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The issue of constructing a system of rules to perform binary 
operations over fuzzy numbers has been formulated and conside-
red. The set problem has been solved regarding the (L–R)-type 
fuzzy numbers with a compact carrier. Such a problem statement is 
predetermined by the simplicity of the analytical notation of these 
numbers, thereby making it possible to unambiguously set a fuzzy 
number by a set of values of its parameters. This makes it possible, 
as regards the (L–R)-type numbers, to reduce the desired execution 
rules for fuzzy numbers to the rules for simple arithmetic operations 
over their parameters. It has been established that many cited works 
provide ratios that describe the rules for performing operations over 
the (L–R)-type fuzzy numbers that contain errors. In addition, there 
is no justification for these rules in all cases.

In order to build a correct system of fuzzy arithmetic rules,  
a set of metarules has been proposed, which determine the principles 
of construction and the structure of rules for operation execution. 
Using this set of metarules has enabled the development and de-
scription of the system of rules for performing basic arithmetic 
operations (addition, subtraction, multiplication, division). In this 
case, different rules are given for the multiplication and division 
rules, depending on the position of the number carriers involved in 
the operation, relative to zero. The proposed rule system makes it 
possible to correctly solve many practical problems whose raw data 
are not clearly defined. This system of rules for fuzzy numbers with  
a compact carrier has been expanded to the case involving a non-fi-
nite carrier. The relevant approach has been implemented by a two-
step procedure. The advantages and drawbacks of this approach have 
been identified.

Keywords: (L–R)-type fuzzy numbers, compact carrier, rules for 
performing arithmetic operations.
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A traveling salesman problem (TSP) is a problem whereby the 
salesman starts from an origin node and returns to it in such a way 
that every node in the network of nodes is visited once and that the 
total distance travelled is minimized. An efficient algorithm for the  
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TSP is believed not to exist. The TSP is classified as NP-hard and 
coming up with an efficient solution for it will imply NP = P. The 
paper presents a dummy guided formulation for the traveling sales-
man problem. To do this, all sub-tours in a traveling salesman prob-
lem (TSP) network are eliminated using the minimum number of 
constraints possible. Since a minimum of three nodes are required to 
form a sub-tour, the TSP network is partitioned by means of vertical 
and horizontal lines in such a way that there are no more than three 
nodes between either the vertical lines or horizontal lines. In this pa-
per, a set of all nodes between any pair of vertical lines or horizontal 
lines is called a block. Dummy nodes are used to connect one block 
to the next one. The reconstructed TSP is then used to formulate 
the TSP as an integer linear programming problem (ILP). With 
branching related algorithms, there is no guarantee that numbers of 
sub-problems will not explode to unmanageable levels. Heuristics or 
approximating algorithms that are sometimes used to make quick 
decisions for practical TSP models have serious economic challeng-
es. The difference between the exact solution and the approximated 
one in terms of money is very big for practical problems such as 
delivering household letters using a single vehicle in Beijing, Tokyo, 
Washington, etc. The TSP model has many industrial applications 
such as drilling of printed circuit boards (PCBs), overhauling of 
gas turbine engines, X-Ray crystallography, computer wiring, or-
der-picking problem in warehouses, vehicle routing, mask plotting 
in PCB production, etc. 

Keywords: traveling salesman problem, sub-tour, block, integer 
linear program, dummy.
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This paper reports the established feature of non-linear diffe-
rential equations as those that most adequately describe the pro-
perties of objects. Possible methods of their linearization have been 
analyzed. The issues related to solving the original equations in  
a linearized form have been defined. The Riccati equation has been 
given as an example. 

For a special type Riccati equation, a method to solve it has been 
constructed, whereby the results are represented in an analytical 
form. It is based on the use of linearization and a special method of 
nondimensionalization.

A special feature of the constructed method is determined by 
its application not to the original equation but to its discrete an-
alog. The result of solving it is an analytical expression based on 
elementary functions. It is derived from using the existing analytical 
solution (supporting, basic) to one of the equations of the examined 
type. All the original equations of the examined type have the same 
type of solution. This also applies to equations that had no previous 
analytical solution.

A formalized procedure for implementing the devised method 
has been developed. It makes it possible to link the analytical type 
of solution to the examined equation and known analytical solution 
to the basic one. The link is possible due to the equality of discrete 
analogs of the considered and basic equations. The equality of discrete 
analogs is provided by using a special nondimensionalization method. 

The applicability of the method and the adequacy of the results 
obtained have been shown by comparing them with existing ana-
lytical solutions to two special type Riccati equations. In one case, 
the solution has movable special points. In the second case, a known 
solution has an asymptote but, at the positive values of the argument, 
has no special points.

The possibility of using the constructed method to solve the 
general Riccati equation has been indicated.

Keywords: Riccati equation, special points, linearization, nondi-
mensionalization, analytical solution, elementary functions.
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Iterative algorithms for solving the inverse problem, presented 
as a quadratic programming problem, developed by modifying al-
gorithms based on the inverse calculation mechanism are proposed. 
Iterative algorithms consist in a sequential change of the argument 
values using iterative formulas until the function reaches the value 
that most corresponds to the constraint. Two solutions are consid-
ered: by determining the shortest distance to the line of the given 
level determined by the constraint, and by moving along the gradi-
ent. This approach was also adapted to solve more general nonlinear 
programming optimization problems. The solution of four problems 
is considered: formation of production output and storage costs, op-

timization of the securities portfolio and storage costs for the given 
volume of purchases. It is shown that the solutions obtained using 
iterative algorithms are consistent with the result of using classical 
methods (Lagrange multiplier, penalty), standard function of the 
MathCad package. In this case, the greatest degree of compliance 
was obtained using the method based on constructing the level line; 
the method based on moving along the gradient is more universal.

The advantage of the algorithms is a simpler computer imple-
mentation of iterative formulas, the ability to get a solution in less 
time than known methods (for example, the penalty method, which 
requires multiple optimizations of a modified function with a change 
in the penalty parameter). The algorithms can also be used to solve 
other nonlinear programming problems of the presented kind.

The paper can be useful for specialists when solving problems in 
the field of economics, as well as developing decision support systems.

Keywords: inverse calculations, function optimization, non-
linear programming, gradient method, inverse problem.
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The problem of parameter synthesis of a forecasting one-para-
meter model of exponential smoothing for predictive estimation of 
indicators of the organizational and technical system is considered. 

To select intervals of a given quality in the range of admissible values 
of the internal parameter, the criterion of absolute error of multi-
ple forecasts is selected. It allowed the formation of an analytical 
retrospective model with «soft» constraints. As a result, a method 
of robust estimation of the adequacy area of the forecasting one-pa-
rameter exponential smoothing model is developed, which allows 
one to analytically evaluate the limits of the adequacy area of the 
forecasting model depending on the requirements for its retrospec-
tive accuracy. The proposed method allows the user to specify a set 
of permissible retrospective errors depending on the requirements of 
forecasting specifications. The proposed method can be used for pa-
rameter adjustment of one-parameter forecasting models and serves 
as a decision support tool in the forecasting process. The simulation 
results are interval estimates, which are preferable to point ones 
in the process of parameter synthesis. Unlike search methods, the 
analytical form of retrospective dependencies allows you to obtain 
a solution with high accuracy and, if necessary, provides the analyst 
with the opportunity for graphical analysis of the adequacy area of 
the model. The example shows the fragment of estimating the dy-
namics of the time series in a retrospective analysis with a depth of 
three values and specified limit relative errors of 1–4 %. Under such 
conditions, the area for a reasonable selection of the adjustment pa-
rameter is determined by the combined intervals of a width of about 
20 % of the initial range of acceptable values.

Keywords: exponential smoothing, inverse verification, fore-
casting model adequacy, robust interval estimation.
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The reported study has established the possibility of improving 
the productivity of an algorithm for the minimization of Boolean 
functions using a method of the optimal combination of the sequence 
of logical operations applying different techniques for gluing the 
variables – simple gluing and super-gluing.

The correspondence of intervals I(α, β) in the Boolean space n 

has been established, given by a pair of Boolean vectors α and β, such 
that α β, with a complete combinatorial system with the repeated 
2-(n, b)-designs. The internal components of the interval I(α, β) 
correspond to the complete 2-(n, b)-design system while external 
ones are determined by calculating the number of zeros or unities 
in the columns of the truth table of the assigned logical function. 
This makes it possible to use the theory of I(α, β) intervals in the 
mathematical apparatus of 2-(n, b)-design combinatorial systems to 
minimize Boolean functions by the method of equivalent figurative 
transformations, in particular, to perform automated search for the 
2-(n, b)-design systems in the structure of a truth table.

Experimental study has confirmed that the combinatorial 2-(n, b)- 
design system and the consistent alternation of logical operations 
of super-gluing the variables (if such an operation is possible) and 
the simple gluing of variables in the first truth table improves the 
efficiency of the process and the reliability of results from minimizing 
the Boolean functions. This simplifies algorithmizing the search for 
the 2-(n, b)-design system in the structure of a truth table of the 
assigned logical function, which would provide for the tool to further 
automate the search for the 2-(n, b)-design system. In comparison 
with analogs, it enables increasing the productivity of the Boolean 
function minimization process by 100–200 % by using an optimum  
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alternation of operations of super gluing and simple gluing of vari-
ables by the method of equivalent figurative transformations.

There are reasons to argue about the possibility to improve the 
productivity of the Boolean function minimization process by the 
optimal combination of the sequences of the logical operations of 
super-gluing the variables and the simple gluing of variables by the 
method of equivalent figurative transformations.

Keywords: Boolean function minimization, optimal combina-
tion of the sequence of figurative transformations, Mahoney map.
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