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A crash box design is developed to enhance the crash box’s 
abilities to absorb crash energy. Previous research has developed 
the crash box by adding filler material. Adding the filling mate-
rial to the crash box will increase energy absorption. Aluminum 
honeycomb has a combination of lightweight mass and an ability 
to absorb crash energy. The addition of filler material to the crash 
box will also reduce the possibility of global bending in the crash 
box. The method of study is a computer simulation using ANSYS 
Academic software ver 18.1. This research used circular, square 
and hexagonal cross-section variations, which reached the same 
cross-sectional area design. Geometry model for the crash box 
and honeycomb filler is defined as crash box thickness (tc) 
1.6 mm, honeycomb filler thickness (t) 0.5 mm for single layer 
and 1 mm for double layer and crash box length (l) 120 mm. The 
materials used were AA6063-T6 for crash boxes and AA3003 for 
honeycomb fillers. The test model consisted of two types, namely 
frontal load and oblique load test. The impactor velocity (v) is 
set to 15 m/s. The impactor and the fixed support are modeled 
as a rigid body, while the crash box is assumed as an elastic body. 
Observations were done by using the characteristics of deforma-
tion pattern and the absorption amount of produced energy due 
to the given loading model. Based on the deformation pattern 
results, it can be found that in the crash box model with square 
and hexagon honeycomb filler, the occurred deformation pattern 
was concertina, while the crash box with circular honeycomb 
filler was the mixed mode in the frontal load test. Regarding the 
oblique loads, the crash box remains to collapse the global bend-
ing on all models. Simulation results with the frontal load test 
model found that the crash box with circle-shaped honeycomb 
has the highest energy absorption while the crash box with 
hexagonal honeycomb filler has the highest Specific Energy 
Absorption (SEA). In the oblique load test, it was found that 
the crash box with hexagonal honeycomb filler has the highest 
energy absorption and SEA. By comparing the hexagonal crash 
box model with and without honeycomb filler, it is noted that 
the hexagonal crash box with honeycomb filler has higher Crash 
Force Efficiency

Keywords: crash box, honeycomb filler, frontal load and 
oblique load test
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Based on symmetry and factorization methods, a general 
analytical solution to the fourth-order differential equation 
has been derived for a problem on the free axisymmetric oscil-
lations of a circular plate of variable thickness. The law of the 
thickness change is the concave parabola h=H0(1–μρ)2, where 
µ is a constant coefficient that determines the degree of plate 
concaveness. The solution has been given by the Bessel func-
tions of zero and the first order of the actual and imaginary 
argument. A circular ring plate has been considered whose 
inner contour is rigidly fixed and whose outer edge is free, for 
three values of the µ coefficient. We have determined the first 
three natural values for the problem (frequency numbers) and 
their natural functions (oscillation shapes). It has been shown 
that the natural frequencies of the first three shapes of oscil-
lations decrease, with the increase in concaveness (increase 
in µ), to varying degrees, determined by the number of the 
frequency number λi (i=1, 2, 3). At µ=1.21417 and µ=1.39127, 
the frequencies decrease, compared to the case of µ=0.5985, by 
(1;1.3) %, (17.6;24) %, (22.85;30.35) %, respectively, for λ1, λ2, 
λ3. One can see a significant drop in frequency on the higher 
shapes of oscillations (λ2, λ3) and a slight drop in the basic 
shape (λ1). We have established the values and coordinates of 
extreme deflections (antinodes of oscillations) and the indica-
tive coordinates of the nodal cross-sections. The reported nu-
merical parameters, along with the frequency indicators, are a 
means of identifying the oscillational properties of a plate when 
it is studied in practice. We have built the graphic dependences 
for radial σr and tangential σθ cyclical stresses at the basic shape 
for each of the three variants of the concaveness of a parabolic 
plate. It has been established that the increase in the ratio of 
edge thickness, that is, concaveness, leads to an increase in σr 
in the cross-sections outside the end constraint. These stresses, 
which operate far from the free edge, for example at the end 
constraint or the area of the maximum σθ, are greater than σθ 
in varying degrees. Because of this, these stresses pose a major 
threat in terms of the cyclical strength of the plate when σr 
reaches destructive values. We have pointed to the possibility 
to provide, by increasing the concaveness of the parabolic plate, 
the optimal ratio between the value of σr at the end constraint 
and σr operating away from the fastening. This ratio, approxi-
mately equal to 1, is ensured at µ=1.39127 considered in the 
current work.

Keywords: circular plate, variable thickness, symmetry 
method, natural number, stressed-strained state.
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The paper reports an effective numerical procedure to 
solve problems on the free oscillations of isotropic gently slop-
ing shells using a spline-approximation method of unknown 
functions along one of the coordinate directions. By applying 
the proposed procedure, we have examined the resonance 
frequencies of the oscillations of cylindrical shells and shells 
of double curvature both in a square and rectangular plan. 
The calculations were conducted and compared based on two 
theories: classic (by Kirchhoff-Love) and refined (by Timosh-
enko-Mindlin). We have established the dependence of natural 
oscillation frequencies on the ratio of shell thickness and their 
dimensions in the plan. It has been revealed that the frequen-
cies of free oscillations of gently sloping shells, computed in the 
refined statement, have lower values than the corresponding 
frequencies calculated in the classic statement. With the in-
creasing thickness of the shells, the difference in the values of 
corresponding frequencies increases. The calculations results 
were compared with the frequencies computed analytically by 
expanding the unknown functions into a Fourier series. The 
comparison has allowed us to determine the optimal scope of 
application of each theory. It has been established that the fre-
quencies of free vibrations of thin gently sloping shells should 
be computed in a classic statement. The calculation of non-thin 
shell frequencies (at a ratio of the thickness to the smallest size 
in the plan of h/a0.05) at any geometric parameters of the 
shells should be performed in the refined statement. Our results 
have confirmed the theoretical assumptions about the impor-
tance of considering the turning angles, first, of a rectilinear 
element, caused by transverse offsets, in calculating the natural 
oscillation frequencies of the non-thin shells. The versatility 
and high accuracy of the spline approximation method have 
been confirmed.

Keywords: free oscillations, gently sloping shells, classic the-
ory by Kirchhoff-Love, refined theory by Timoshenko-Mindlin.
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Existing experimental studies of the sensitivity of damping 
characteristics to the presence of cracks in structural elements 
are contradictory. Some studies declare high damping sensitivity 
but others conclude that a change in the dissipative ability of 
the structure is not enough for reliable crack diagnostics. This 
difference may be brought about by the influence of many factors 
on damping efficiency in relation to crack detection. To predict 
a possible change in the damping characteristic taking into con-
sideration these factors, an experimental-analytical procedure 
based on the approaches of fracture mechanics was developed. 
This procedure has made it possible to identify conditions for 
reliable detection of an edge crack in a rod on two supports 
under transverse and longitudinal vibrations. It has been shown 
that the sensitivity of the damping characteristic to the presence 
of damage is inversely proportional to the damping level of an 
undamaged structure. Damping change is effective for diagnos-
ing damages in relatively rigid structures. In this case, the stress 
level in the damaged area must be high enough so that the crack 
periodically opens or is constantly open. Based on the analysis 
of the study results, a condition was formulated that can help 
engineers easily determine the effectiveness of the damping 
characteristic for crack diagnostics. The damping characteristic 
is effective if the ratio of the energy dissipated in the crack to the 
two-fold potential energy of the structure deformation exceeds 
the product of the vibration damping characteristic of an undam-
aged structure by the relative error in its determination.

Keywords: logarithmic decrement of vibrations, rod on two 
supports, edge crack, vibration-based diagnostics of damage.
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To substantiate the use of a conceptual coupler, the calcula-
tion has been performed based on a method for determining the 
strength of the coupling device through the imaginary separa-
tion of a train into two parts.

Taking into consideration a coefficient of the viscous re-
sistance, which is created by the conceptual coupler, the ac-
celeration experienced by a train reached about 0.8 m/s2. In 
other words, the use of a conceptual coupler makes it possible 
to reduce the longitudinal loading on a train by almost 30 % 
compared with the standard scheme of interaction between a 
locomotive and cars.

The rod of the conceptual coupler has been estimated for 
strength. It has been established that the maximum equivalent 
stresses do not exceed permissible limits.

The proposed measures would contribute to the reduction 
of a dynamic load on a railroad train under the loading modes 
of operation. The implementation of a given concept could also 
contribute to bringing down the damage to railroad stock in 
exploitation.

Keywords: railroad train, longitudinal dynamics, dynamic 
loading, conceptual coupler, modeling of dynamics.
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The longitudinal-dynamic load on a railroad train has been 
studied at its steady motion along the track of a homogeneous 
profile. A value of the longitudinal loading that a train is exposed 
to has been established. The calculations were carried out for a 
train consisting of 40 similar semi-wagons. The magnitude of the 
longitudinal loading, in this case, is taken to equal 1.2 MN. It 
is important to note that when increasing the motion speed, as 
well as the weight of a train, the magnitude of the longitudinal 
load may exceed the specified value. This contributes to the ad-
ditional loading on the bearing structures of cars on the train and 
can cause damage to them. In addition, significant longitudinal-
dynamic loads contribute to disrupting the motion stability of 
cars in the train.

In order to reduce the longitudinal-dynamic efforts in the 
train under operating modes, including braking, it has been pro-
posed to use, instead of a standard automatic coupling device, a 
conceptual coupler. In this case, the impact’s kinetic energy is 
damped by transforming it into the work of a viscous resistance 
force. This resistance is created by moving a viscous liquid 
through the throttle holes of the piston based on the principle of 
hydraulic damper operation.
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The CAD/CAE/CAM method of end-to-end design of the 
impeller of a seven-stage submersible pump ODDESSEzentral-
asien –UPP 13-7/6 used for pumping sulfuric acid in hydromet-
allurgy is presented.

The studies are conducted in order to increase the efficiency 
of the pump manufactured at the KARLSKRONA LC AB LLP 
plant (Kazakhstan). Computer calculations of the centrifugal 
wheel with 8 and 9 blades for strength were carried out in the 
NASTRAN top-level CAE system. The influence of the num-
ber of centrifugal wheel blades on the level of stresses arising 
in the sections of the blades of the cover and main centrifugal 
wheel discs is determined. The maximum stress in the sections 
of the wheel with 8 blades reached 319 MPa and the wheel with 
9 blades 199 MPa. The influence of the number of blades on the 
dynamic characteristics of the rotor shaft is examined. To do this, 
design mechanical and computer schemes of dynamic calculation 
are simulated to determine the amplitude-frequency characteris-
tics of the rotor shaft. The harmonics amplitudes at frequencies 
caused by liquid pulsation at the blade frequency of 400 Hz and 
450 Hz reached 1.10-4 m and 8.10-4 m, respectively. Based on the 
results of computer modeling of static and dynamic problems, 
a model of the impeller of a centrifugal multistage pump with 
a rational number of 8 double curvature blades is developed. 
The choice of the number of blades meets the criterion of wheel 
strength and the dynamic criterion of the shaft-wheel system.

For the production of the prototype wheel, an analysis of the 
process parameters of 3D printing in terms of surface roughness 
of finished products is carried out. Based on the analysis, ste-
reolithography the technology is chosen and centrifugal wheels 
are printed for further bench hydrodynamic tests in a plant. The 
studies based on CAD/CAE/CAM computer modeling allow 
reducing the time and costs of developing a rational wheel ge-
ometry that meets the criterion of both the strength of the wheel 
itself and the criterion of vibration activity of the rotor shaft.

Keywords: propeller, tip vortex, Moebius band, box propel-
ler, tandem propeller.
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of a long or spherical rotor approaches the second characteristic 
speed, the automatic balancer’s capacity ceases to provide for the 
complete elimination of the automatic balancer’s axis deviation 
from the rotor’s rotation axis.

The result obtained summarizes the findings derived ear-
lier when using the empirical criterion for the occurrence of 
self-balancing. The energy method, in contrast to the empirical 
method, has made it possible to estimate the residual deviation of 
the rotor’s longitudinal axis from the rotation axis. That allows 
the estimation of the reserve or the calculation of the automatic 
balancer’s balancing capacity.

The type of automatic balancers is not taken into consider-
ation in such studies. Therefore, the results obtained are suitable 
for automatic balancers of any type, and the method itself is suit-
able for constructing a general theory of passive self-balancing 
(applicable for automatic balancers of any type).

Keywords: rotor, isotropic support, automatic balancer, sta-
tionary motion, motion stability, steady motion equation.
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This paper reports the established conditions for static self-
balancing for the case of an asymmetric rotor on two isotropic 
elastic supports, balanced by a passive automatic balancer of any 
type. In general, the plane of static imbalance does not coincide 
with the plane of an automatic balancer. 

The energy method has been used under the assumption that 
the mass of an automatic balancer’s loads is much smaller than 
the mass of the rotor. 

It has been established that the static balancing of the rotor 
by an automatic balancer of any type is possible in the following 
cases:

– a long rotor when the rotor rotates at speeds between the 
first and second and above the third characteristic velocities; 

– a spherical rotor when the rotor rotates at speeds between 
the first and second characteristic velocities; 

– a short rotor at speeds exceeding a certain characteristic 
velocity provided that the automatic balancer is close to the 
center of the rotor mass.

The rotor asymmetry increases the number of resonant 
speeds but the number of regions where the self-balancing is oc-
curred does not change.

The imbalance of the rotor and its location do not affect 
the characteristic rotation speeds of the rotor. An automatic 
balancer in the range of rotor rotation velocities that ensure the 
self-balancing tends to maximally reduce the deviation of its 
center from the rotor rotation axis. When the rotation velocity 
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well as an estimated finite difference scheme, of solving a three-
dimensional boundary value problem on calculating the field of 
velocities and pressures in the region of air, located between two 
parallel synchronously oscillating planes. The problem employs 
a system of differential equations to describe the flow of the 
perfect gas. The finite difference scheme has been solved by a 
sweep method.

Using the sweep method to solve these kinds of problems 
makes it possible to ensure the convergence and stability of 
estimation schemes, regardless of the step and other param-
eters of the grid applied. A variant of the calculation has been 
given, which demonstrated the feasibility of the proposed 
method for the assigned boundary conditions and parameters 
of the vibrational mode of machine operation. It has been 
established that in the working space enclosed between two 
oscillating planes there are both vertical (transverse) and 
horizontal (longitudinal) components of air velocity, which 
change over time.

Keywords: gas dynamics, system pf differential equations, 
boundary value problem, grid method, tridiagonal matrix algo-
rithm, velocity field.
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The modern practice of using vibratory machines involving 
small seeds of low weight faces such an undesirable phenomenon 
as the effect exerted on the kinematics of vibrational movement 
of particles of fractions of the seed mixture by the aerodynamic 
forces and momenta. The periodic movement of air relative to 
the working planes of a vibratory machine arises due to fluctua-
tions in the packets of these planes, which form flat aerodynamic 
channels. Consequently, the issues of studying the processes of 
interaction between the working bodies of vibratory machines 
and the air environment, aimed to justify their structural im-
provements, appear relevant. Existing mathematical models, 
which assess the parameters of air movement relative to the 
working planes of vibratory machines, produce only a general-
ized pattern and are flat. This paper proposes a statement, as 
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