
62

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 6/8 ( 102 ) 2019

ing Malicious Attack on Distributed Energy Resources Control. 
IEEE Transactions on Sustainable Energy, 9 (1), 148–156.  
doi: https://doi.org/10.1109/tste.2017.2706965 

3.	 Grigoras, G., Cartina, G., Bobric, E. C., Barbulescu, C. (2009). 
Missing data treatment of the load profiles in distribution net-
works. 2009 IEEE Bucharest PowerTech. doi: https://doi.org/ 
10.1109/ptc.2009.5282021 

4.	 Zhichao, L., Yuping, Z. (2018). Research on Distribution Net-
work Operation and Control Technology Based on Big Da-
ta Analysis. 2018 China International Conference on Elec-
tricity Distribution (CICED). doi: https://doi.org/10.1109/
ciced.2018.8592531 

5.	 Cheng, C., Gao, H., An, Y., Cheng, X., Yang, J. (2015). Calcula-
tion method and analysis of power flow for distribution network 
with distributed generation. 2015 5th International Confer-
ence on Electric Utility Deregulation and Restructuring and 
Power Technologies (DRPT). doi: https://doi.org/10.1109/
drpt.2015.7432571 

6.	 Brockmeier, L., Kromrey, J., Hogart, K. (2003). Nonrandomly 
Missing Data in Multiple Regression Analysis: An Empirical 
Comparison of Ten Missing Data Treatments. Multiple Linear 
Regression Viewpoints, 29 (1), 8–29. 

7.	 Acuña, E., Rodriguez, C. (2004). The Treatment of Missing Values 
and its Effect on Classifier Accuracy. Classification, Clustering, 
and Data Mining Applications, 639–647. doi: https://doi.org/ 
10.1007/978-3-642-17103-1_60 

8.	 Kim, Y.-I., Shin, J.-H., Song, J.-J., Yang, I.-K. (2009). Customer 
clustering and TDLP (typical daily load profile) generation us-
ing the clustering algorithm. 2009 Transmission & Distribution 
Conference & Exposition: Asia and Pacific. doi: https://doi.org/ 
10.1109/td-asia.2009.5356926 

9.	 Alimardani, A., Therrien, F., Atanackovic, D., Jatskevich, J., 
Vaahedi, E. (2015). Distribution System State Estimation Based 
on Nonsynchronized Smart Meters. IEEE Transactions on 
Smart Grid, 6 (6), 2919–2928. doi: https://doi.org/10.1109/
tsg.2015.2429640 

10.	 Panapakidis, I. P., Papagiannis, G. K. (2014). Application of the 
load profiling methodology in short-term bus load forecasting. 
MedPower 2014. doi: https://doi.org/10.1049/cp.2014.1694 

11.	 Buslavets, O. A., Kvytsynskyi, A. O., Kudatskyi, L. N., Mezhen-
nyi, S. Ya., Moiseienko, L. V. (2016). Typovi hrafiky elektrych-
nykh navantazhen u 3D zobrazhenni. Enerhetyka ta elektryfi-
katsiya, 2, 2–12.

12.	 Kontseptsiya pobudovy avtomatyzovanykh system komert-
siynoho obliku elektroenerhiyi v umovakh enerhorynku, za-
tverdzhena spilnym nakazom Minpalyvenerho, NKRE, Der-
zhkomenerhozberezhennia, Derzhstandartu, Derzhbudu, 
Derzhprompolityky No. 32/28 / 28/ 276 /75/54 vid 17 kvitnia 
2000 r.

13.	 Pazderin, A. V., Egorov, A. O., Kochneva, E. S., Samoylenko, 
V. O. (2014). Ispol’zovanie metodicheskih podhodov teorii ot-
senivaniya sostoyaniya dlya rascheta i dostoverizatsii potokov 
elektricheskoy energii v setyah. Elektrichestvo, 10, 12–21.

14.	 Hagh, M. T., Mahaei, S. M., Zare, K. (2011). Improving Bad 
Data Detection in State Estimation of Power Systems. Interna-
tional Journal of Electrical and Computer Engineering (IJECE), 
1 (2). doi: https://doi.org/10.11591/ijece.v1i2.133 

15.	 Mili, L., Phaniraj, V., Rousseeuw, P. J. (1991). Least me-
dian of squares estimation in power systems. IEEE Transac-

ABSTRACT AND REFERENCES

ENERGY-SAVING TECHNOLOGIES AND EQUIPMENT

DOI: 10.15587/1729-4061.2019.184095
ESTIMATION OF THE DYNAMICS OF POWER GRID 
OPERATING PARAMETERS BASED ON STANDARD 
LOAD CURVES (p. 6-12)

Yurii Tomashevskyi
Vinnitsaoblenergo PJSC, Vinnytsia, Ukraine

ORCID: http://orcid.org/0000-0002-1688-8740

Oleksander Burykin
Vinnytsia National Technical University, Vinnytsia, Ukraine

ORCID: http://orcid.org/0000-0002-0067-3630

Volodymyr Kulyk
Vinnytsia National Technical University, Vinnytsia, Ukraine

ORCID: http://orcid.org/0000-0002-7594-5661

Juliya Malogulko
Vinnytsia National Technical University, Vinnytsia, Ukraine

ORCID: http://orcid.org/0000-0002-6637-7391

Power grids are insufficiently equipped with means of 
monitoring of operating parameters. The infrastructure of com-
mercial power consumption accounting systems is the most de-
veloped. However, power consumption information is stored in 
the aggregated form. This makes it impossible to determine the 
components of the balance losses of power and to analyze their 
structure without simplification.

It is suggested to use standard load curves to increase the 
adequacy of the results of estimating the operating dynamics of 
power grids. In order to match the measured operating param-
eters and pseudomeasures calculated by standard load curves, 
it is proposed to use an algorithm based on the least-squares 
method. Accuracy estimation is carried out by comparing power 
consumption curves of the absolutely observable network with 
simulation results.

It is found that the use of standard load curves allows restor-
ing power consumption curves with acceptable accuracy in the 
complete absence of measurements. Conversion of aggregated 
information of commercial power consumption accounting sys-
tems into time graphs helps to improve the accuracy of simula-
tion results of characteristic grid modes. As a result, the accuracy 
of determining technical losses and other components in the 
power balance structure is increased.

Clarification of the components of power losses in the bal-
ance structure allows identifying the problematic elements of 
power grids and developing better measures to improve their 
energy efficiency. In addition, the use of standard load curves 
and formation of pseudomeasures reduces the cost of monitoring 
systems of power grid parameters.

Keywords: power grid, parameter recovery, adequacy, stan-
dard load curve, state estimation.

References 

1.	 Von Meier, A., Stewart, E., McEachern, A., Andersen, M., Meh-
rmanesh, L. (2017). Precision Micro-Synchrophasors for Distri-
bution Systems: A Summary of Applications. IEEE Transactions 
on Smart Grid, 8 (6), 2926–2936. doi: https://doi.org/10.1109/
tsg.2017.2720543 

2.	 Majumdar, A., Agalgaonkar, Y. P., Pal, B. C., Gottschalg, R. 
(2018). Centralized Volt–Var Optimization Strategy Consider-



63

Abstract and References. Energy-saving technologies and equipment

that the proposed technique for determining short circuits is 
rather effective. It could be used as an additional (backup) sys-
tem in general relay-protective hardware. That would improve 
the reliability of power supply systems for traction networks. 
Overall, the considered technique for determining short circuits 
could be used in any DC power system.

Keywords: short circuit, feeder voltage, speed of voltage 
change, relay protection, duration of voltage drop, selective 
protection.
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All types of relay protection are based on comparing the val-
ues for certain attributes under a system’s normal and emergency 
operational modes. A new attribute for defining the emergency 
mode in a direct current traction electricity supply system has 
been proposed, namely, the speed of voltage drop in the feeder 
of a traction substation. It is known that at a short circuit in the 
traction network, its voltage is reduced. Its sharpest, almost linear, 
decrease is observed, first, at the first moment of the emergency 
transition process, and, second, at a short circuit site and at points 
near it. Therefore, the steepness of the front of such a reduction 
in a feeder voltage could become an attribute of short circuit. A 
given attribute makes it possible to determine the type of short 
circuit based on a distance from the power source. In addition, we 
have proposed the circuit solutions for implementing a system of 
protection based on this attribute. Three options for building such 
protection systems have been considered. A first option implies 
using a RC filter. A second variant employs a pulse transformer. 
A third option is to use a bridge scheme. Each scheme has its 
advantages and disadvantages; however, modern electronics and 
digital technology make it possible to implement any of them. In 
the future, this would facilitate the construction of a selective pro-
tection (in terms of distance) from short circuit. To this end, one 
needs to use as many protection kits as how many points along a 
traction line must be monitored. Such a system is also easily imple-
mented by software using microprocessor equipment.

The practical results from our study at a section of traction 
power supply of the Dnieper Railroad make it possible to assert 
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of the spatial-vector pulse-width modulation and inverse vector 
control system under condition that the voltage deviation on the 
cell is above or below the predefined permissible level. 

The MATLAB 2017b software was used to conduct simula-
tion of the six-level voltage inverter, which confirmed effective-
ness of the proposed modulation algorithm.

Keywords: modular multilevel inverter, transducer, space-
vector modulation algorithm, pulse-width modulation.
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Multi-level autonomous voltage converters are increasingly 
used in industry, specifically: in wind and solar energy genera-
tion, high-voltage substations, in industrial and traction electric 
drives. In comparison with two-level inverters, multilevel invert-
ers have a series of significant advantages, specifically, greater 
output power, greater efficiency value, smaller content of higher 
harmonics at loading and in a power grid. Reducing the content 
of higher harmonics in the output current of a multilevel inverter 
directly decreases additional losses at loading and improves the 
overall value of efficiency.

Our study of a six-level modular inverter has shown that the 
algorithm of a spatial-vector modulation causes a disbalance in 
voltage on the capacitors of cells. In this case, voltage in half the 
cells tends to zero while in the other half of the cells it increases 
two-fold, which leads to a significant distortion of the output 
voltage. This paper gives reasons for this instability, as well as 
presents the improved spatial-vector modulation algorithm of 
the multilevel converter, which makes it possible to stabilize 
voltage in cells.

We have proposed an algorithm of voltage stabilization on the 
cells of a modular multilevel inverter. The voltage stabilization is 
achieved by a hysteresis regulation with an alternating transition 
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The paper reports a three-dimensional numerical solution 
to the test problem about a viscous incompressible liquid flow 
in the closed square-shaped cavity with a movable upper face. 
Disadvantages in a mathematical statement of the problem about 
a flow of fluid in a closed cavity have been identified. A finite 
element method was applied in order to investigate numerically 
the structure of a circulating detachable laminar movement of 
viscous incompressible fluid in an open cavity considering the 
external flow. The profiles of vorticity, the thickness of a bound-
ary layer, the constituents of velocity components in different 
cross-sections of the cavity, in the boundary layer, as well as in 
the blending layer, have been given.

Typically, studying laminar currents in cavities employs 
a model of the cavity with a movable wall. However, such a 
statement of the problem imposes a restriction on the flow 
pattern in the form of a straight line of the flow that connects 
the upper corners of the cavity, which results in the distorted 
structure of vorticity formation in the cavity in general. Within 
the framework of the current study, the problem statement that 
overcomes the specified disadvantage has been proposed. The 
movement of fluid in a cavity occurs due to the shear stress 
of the external flow in a channel above the cavity, which rules 
out the straightness of the flow line, which connects the cav-
ity’s corner points. Reliability of the reported results has been 
confirmed by comparing certain parameters to known experi-
mental data by other authors. The study’s scientific result in 
the form of the vorticity structure of a viscous incompressible 
laminar flow in an open cavity with a channel is interesting 
from a theoretical point of view. As regards the practical point 
of view, the identified structure of the flow makes it possible 
to define the conditions to control a flow in the cavity and, 
therefore, allows determining the conditions for optimizing the 
aerodynamic forces acting on a cavity. The applied aspect of 
the obtained scientific result is the possibility to employ it for 
a flow over industrial facilities: buildings, inter-carriage space 
in a railroad train, etc.

Keywords: flow detachment, laminar mode, flow in a cavity, 
numerical modelling, vorticity formation structure.
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The paper reports an established analytical relation of the 
time it takes for a thermoelectric cooler to enter a stationary 
mode depending on the thermal-physical parameters of structur-
al and technological elements, a temperature differential, relative 
working currents, electric resistances, and geometric parameters 
of thermoelements. 

A mathematical model has been analyzed in terms of tempo-
ral and reliability indicators for different current modes of op-
eration and temperature differentials taking into consideration 
energy indicators and structural parameters of the thermoelec-
tric cooler.

It has been shown that an increase in the time it takes to en-
ter a stationary mode for various drops in temperature decreases 
a relative working current, and the functional dependence of 
the refrigeration factor on the time it takes to enter a stationary 
mode has a maximum, depending on a temperature difference. 
At the predefined time of entering a stationary mode, the de-
pendence of the number of thermoelements on temperature dif-
ferential has a minimum. An increase in the time it takes to enter 
a constant mode decreases the relative failure rate and increases 
the likelihood of a failure-free operation of the thermoelectric 
cooler. An increase in temperature difference for different cur-
rent regimes increases the time it takes to enter a stationary 
mode, increases the working current magnitude, reduces the 
refrigeration factor, increases the number of thermoelements and 
the intensity of failures.

We have given the calculation of the cooler with a pre-
defined time of entering a stationary mode at the assigned 
temperature changes, external conditions, thermal load, the 
geometry of thermoelements’ branches. The obtained results of 
the research make it possible to design single-cascade thermo-
electric coolers with the predetermined dynamics of function-
ing and to predict basic parameters and reliability indicators 
over any time period.

Keywords: thermoelectric cooler, the time it takes to enter a 
mode, reliability indicators, mode of operation.
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This paper reports a study of the thermoacoustic phenom-
ena in steam-generating channels of the cooling system of heat-
loaded devices. The examined cooling modes are characterized 
by surface boiling of the heat carrier, which occurs due to high 
heat flows at the cooled surface and large underheating of the 
flow core to the saturation temperature. Under such condi-
tions, high-frequency pulsations of acoustic pressure may occur 
in cooling channels. It has been established that the emergence 
of thermoacoustic oscillations could lead to the formation 
of a standing wave in the channel, one of the conditions for 
whose formation is the presence of a wave reflection bound-
ary. We have proposed a mathematical model describing the 
generation of thermoacoustic vibrations in a cooling channel. 
It was assumed that fluctuations with a high amplitude arise 
due to the resonance observed when the frequency of forced 
vibrations of steam bubbles coincides with the vapor-liquid 
column’s natural frequency of vibrations or their harmonics. To 
calculate the amplitude of pressure fluctuations in the channel, 
the dependence has been derived, which takes into consider-
ation the viscous dissipation of energy and energy losses at the 
ends of the channel. It has been shown that when approaching 
the resonance, the contribution of volumetric viscosity to the 
viscosity absorption factor increases. It has been established 
that for the examined conditions the losses of energy on the 
walls of the channel and losses in the boundary layer could be 
neglected. We have calculated the amplitude of thermoacoustic 
pressure fluctuations for conditions corresponding to actual 
processes in surface-boiling cooling channels. The reported 
procedure is proposed to be used in the design of liquid cooling 
systems for heat-loaded devices for which cooling modes imply 
a significant underheating of the heat carrier to a saturation 
temperature, as well as surface boiling.

Keywords: cooling channel, surface boiling, thermoacoustic 
pressure fluctuations, resonance, dissipation, fluid viscosity.
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in power factor is achieved when the wind speed is 5 m/s though 
a stable turbine rotation is achieved at a lower speed.

Keywords: Concentrate Flows, Block Vortex, Power Factor, 
Savonius, Guide Vane, Karman Vortex, Downstream, Computa-
tional Fluids Dynamics (CFD).
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Simple design Savonius vertical-axis wind turbine can gen-
erate energy at low wind speed from any direction. However, its 
large static torque has a low power factor. Therefore, an innova-
tion was made by providing 16 guide vanes around the shaft 
outside the blade with the angle is about 45° to a radial line. 
The specialty of guide vanes is that, they are able to concentrate 
the wind flow toward the turbine blade from any direction. The 
fluid motion around the turbine blade that produces torque 
on the turbine shaft was analyzed utilizing the Computational 
Fluid Dynamics (CFD) simulation and then verified by track-
ing actual fluid motion strings of threads attached on each side 
of the turbine blade. The result shows that without guide vanes 
the wind flow around the turbine blade generates vortex on the 
blade and Karman vortex at the downstream. These vortexes 
descend effectively kinetic energy in the wind flow so that the 
mechanical energy on the turbine shaft becomes small. At a 
certain blade position, the vortex becomes stronger and the fluid 
separation from the blade surface becomes thicker. The stronger 
vortex tends to descend stronger fluid kinetic energy while the 
thicker separation tends to reduce the lift on the blade. Con-
sequently, these two flow conditions tend to produce negative 
torque. Installing guide vanes around the blade, the wind flows 
are concentrated by the guide vanes to the turbine blade, which 
effectively reduces vortex around the blade and blocks large 
vortex outside the guide vanes downstream. Flow separation is 
suppressed by the concentrated flow producing larger lift. As a 
result, the power factor increases by 61.6 %. This huge increase 




