of temperature differential $\Delta T{=}70$ K:

- the magnitude of intermediate temperature T_1 decreases (Fig. 5, pos. 1);

- relative operating current of the first cascade B_1 and the second cascade B_2 increases (Fig. 5, pos. 2 and 3);

– relative drop in temperature of the first cascade θ_1 decreases (Fig. 5, pos. 4);

– relative drop in temperature of the second cascade θ_2 increases (Fig. 5, pos. 5);

- the magnitude of operating current I increases (Fig. 5, pos. 6);

- refrigeration coefficient E has a maximum at $n_{_1}\!/n_{_2}\!\!=\!\!0.37$ (Fig. 6, pos. 1);

– refrigeration coefficient of the first cascade ε_1 increases (Fig. 6, pos. 2), and of the second cascade ε_2 – decreases (Fig. 6, pos. 3);

- refrigeration capacity Q_{01} (Fig. 6, pos. 4) and its relative magnitude C_1 (Fig. 6, pos. 5) increase;

– the total magnitude of failure rate λ_{Σ} increases (Fig. 7, pos. 3);

– failure rates of the first λ_1 and the second λ_2 cascades also increase (Fig. 7, pos. 1, 2);

- total power of energy consumption W increases, (Fig. 7, pos. 4);

- the total probability of failure-free operation P decreases (Fig. 8, pos. 3);

– the probability of failure-free operation of the first P_1 and the second cascade P_2 decreases (Fig. 8, pos. 1, 2).

Fig. 3. Dependence of the total failure rate λ_{Σ} and each cascade λ_1 and λ_2 separately of two-stage thermoelectric coolers under the mode E_{max} on the ratio n_1/n_2 at T=300 K; $\Delta T=60$ K; $n_1=9$; $(I/s)_1=10$, $\lambda_0=3\cdot10^{-8}$ 1/h: $1 - \lambda_1=f(n_1/n_2)$; $2 - \lambda_2=f(n_1/n_2)$; $3 - \lambda_{\Sigma}=f(n_1/n_2)$

Fig. 4. Dependence of the total probability of failure-free rate P_{Σ} and by each cascade P_1 and P_2 separately of

two-stage thermoelectric coolers of different designs under the mode E_{max} on the ratio n_1/n_2 at T=300 K; ΔT =60 K; n_1 =9; $(1/s)_i$ =10; λ_0 =3·10⁻⁸ 1/h; t=10⁴ h: 1 - P_1=f(n_1/n_2);

$$2 - P_2 = f(n_1/n_2); 3 - P_{\Sigma} = f(n_1/n_2)$$

Fig. 5. Dependence of the intermediate temperature T_1 , relative operating currents B_1 and B_2 , relative temperature differentials θ_1 and θ_2 in the cascades and the magnitude of operating current I of two-cascade thermoelectric coolers under the mode F on the ratio n_1/n_2 at T=300 K:

$$\Delta T=70 \text{ K; } n_1=9; (1/s)_i=10: 1 - T_1=f(n_1/n_2); 2 - B_1=f(n_1/n_2); 3 - B_2=f(n_1/n_2); 4 - \theta_1=f(n_1/n_2); 5 - \theta_2=f(n_1/n_2); 6 - I=f(n_1/n_2)$$

Fig. 6. Dependence of general refrigeration coefficient E and by the cascades ϵ_1 and ϵ_2 , refrigeration capacity Q_{01} and C_1 of two-cascade thermoelectric coolers under the mode E_{max} on

At the decrease in ratio n_1/n_2 at the assigned value of temperature differential $\Delta T{=}80$ K:

– the magnitude of intermediate temperature T_1 decreases (Fig. 9, pos. 1);

- relative operating current of the first cascade B_1 and of the second cascade B_2 increases (Fig. 9, pos. 2, 3);

– relative drop in temperature of the first cascade θ_1 decreases (Fig. 5, pos. 4), and of the second cascade θ_2 increases (Fig. 9, pos. 5);

the magnitude of operating current I increases (Fig. 9, pos. 6);

– refrigeration coefficient E has a maximum at $n_1/n_2=0.23$ (Fig. 10, pos. 1), in this case the refrigeration coefficients of the first cascade ϵ_1 and of the second cascade ϵ_2 are equal to each other: $\epsilon_1=\epsilon_2=0.22$ (Fig. 10, pos. 2, 3);

– refrigeration capacity Q_{01} (Fig. 10, pos. 4) and its relative magnitude C_1 (Fig. 10, pos. 5) increase;

– the total magnitude of failure rate λ_{Σ} increases (Fig. 11, pos. 3), in this case the failure rates of the first λ_1 and of the second λ_2 cascades also increase (Fig. 11, pos. 1, 2), but not equally;

-total power of energy consumption W_{Σ} increases (Fig. 11, pos. 4);

– the total probability of failure-free operation P_{Σ} decreases (Fig. 12, pos. 3), in this case the probability of failure-free operation of the first (P_1) and of the second (P_2) cascades also decreases (Fig. 12, pos. 1, 2).

Fig. 7. Dependence of the total failure rate λ_{Σ} and of each cascade λ_1 and λ_2 separately of two-cascade thermoelectric coolers under the mode E_{max} on the ratio n_1/n_2 at T=300 K; $\Delta T=70$ K; $n_1=9$; $(I/s)_i=10$; $\lambda_0=3\cdot10^{-8}$ 1/h: $1 - \lambda_1=f(n_1/n_2)$; $2 - \lambda_2=f(n_1/n_2)$; $3 - \lambda_{\Sigma}=f(n_1/n_2)$

Fig. 8. Dependence of the total probability of failure-free operation P_{Σ} and of each cascade separately P_1 and P_2 of the two-cascade thermoelectric coolers of different designs under the mode E_{max} on the ratio n_1/n_2 at T=300 K; Δ T=70 K; n_1 =9; (I/s)_i=10; λ_0 =3·10⁻⁸ 1/h; t=10⁴ h: 1 - P_1 =f(n_1/n_2); $2 - P_2$ =f(n_1/n_2); $3 - P_{\Sigma}$ =f(n_1/n_2)

Fig. 9. Dependence of the intermediate temperature T₁, relative operating currents B₁ and B₂, relative temperature differentials θ_1 and θ_2 in the cascades and the magnitude of operating current I of two-cascade thermoelectric coolers under the mode E_{max} on the ratio n₁/n₂ at T=300 K; Δ T=80 K;

Fig. 10. Dependence of general refrigeration coefficient E and by the cascades ε_1 and ε_2 , refrigeration capacity Q_{01} and C₁ of two-cascade thermoelectric coolers under the mode

 $\begin{array}{l} \mathsf{E}_{max} \text{ on the ratio } \mathsf{n_1/n_2} \text{ at } \mathsf{T}{=}300 \text{ K}; \Delta \mathsf{T}{=}80 \text{ K}; \mathsf{n_1}{=}9; \\ (\mathsf{I}/\mathsf{s})_{_1}{=}10; \ \mathsf{1}-\mathsf{E}{=}\mathsf{f}(\mathsf{n_1/n_2}); \ \mathsf{2}-\varepsilon_1{=}\mathsf{f}(\mathsf{n_1/n_2}); \ \mathsf{3}-\varepsilon_2{=}\mathsf{f}(\mathsf{n_1/n_2}); \\ \ \mathsf{4}-\mathsf{Q}_{_01}{=}\mathsf{f}(\mathsf{n_1/n_2}); \ \mathsf{5}-\mathsf{C}_1{=}\mathsf{f}(\mathsf{n_1/n_2}) \end{array}$

At the decrease of ratio n_1/n_2 at the assigned value of temperature differential ΔT =90 K:

- the magnitude of intermediate temperature T_1 decreases (Fig. 13, pos. 1);

– relative operating current of the first cascade B_1 and of the second cascade B_2 increases (Fig. 13, pos. 2, 3);

– relative drop in temperature of the first cascade θ_1 decreases (by Fig. 13, pos. 4), and that of the second cascade θ_2 increases (Fig. 13, pos. 5);

- the magnitude of operating current I increases (Fig. 13, pos. 6);

– refrigeration coefficient E has a maximum at $n_1/n_2=0.127$ (Fig. 14, pos. 1), in this case the refrigeration coefficients of the first cascade ε_1 and of the second cascade ε_2 are equal to each other: $\varepsilon_1=\varepsilon_2=0.10$ (Fig. 14, pos. 2, 3); - refrigeration capacity Q_{01} (Fig. 14, pos. 4) and its relative magnitude C_1 (Fig. 14, pos. 5) increase;

– the total magnitude of failure rate λ_{Σ} increases (Fig. 15, pos. 3), in this case the failure rate of the first λ_1 and of the second λ_2 cascades increases (Fig. 15, pos. 1, 2);

– the total probability of failure-free operation P_{Σ} decreases (Fig. 15, pos. 7), in this case the probability of failure-free operation of the first (P₁) and of the second (P₂) cascades decreases (Fig. 15, pos. 5, 6).

Fig. 11. Dependence of general total failure rate λ_{Σ} and of each cascade λ_1 and λ_2 separately of two-cascade thermoelectric coolers under the mode $E_{_{max}}$ on the ratio

 $\begin{array}{l} n_1/n_2 \text{ at } T{=}300 \text{ K}; \ \Delta T{=}80 \text{ K}; \ n_1{=}9; \ (l/s)_i{=}10; \\ \lambda_0{=}3{\cdot}10^{-8} \text{ 1/h}: \ 1-\lambda_1{=}f(n_1/n_2); \ 2-\lambda_2{=}f(n_1/n_2); \\ 3-\lambda_\Sigma{=}f(n_1/n_2); \ 4-W_\Sigma{=}f(n_1/n_2) \end{array}$

Fig. 12. Dependence of the total probability of failure-free operation P_{Σ} and for each cascade separately P_1 and P_2 of the two-cascade thermoelectric coolers of different designs

under the mode E_{max} on the ratio n_1/n_2 at T=300 K; $\Delta T=80$ K; $n_1=9$; $(I/s)_1=10$, $\lambda_0=3\cdot10^{-8}$ 1/h; $t=10^4$ h: $1-P_1=f(n_1/n_2)$; $2-P_2=f(n_1/n_2)$; $3-P_x=f(n_1/n_2)$

The given qualitative description of the energy indicators of a cooler depending on the ratio of number of thermoelements in the cascades allows us to estimate the ways of designing the two-cascade thermoelectric devices with improved reliability.

Fig. 13. Dependence of the intermediate temperature T₁, relative operating currents B₁ and B₂, relative temperature differentials θ_1 and θ_2 in the cascades and the magnitude of operating current I of two-cascade thermoelectric coolers under the mode E_{max} on the ratio n₁/n₂ at T=300 K; Δ T=90 K; n₁=9; (I/s)_i=10: 1 - T₁=f(n₁/n₂); 2 - B₁=f(n₁/n₂);

 $3 - B_2 = f(n_1/n_2); 4 - \theta_1 = f(n_1/n_2); 5 - \theta_2 = f(n_1/n_2); 6 - I = f(n_1/n_2)$

Fig. 14. Dependence of general refrigeration coefficient E and by the cascades ε_1 and ε_2 , refrigeration capacity Q_{01} and C_1 of two-cascade thermoelectric coolers under the mode E_{max} on the ratio n_1/n_2 at T=300 K; Δ T=90 K; n_1 =9; (1/s)=10: $1 - E = f(n_1/n_2)$; $2 - \varepsilon_2 = f(n_1/n_2)$; $3 - \varepsilon_2 = f(n_1/n_2)$;

$$4 - Q_{01} = f(n_1/n_2); 5 - C_1 = f(n_1/n_2)$$

Fig. 15. Dependence of the total failure rate λ_{Σ} and the probability of failure-free operation P_s and of each cascade separately λ_1 and λ_2 and P_1 and P_2 of two-cascade thermoelectric coolers under the mode E_{max} on the ratio n_1/n_2 at T=300 K; $\Delta T=80$ K; $n_1=9$; $(1/s)_i=10$, $\lambda_0=3\cdot 10^{-8}$ 1/h; t=10⁴ h: $1 - \lambda_1 = f(n_1/n_2)$; $2 - \lambda_2 = f(n_1/n_2)$; $3 - \lambda_{\Sigma} = f(n_1/n_2)$; $4 - W_{\Sigma} = f(n_1/n_2)$; $5 - P_1 = f(n_1/n_2)$; $6 - P_2 = f(n_1/n_2)$; $7 - P_{\Sigma} = f(n_1/n_2)$

5. Discussion of results of the analysis of relation between the number of elements and the energy and reliability indicators

An analysis of calculated data revealed that there is an optimum ratio n_1/n_2 , corresponding to the maximum of refrigeration coefficient E at the assigned temperature differential ΔT .

In the point of the maximum of refrigeration coefficient E we observe the equality of values of relative temperature differential θ_1 and θ_2 and refrigeration coefficients ε_1 and ε_2 in the cascades. Results of the calculations are given in Table 5.

Table 5

Results of the calculation of basic parameters and indicators of reliability of two-cascade TED of different designs under the mode E_{max} at different values of temperature differential

ΔΤ, Κ	n ₁ /n ₂	B ₁	B_2	I, A	Т ₁ , К	θ_1	θ_2	ε ₁	ε2	Е	Q ₀₁ , W	C ₁	W_{Σ}, W	U _Σ , V	$\lambda_{\Sigma}/n_{1}\lambda_{0}$	$\lambda_{\Sigma} \ 10^{-8}, \ 1/h$	Р
60	0.44	0.45	0.43	2.1	267.2	0.43	0.43	0.58	0.58	0.151	0.50	0.27	3.4	1.6	0.11	2.9	0.99971
70	0.37	0.55	0.53	2.5	260.0	0.55	0.50	0.40	0.40	0.083	0.45	0.25	5.6	2.2	0.29	7.8	0.99922
80	0.23	0.69	0.66	3.1	253.0	0.63	0.63	0.22	0.22	0.034	0.38	0.24	11.6	3.7	1.0	27.0	0.9972
90	0.127	0.83	0.80	3.775	244.0	0.80	0.80	0.10	0.10	0.0083	0.24	0.18	31.0	8.2	4.26	115.0	0.9880

With an increase in the temperature differential ΔT for different designs of TED ($n_1/n_2=1.0$; 0.67; 0.5; 0.33; 0.2; 0.1):

– relative operating currents in the first (B_1) and the second (B_2) cascades increase;

- the magnitude of operating current I increases as well;
- the intermediate temperature T₁ decreases;

– relative temperature differentials in the first (θ_1) and the second (θ_2) cascades increase;

– refrigeration coefficient E decreases, in this case refrigeration coefficient of the first cascade ϵ_{1} and of the second ϵ_{2} decrease;

– refrigeration capacity Q_{01} and its relative magnitude C_1 decrease;

– the total power of energy consumption W_{Σ} grows;

- total voltage drop U_x grows;

- the total magnitude of failure rate λ_{Σ} grows;

– the total probability of failure-free operation P_{Σ} decreases.

6. Conclusions

1. We developed a model of the relation between indicators of reliability of a cascade thermoelectric cooler and the distribution of the number of thermoelements in the cascades of a thermoelectric cooler, temperature differential, the refrigeration capacity and thermal load. Its special feature is in providing for the possibility to design the structural and energy indicators of a cooler in accordance with a criterion of the minimum failure rate.

2. We carried out an analysis of the model under regime of the highest energy efficiency, which demonstrated a possibility to evaluate the operational efficiency of a cascade cooler, to predict the optimum values of refrigeration coefficient at the assigned temperature differential and the relation of the number of elements in cascades under varied conditions of operation.

References

- Bell, L. E. Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems [Text] / L. E. Bell // Science. – 2008. – Vol. 321, Issue 5895. – P. 1457–1461. doi: 10.1126/science.1158899
- Jurgensmeyer, A. L. High Efficiency Thermoelectric Devices Fabricated Using Quantum Well Confinement Technique [Text] / A. L. Jurgensmeyer. – Colorado, 2011. – 59 p.
- Materials, Preparation and Characterization in Thermoelectrics [Text] / D. M. Rowe (Ed.) // Thermoelectrics and its Energy Harvesting. – Boca Raton: CRC Press, 2012. – 1120 p. doi: 10.1201/b11891
- Simkin, A. V. Thermoelectric efficiency of low –temperature generator materials and the possibility of it's increasing [Text] / A. V. Simkin, A. V. Biryukov, N. I. Repnikov, O. N. Ivanov // Journal of nano – and electronic Physics. – 2013. – Vol. 5, Issue 4 (2). – P. 04070–04071.
- Brown, S. R. Yb14MnSb11: New High Efficiency Thermoelectric Material for Power Generation [Text] / S. R. Brown, S. M. Kauzlarich, F. Gascoin, G. J. Snyder // Chemistry of Materials. – 2006. – Vol. 18, Issue 7. – P. 1873–1877. doi: 10.1021/ cm060261t
- Sootsman, J. R. New and Old Concepts in Thermoelectric Materials [Text] / J. R. Sootsman, D. Y. Chung, M. G. Kanatzidis // Angewandte Chemie International Edition. – 2009. – Vol. 48, Issue 46. – P. 8616–8639. doi: 10.1002/anie.200900598
- Zebarjadi, M. Perspectives on thermoelectrics: from fundamentals to device applications [Text] / M. Zebarjadi, K. Esfarjani, M. S. Dresselhaus, Z. F. Ren, G. Chen // Energy Environ. Sci. – 2012. – Vol. 5, Issue 1. – P. 5147–5162. doi: 10.1039/c1ee02497c
- Choi, H.-S. Prediction of reliability on thermoelectric module through accelerated life test and Physics-of-failure [Text] / H.-S. Choi, W.-S. Seo, D.-K. Choi // Electronic Materials Letters. – 2011. – Vol. 7, Issue 3. – P. 271–275. doi: 10.1007/s13391-011-0917-x
- Wereszczak, A. A. Thermoelectric Mechanical Reliability [Text] / A. A. Wereszczak, H. Wang // Vehicle Technologies Annual Merit Reviewand Peer Evaluation Meeting. – Arlington, 2011. – P. 18.
- Singh, R. Experimental Characterization of Thin Film Thermoelectric Materials and Film Deposition VIA Molecular Beam Epitaxy [Text] / R. Singh. – University of California, 2008. – 54 p.
- Nesterov, S. B. Evaluation of the possibility of increasing the thermoelectric quality of nanostructured semiconductor materials for refrigeration equipment [Text] / S. B. Nesterov, A. I. Kholopkin // Refrigerating Technique. – 2014. – Issue 5. – P. 40–43.
- Gromov, G. Volumetric or thin –film thermoelectric modules [Text] / G. Gromov // Components and Technologies. 2014. Issue 9. – P. 38.
- 13. Market of thermoelectric modules. Analytical review [Text]. Moscow: RosBusinessConsulting, 2009. 92 p.
- Zaikov, V. P. Influence of the effectiveness of raw materials on the reliability of thermoelectric cooling devices. Part I: single-stage TEDs [Text] / V. P. Zaikov, V. I. Meshcheryakov, A. A. Gnatovskaya, A. A. Gnatovskaya // Tekhnologiya i konstruirovanie v ehlektronnoj apparature. – 2015. – Issue 1. – P. 44–48. doi: 10.15222/tkea2015.1.44
- Zaikov, V. P. Analysis of reliability improvement possibilities of thermoelectric cooling devices [Text] / V. P. Zaikov, V. I. Meshcheryakov, Yu. I. Zhuravlev // Eastern-European Journal of Enterprise Technologies. – 2015. – Vol. 4, Issue 8 (76). – P. 17–25. doi: 10.15587/1729-4061.2015.46553
- Zaykov, V. P. Prediction of reliability on thermoelectric cooling devices. Kn. 1. Single -stage devices [Text] / V. P. Zaykov, L. A. Kirshova, V. F. Moiseev. – Odessa: Politehperiodika, 2009. – 118 p.

iO