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A large volume of rocks containing valuable minerals is treated at 
mining and processing plants in Kazakhstan. Ball mills and rod mills 
are used for their grinding and further processing .

Ball mills with gear drive rings in the drums suffer from intense 
wear of the teeth due to the heavy mode of the mill operation. It thus 
necessitates their frequent replacement and long mill downtime. The 
gears of the ball mill drive experience an intense impact stress, which re-
duces the resource of their operation and the mill as a whole due to wear.

The article presents research on developing rational parameters 
of involute gearing, aimed at increasing the loading capacity of the 
gear as well as reducing the overall dimensions, noise, and vibration. 
In order to solve the set tasks, dynamic processes are simulated, 
modification of the teeth is proposed, and the task of designing the 
initial meshing contour is solved when the line of the tooth profile is 
slightly deviated from the involute curve of the tooth surface.

The kinematic and dynamic parameters of a tooth transmission 
influencing the wear resistance of teeth are found out, and also the 
influence of the loading capacity under conditions of stable lubrica-
tion is determined.

Because of the complexity of modifying a large diameter of the 
driven gear wheel, it is proposed to modify only the teeth of the 
driving wheel, both at their tops and legs.

Keywords: ball mill, tooth wear, involute gearing, tooth modifi-
cation, tooth profile line.
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A significant share of structures includes the components that are 
in contact with each other. These include, for example, stamps, molds, 
machine tools, technological equipment, engines, etc. They are cha-
racterized by a varied load mode. Therefore, an important aspect in 
studying the stressed-strained state of such structures is to determine 
the dependence of contact pressure on the external forces applied to 
them. A superposition principle for contact problems is not applica-
ble in a general case. However, for this type of structures, the linear 
dependence of contact pressure on the load level has been established. 
In this case, the contact area does not depend on the load level. It has 
been demonstrated that this pattern holds not only for a one-compo-
nent but also for the multi-component load. As a result, the possibility 
for rapid determining the stressed-strained state of such structures is 
ensured, while maintaining the accuracy of the results obtained.

The applicability of the constructed method has been demon-
strated by using the machine tools’ clamping accessories as an  
example. The established patterns are important when estimating the 
designs of structures. The derived direct proportional dependence 
of the solution on the applied loads makes it possible to shorten the 
design time of structures with the elements that interact when they 
are in contact at surfaces of the matching shape. In this case, we 
have considered different sets of loads, as well as the various varying 
variants of these loads. The examined cases have confirmed the direct 
proportionality of the components of the stressed-strained state of 
the magnitude of the applied forces for the case of their coordinated 

change. It has been also shown under an uneven change in the indi-
vidual components of loads the dependence of contact pressure and 
components of the stressed-strained state of the examined objects on 
the applied forces demonstrates a complex character different from 
the directly proportional relation. The established dependences un-
derlie the substantiation of the design and technological parameters 
of the structures that are designed, as well as their operational modes.

Keywords: contact pressure, stressed-strained state, theory of 
variational inequalities, machine tool, region of contact interaction
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The paper reports an algorithm to analytically solve one of the 
problems in the mechanics of elastic bodies, which is associated 
with studying the natural vibrations of a composite two-stage plate 
whose concave part is smoothly aligned with the part of a constant 
thickness. We have defined patterns for stating the boundary and 
transitional conditions, which should be taken into account when 
considering the natural vibrations of a two-stage plate.

The ratios have been obtained, which make it possible to study 
the distribution of deflections and determine the values of ampli-
tudes of the curved vibrations of the plate. It was noted that the 
modes of vibrations are based on the symmetry and factorization 
methods that we had developed and refined earlier. Specifically, it 
has been found that the deflections can be explored through expres-
sions that are derived through the sum of relevant solutions to two 
linear second-order differential equations with variable coefficients.

Based on the proposed approach, a system consisting of eight 
homogeneous algebraic equations has been defined, which allowed 
us to build a frequency equation for the plate rigidly fixed along 
the inner contour and free along the outer contour. We have de-
termined the values for the plate’s natural frequencies for the first 
three modes of natural vibrations. Moreover, in order to verify and 
expand a set of plates of different configurations, the plates with two 
types of concave in their variable part have been considered. The 
new approaches and the ratios based on them could be useful for 
the further advancement of methods for solving similar problems in 
mathematical physics on natural values. A practical implementation 
is the problems about the vibrations of plates with variable thickness 
and of different modes.

Keywords: natural frequencies, vibration modes, analytical 
solution, annular plate, free vibrations, symmetry method.
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In order to significantly reduce the weight of flat monolithic 
reinforced concrete floors, foundations, and other slab structures, 
construction operations have increasingly involved effective inserts 
as the separate articles made from relatively light and cheap ma-
terials that are placed in the midsection and left in the slabs after 
concreting.

The inserts made from relatively light and cheap materials, with 
respect to concrete, have the strength and rigidity that are orders 
of magnitude less and are essentially used to form hollows. The 
inserts considered in this paper are prismatic. When the inserts are 
arranged in two directions, which is typical for most slab structures, 
we obtain the I-sections, whose calculation involved the analysis of 
the impact exerted by the general and local strength factors. Under 
such conditions, slabs must be calculated taking into consideration 
the biaxial work of concrete. In this paper, we have examined the 
stressed-strained state of the slab reinforced concrete structures 
with a bidirectional location of inserts and have substantiated the 
estimation schemes and calculation dependences related to the pro-
cedure for calculating the floors and other slab reinforced concrete 
structures with a bidirectional location of inserts. The paper gives 
an example of the calculation of a monolithic flooring slab based 
on the proposed procedure, which demonstrated that accounting 
for the biaxial stressed-strained state of concrete significantly 
increases the strength of concrete and the rigidity of a flooring  
slab, by 19.3 %.

Thus, the consideration of biaxial compression of concrete is an 
important factor in the design of slab structures with a bidirectional 
arrangement of inserts.

Keywords: reinforced concrete hollow structures, stressed-
strained state, biaxial compression of concrete, estimation schemes, 
strength, rigidity, example of calculation.
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A new scheme for the excitation of vibrations of the working 
bodies of the blocks of a vibration unit based on a change in the phase 
angles of unbalances between themselves is developed. The imple-
mentation of such an idea allows for one revolution of imbalances 
to realize the number of vibration actions on the technological en-
vironment, how many vibration units the installation has. Thus, the 
frequency spectrum is implemented, which significantly increases  
the efficiency of the process. The proposed scheme is suitable for 
the implementation of various processes with a reduction in energy 
consumption compared to existing designs of vibration machines. 
A design diagram of a vibration unit with four vibration blocks is 
developed. A mathematical model is selected based on the represen-
tation of machine parameters as discrete, and the processing medium 
as continuous. The simulation of the working process of the vibration 
unit is based on the use of the finite element method. The finite 
element model is composed by approximating all the supporting 
elements, including the shaping surfaces, by two-dimensional finite 
elements.

Vibration isolating supports and elastic elements of the model 
are adopted three-dimensional, since the processes occurring in such 
structural elements are more complex in terms of energy dissipation. 
The workflow of an energy-saving vibration unit that implements 
polyphase vibrations is investigated. The equations of motion of 
such a system are compiled and the amplitudes and frequencies of 
vibrations that determine this movement are determined. The dis-
tribution of the amplitudes of the vibrations along the perimeter of 
the frame, mounted on the vibration blocks of the vibration unit, is 
estimated. The possibility of efficient use of the polyphase spectrum 
of vibrations when performing the processes of sorting and compac-
tion of materials based on the implementation of shear and normal 
stresses is determined. The proposed scheme of an energy-saving 
vibration unit and certain parameters open up a real opportunity for 
creating a new class of machines for use in various industries. The 
obtained results are used in the design of an energy-saving design of 
a vibration unit with a rational choice of phase angles for compaction 
of process media.

Keywords: vibration unit, vibration blocks, unbalance, model, 
phase angles, amplitudes, frequencies and vibration modes.
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Were found the conditions for occurrence of dynamic au-
to-balancing for the case of a rotor mounted on two elastic-vis-
cous supports, balanced by two or more passive auto-balancers  
of any type. 

A modernized energy method has been applied under assump-
tion that the mass of auto-balancers’ loads is much smaller than 
the rotor mass. The method has been constructed for rotors on 
isotropic elastic-viscous supports, when such bodies are attached to 
the rotor, whose relative motion is hindered by elastic and viscous 
resistance forces. The method makes it possible to find stationary 
motions of the rotary system, assess their stability. At stationary 
motions the relative motions of the attached bodies stop, and 
the system rotates as a whole around the axis of rotation formed  
by the supports.

The mechanical and mathematical model of the system has 
been described. We have found the generalized potential under 
stationary motions, as well as a dissipative function correspond-
ing to the supports. For the generalized rotor coordinates the 
equations of stationary motions of the system have been derived. 
The reduced potential has been investigated for a conditional 
extremum under an assumption that the equations of stationary 

motions hold, which correspond to the generalized coordinates  
of the rotor.

It has been established that dynamic balancing of the rotor is 
possible only for the case of a long rotor, two or more auto-balancers 
of any type, installed in different correction planes and only at the 
rotor rotation speeds exceeding resonance ones. It has been found 
that the resistance forces in the supports do not change the condi-
tions for auto-balancing occurrence explicitly, but they can change 
these conditions implicitly – by changing the region of existence of 
stationary motions.

The result obtained coincides with the result that was derived 
from using a generalized empirical criterion for auto-balancing 
occurrence when damping in the supports is not taken into consider-
ation. It has been shown that the modernized energy method (as well 
as the generalized empirical criterion for auto-balancing occurrence) 
makes it possible to find generalized conditions for auto-balancing 
occurrence, suitable for any type of auto-balancers. Therefore, both 
methods are applicable for building a general theory of passive auto- 
balancers, suitable for auto-balancers of any type.

Keywords: rotor, isotropic support, auto-balancer, stationary 
motion, motion stability, equation of steady motion.
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At present, one of the main problems arising from the long-term 
operation of one-section electric locomotives is the need to main-
tain their good technical condition. In this case, the determining 
aspect is often rapid identification of existing defects and damage 
to the main bearing structural elements of machine bodies, as 
well as preventing their development into more serious structural  
deviations.

The aim of the study is to develop a specialized method that 
allows identifying defects of the main bearing structural elements 
of the bodies of one-section electric locomotives at the early stages 
of emergence and development. This method of dynamic integral 
evaluation is based on the analysis of partial dynamic spectrum of 
the electric locomotive. Based on the magnitude of the spectrum 
deviation relative to the theoretical one obtained from finite element 
modeling, it is possible to determine the approximate nature and 
location of damage, especially latent.

The frequency spectrum of the main bearing structural elements 
of the bodies of one-section electric locomotives obtained in the 
course of the studies is rather dense and lies in the frequency range 
up to 20 Hz. The presence of damage reduces its value, and for the 
most common types of defects, this reduction is 25–30 %.

The effectiveness of the practical application of the dynamic 
integral evaluation method is illustrated by the example of the  
DS3-008 machine. The method revealed hidden damage to one of the 
elements of the bearing frame of the front surface of the cab, which 
was not revealed during the standard maintenance procedure of the 
machine. The use of the method of dynamic integral evaluation of 
the technical condition of electric locomotives is quite versatile and 
can also be recommended for other units of railway rolling stock.  

In practice, the introduction of this approach will effectively prevent 
the development of emergencies.

Keywords: one-section electric locomotive, maintenance, dy-
namic integral evaluation method, technical condition.
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The strength parameters have been determined for the bearing 
structure of a hopper car used to transport pellets and hot ag-
glomerate. The calculation was based on a finite element method, 
implemented in the software COSMOSWorks. Strength reserves of 
load-bearing elements in a carbody have been determined. In order 
to reduce material consumption for a carbody, it has been proposed 
to use pipes with a circular cross-section as the bearing elements. 
Mathematical modeling was applied to determine the accelerations 
that act on the optimized bearing structure of a wagon when it is 
struck at shunting. It has been established that the accelerations that 
act on the bearing structure of a wagon amount to 42.4 m/s2 (4.3 g). 
The derived acceleration magnitude was accounted for when calcu-
lating the strength of a hopper car’s bearing structure. The maximum 
equivalent stresses in this case reached about 270 MPa and were 
concentrated in the region where a girder beam interacts with a pivot 
beam while not exceeding the permissible ones for the grade of steel 
used in the metallic structure.

We have simulated the vertical dynamics of the optimized 
bearing structure of a hopper car used to transport pellets and hot 
agglomerate. During calculations, the parameters for a spring sus-
pension of the 18-100 model’s undercarriage were taken into consid-

eration. The results of our calculations make it possible to conclude 
that the accelerations of a hopper car body, as well as undercarriages, 
are within the allowable limits. In this case, in terms of compliance 
with the requirements of normative documents, the car ride quality 
can be described as «excellent».

The proposed technical solutions justify the use of round pipes as 
the load-bearing elements of a hopper car body for transporting pel-
lets and hot agglomerate. In this case, it becomes possible to reduce 
the hopper car tare by almost 5 % compared to a prototype car. In 
addition, the introduction of round pipes in the bearing structure of 
a hopper car could bring down manufacturing costs for railroad car 
building enterprises.

Our study would contribute to the construction of modern 
structures of hopper cars, as well as to the improved efficiency of 
railroad transportation.

Keywords: hopper car, specialized freight car, bearing structure, 
car body strength, dynamic loading, car body optimization.
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