Substantiation for the selection of parameters for ensuring electrothermal protection of solar batteries in spacecraft power systems
DOI:
https://doi.org/10.15587/1729-4061.2022.258480Keywords:
solar butterfly, electrothermal protection, posistor polymer nanocomposite, dark current, efficiency of switching elementsAbstract
A relevant scientific-practical issue related to the sustainable development of outer space is the selection of optimal parameters of solar panels for the uninterrupted supply of energy in the power plants of spacecraft. It has been determined that advancing energy-efficient technologies is a prerequisite for ensuring stable space activities. The decision-making process regarding the choice of alternative options for ensuring the electrothermal protection of solar panels in the power plants of spacecraft occurs under the conditions of uncertainty and various risks.
A methodical approach to assessing the effectiveness of options for building electrothermal protection systems for solar panels in the power plants of spacecraft has been devised. The hierarchical structure of the problem about approving of the choice of electrothermal protection of solar panels has been constructed on the basis of the method of analytical hierarchical process, which makes it possible to derive a set of optimal options.
Five alternative options for electrothermal protection of solar panels have been chosen, which, unlike existing ones, take into consideration the phases of the life cycle, namely, the period of active operation. The selection of criteria for choosing the parameters of electrothermal protection of solar panels in the power installations of spacecraft has been substantiated: ensuring the smooth operation of solar panels; availability of service in emergencies; the life cycle of solar panels; the cost of solar panels; technical safety; mass-size indicators.
It is argued that the chosen optimal alternative "Solar panels with protection on the basis of self-resetting fuses" could prolong the active life cycle and, as a result, reduce the number of repairs (current and overhaul) of solar panels in space activities. Owing to the use of this option, positive results could be achieved such an increase in the active life cycle by 20 %, as well as an increase in technical safety by 24 %
References
- Dron’, M., Hilorme, T., Golubek, A., Dreus, A., Dubovik, L. (2022). Determining the performance indicators of employing combined methods for removing space objects from near-earth orbits. Eastern-European Journal of Enterprise Technologies, 1 (3 (115)), 6–12. doi: https://doi.org/10.15587/1729-4061.2022.253096
- Abdmouleh, Z., Gastli, A., Ben-Brahim, L., Haouari, M., Al-Emadi, N. A. (2017). Review of optimization techniques applied for the integration of distributed generation from renewable energy sources. Renewable Energy, 113, 266–280. doi: https://doi.org/10.1016/j.renene.2017.05.087
- Program and Project Management (2018). NASA. Available at: https://www.nasa.gov/offices/oce/functions/prog_proj_mgmt.html
- Chang, R.-D., Zuo, J., Zhao, Z.-Y., Zillante, G., Gan, X.-L., Soebarto, V. (2017). Evolving theories of sustainability and firms: History, future directions and implications for renewable energy research. Renewable and Sustainable Energy Reviews, 72, 48–56. doi: https://doi.org/10.1016/j.rser.2017.01.029
- Xu, X., Wei, Z., Ji, Q., Wang, C., Gao, G. (2019). Global renewable energy development: Influencing factors, trend predictions and countermeasures. Resources Policy, 63, 101470. doi: https://doi.org/10.1016/j.resourpol.2019.101470
- Ibidunni, A. S., Ogunnaike, O. O., Abiodun, A. J. (2017). Extending the knowledge strategy concept: linking organizational knowledge with strategic orientations. Academy of Strategic Management Journal, 16 (3). Available at: http://eprints.covenantuniversity.edu.ng/11867/#.XsJBdYgzZPZ
- Che, L., Zhang, X., Shahidehpour, M., Alabdulwahab, A., Abusorrah, A. (2017). Optimal interconnection planning of community microgrids with renewable energy sources. IEEE Transactions on Smart Grid, 8 (3), 1054–1063. doi: https://doi.org/10.1109/tsg.2015.2456834
- Kumar, A., Sah, B., Singh, A. R., Deng, Y., He, X., Kumar, P., Bansal, R. C. (2017). A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renewable and Sustainable Energy Reviews, 69, 596–609. doi: https://doi.org/10.1016/j.rser.2016.11.191
- Chen, H. H., Lee, A. H. I., Kang, H.-Y. (2017). The fuzzy conceptual model for selecting energy sources. Energy Sources, Part B: Economics, Planning, and Policy, 12 (4), 297–304. doi: https://doi.org/10.1080/15567249.2011.652339
- Karabegović, I., Doleček, V. (2015). Development and Implementation of Renewable Energy Sources in the World and European Union. Contemporary materials, 6 (2), 130–148. doi: https://doi.org/10.7251/comen1502130k
- Ghimire, L. P., Kim, Y. (2018). An analysis on barriers to renewable energy development in the context of Nepal using AHP. Renewable Energy, 129, 446–456. doi: https://doi.org/10.1016/j.renene.2018.06.011
- Dubey, R., Gunasekaran, A., Papadopoulos, T., Childe, S. J., Shibin, K. T., Wamba, S. F. (2017). Sustainable supply chain management: framework and further research directions. Journal of Cleaner Production, 142, 1119–1130. doi: https://doi.org/10.1016/j.jclepro.2016.03.117
- Dreidy, M., Mokhlis, H., Mekhilef, S. (2017). Inertia response and frequency control techniques for renewable energy sources: A review. Renewable and Sustainable Energy Reviews, 69, 144–155. doi: https://doi.org/10.1016/j.rser.2016.11.170
- Nakashydze, L., Hilorme, T., Nakashydze, I. (2020). Substantiating the criteria of choosing project solutions for climate control systems based on renewable energy sources. Eastern-European Journal of Enterprise Technologies, 3 (3 (105)), 42–50. doi: https://doi.org/10.15587/1729-4061.2020.201527
- Nakashydze, L., Gabrinets, V., Mitikov, Y., Alekseyenko, S., Liashenko, I. (2021). Determination of features of formation of energy supply systems with the use of renewable energy sources in the transition period. Eastern-European Journal of Enterprise Technologies, 5 (8 (113)), 23–29. doi: https://doi.org/10.15587/1729-4061.2021.243112
- Zhou, Y., Cao, S., Hensen, J. L. M., Hasan, A. (2020). Heuristic battery-protective strategy for energy management of an interactive renewables–buildings–vehicles energy sharing network with high energy flexibility. Energy Conversion and Management, 214, 112891. doi: https://doi.org/10.1016/j.enconman.2020.112891
- Kalair, A., Abas, N., Saleem, M. S., Kalair, A. R., Khan, N. (2020). Role of energy storage systems in energy transition from fossil fuels to renewables. Energy Storage, 3 (1). doi: https://doi.org/10.1002/est2.135
- Guidelines for the Long-term Sustainability of Outer Space Activities (2018). Committee on the Peaceful Uses of Outer Space. Available at: https://www.unoosa.org/res/oosadoc/data/documents/2018/aac_1052018crp/aac_1052018crp_20_0_html/AC105_2018_CRP20E.pdf
- Anvari, A. (2019). Application of plasma technology in aerospace vehicles: A review. Journal of Engineering and Technology Research, 11 (2), 12–28. doi: https://doi.org/10.5897/jetr2018.0654
- Al-Housani, M., Bicer, Y., Koç, M. (2019). Experimental investigations on PV cleaning of large-scale solar power plants in desert climates: Comparison of cleaning techniques for drone retrofitting. Energy Conversion and Management, 185, 800–815. doi: https://doi.org/10.1016/j.enconman.2019.01.058
- Mehrjerdi, H., Hemmati, R. (2019). Electric vehicle charging station with multilevel charging infrastructure and hybrid solar-battery-diesel generation incorporating comfort of drivers. Journal of Energy Storage, 26, 100924. doi: https://doi.org/10.1016/j.est.2019.100924
- Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1 (1), 83. doi: https://doi.org/10.1504/ijssci.2008.017590
- Hilorme, T., Perevozova, I., Sakun, A., Reznik, O., Khaustova, Ye. (2020). Accounting Model of Human Capital Assessment Within the Information Space of the Enterprise. Academy of Accounting and Financial Studies Journal, 24 (3). Available at: https://www.abacademies.org/articles/Accounting-Model-of-Human-Capital-Assessment-Within-the-Information-1528-2635-24-3-540.pdf
- Drobyazko, S., Hilorme, T., Solokha, D., Bieliakova, O. (2020). Strategic policy of companies in the area of social responsibility: Covid-19 challenges. E3S Web of Conferences, 211, 04011. doi: https://doi.org/10.1051/e3sconf/202021104011
- Tonkoshkur, A., Ivanchenko, A., Nakashydze, L., Lyashkov, A., Gomilko, I. (2021). Application of polymer posistor nanocomposites in systems for protecting photovoltaic components of solar arrays from electrical overloads. Boston: “Primedia eLaunch”, 172. doi: https://doi.org/10.46299/978-1-63972-054-5
- Agency Risk Management Procedural Requirements. NASA. Available at: https://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NPR&c=8000&s=4B
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Tetiana Hilorme, Liliya Nakashydze, Stanislav Mazurik, Volodymyr Gabrinets, Vadim Kolbunov, Igor Gomilko
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.