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FREE VIBRATIONS AND SEISMIC RESISTANCE 
OF THREE-LAYER NON-HOMOGENEOUS 
ORTHOTROPIC RECTANGULAR PLATES(р. 4-7)

Sanan Qaraisayev

The problem of seismic resistance and free vibration of 
three-layer non-homogeneous, orthotropic rectangular plates, 
which layers are made of various, continuously non-homo-
geneous materials, is considered in the paper. It is assumed 
that elasticity characteristics of the material for layers are 
continuous functions of the plate thickness coordinate. Us-
ing the Kirchhoff-Love hypothesis for the entire thickness 
of the element, the expressions for forces and moments were 
obtained, as well as integrated stiffness characteristics for the 
three-layer orthotropic plate under consideration were deter-
mined. In general form, equation systems of the plate motion 
in both exact and approximate formulations were obtained. 
In the approximate formulation of the problem, two motion 
equations of the problem with respect to the deflection and 
the stress function were obtained. For the case of the plate pin-
edge fixing, the problem solution was made and the formula 
for determining free vibrations of the plate was found. When 
making numerical calculations, the elasticity characteristics of 
the material for layers were taken as linear in relation to the 
thickness coordinates.

Keywords: three-layer, orthotropic plates, non-homoge-
neous, elasticity characteristics, vibration, amplitude-frequency 
characteristics
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ON THE DYNAMIC PROPERTIES OF THE 
ASYMMETRICALLY MOUNTED ROTOR WITH 
INERTIAL ANISOTROPY (р. 8-16)

Alexander Gorbenko

The dynamics of the rotor, which has unequal moments 
of inertia about its transverse axis is considered in the pa-
per. The analysis is performed considering an asymmetric 
placement of the rotor relative to the supports. The study 
is based on the dimensionless equations of spatial motion 
of the anisotropic rotor in a rotating coordinate system. An 
exact analytical expression for the critical rotation rate of 
the inertial-anisotropic rotor is obtained. Analysis of this 
expression has shown that the inertial-anisotropic rotor 
may have from one to four critical direct precession rates. 
The influence of the rotor type, its layout chart and anisot-
ropy factor on the number and values of the critical rates is 
studied. To investigate the stability, the Lyapunov’s method 
of the first approximation of perturbation equations was 
used. Basic necessary stability condition for the case of 
asymmetric mounting of the rotor in an analytical form is 
obtained. The analysis has shown that the main instabil-
ity region is located between dual critical rates of angular 
oscillations of the anisotropic rotor. In general, inertial-
anisotropic rotor may have up to three instability regions. 
The presented analytical and numerical study complements 
the existing dynamics theory of rotary machines. The ob-
tained results allow more reasonably design and assign ra-
tional technological tolerances for manufacturing, assembly 
and erection of the rotors.

Keywords: gyrorotor, inertial anisotropy, stability, oscilla-
tions, moments of inertia, critical rates.
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NON-LINEAR VIBRATIONS OF THREE-LAYER 
NON-HOMOGENEOUS CIRCULAR CYLINDRICAL 
SHELLS (р. 17-20)

Safar Huseynov

The problem of nonlinear vibrations of three-layer non-
homogeneous circular cylindrical shells is studied in the paper. 
It is assumed that layers are made of various heterogeneous 
isotropic materials, and elastic characteristics are continuous 
coordinate functions of the shell thickness. Taking the validity 
of the Kirchhoff-Love hypothesis for the whole element, the ex-
pressions for the forces and moments are obtained, and general-
ized stiffness characteristics for the considered three-layer cir-
cular cylindrical shell are defined. In general, all basic relations 
and system of motion equations of shell taking into account 
geometric nonlinearity are obtained. Approximate formulation 
of the problem is also considered. Two motion equations of 
the problem with respect to deflection and stress function are 
obtained in the approximate formulation of the problem. The 
solution on nonlinear vibration of three-layer cylindrical panel 
with pin-edge fixing is studied in detail. An analytical solution 
is obtained, and the dependence of the amplitude-frequency 
characteristics is determined. To perform numerical calcula-
tions, inhomogeneity functions of the layer material were taken 
as linear coordinate functions of the shell thickness. The results 
of numerical calculations are presented in the form of the char-
acteristic graph.

Keywords: three-layer circular cylindrical shells, nonlin-
ear vibrations, heterogeneous material, amplitude-frequency 
characteristics.
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FLOATED GYROSCOPE ERRORS ON A 
RESONANCE LEVEL IN THE FIELD OF 
ULTRASONIC BEAM  
(р. 21-25)

Volodimir Karachun, Viktorij Mel’nick

The nature of additional errors of a single-degree-of-freedom 
floated gyroscope in the field of an ultrasonic beam on the reso-
nance level was disclosed.

A computational model of the wave coincidence phenom-
enon in the gyro suspension was built assuming a large wave size 
of the housing that enabling the provision of analytical support 
of the problem under consideration in the elementary, flat sec-
tion of the housing frame.

A decisive influence of ultrasonic radiation on the resonance 
level of wave coincidence was first theoretically justified and 
practically proved in the bench certification of the industrial 
design of the floated gyroscope.

The research results can be used in the aerospace industry to 
take into account the risk of wave coincidence in the gyroscope 
suspension, manifestation of “acoustic transparency” effect of 
the device and the rapid growth of the measurement error.

The obtained results can form the basis of bench certification 
of hypersonic aircraft airborne equipment. 

Keywords: wave coincidence, angle coincidence, acoustic 
transparency, float suspension, wave size.
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WAVE PROPAGATION IN A RECTANGULAR BAR, 
EXPOSED TO THE IMPACT TANGENTIAL FORCES 
(р. 26-30)

Nazila Rassoulova, Gulnar Shamilova

In modern technology, there are more and more cases of ac-
tion of impact loads on work items of buildings, machines and 
constructions, therefore, the strength calculations of these items 
under the dynamic effects become important.

To solve the problems, arising from the dynamic effects, it 
is necessary to use the continuum mechanics methods and, in 
particular in many cases, the methods of the dynamic theory 
of elasticity. Analytical studies allow to find the exact problem 
solutions, which is very important, because the exact solutions 
allow to estimate the main features of the solution in general - 
the nature and the extent of influence of various set parameters 
on it. On the other hand, exact solutions are always reference 
and needed, in particular, for developing numerical methods for 
more complex cases.

This work is a continuation of the works of N. Rassoulova, 
G. Shamilova, dedicated to studying the propagation of unsteady 
waves in the prisms of rectangular cross section. Approach to 
solving this problem differs markedly from all previous issues of 
the dynamics of rectangular prisms, which mainly investigated 
their dispersion characteristics.

This paper deals with studying the process of propagation 
of unsteady waves in semi-infinite rectangular bars, exposed to 
impact shear forces on the face platform. System of exact three-
dimensional motion equations of an isotropic elastic body is 
used. Applying a peculiar integration method, previously devel-
oped by the authors of this paper, exact analytic solutions to the 
posed problem for the final time value are found.

The results can be implemented in the production in design-
ing special constructions, where there are impulsive effects on 
them.

Keywords: unsteady waves, rectangular bar, impact shear 
forces, Lame’s equation.
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ANALYZING HYDRODYNAMICS IN HOLLOW 
PERFORATED SHELL OF CENTRIFUGAL 
OSCILLATING GRANULATOR (р. 30-35)

Maksym Skydanenko

A numerical modeling of the hydrodynamics of liquid flow-
ing in a hollow perforated shell with a small value Re was carried 
out using the ANSYS CFX software, which shows the pattern 
of distributing its flow velocity in the granulator working cavity 
and before an outflow port.

The numerical research allowed specifying (correcting) the 
calculation of outflow velocity of a melt jet and finding the way 
of improving the velocity (head) of the melt flowing out from 
ports of the granulator basket, by upgrading the design of a 
rotary oscillating granulator: increasing the number of blades or 
selecting their geometrical shape, depending on the granulator 
operating parameters. By increasing the head, the probability 
of plugging and alteration of geometrical sizes of outflow ports 
decreases. This enables using the granulator for dispersing melts 
with solid impurities (additives).

The obtained results were analyzed and applied for devel-
oping a modified centrifugal oscillating granulator of the melt 
with nitrogen fertilizers, which has passed experimental and 
industrial tests.

Keywords: prilling, radial blades, forward-curved blades, 
centrifugal oscillating granulator, hydrodynamics.
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NONLINEAR BOUNDARY INTEGRAL EQUATIONS 
METHOD FOR CONTACT PROBLEMS OF THE 
ELASTICITY THEORY (р. 36-40)

Alexander Alexandrov, Yurii Streliaiev

When implementing variational methods for solving com-
plex contact problems, there are difficulties, associated with 
non-convexity of minimized energy function of the system of 
interacting bodies and non-differentiability of this function 
at the desired point of its minimum. These difficulties do not 
allow to use gradient methods and convex analysis methods to 
minimize the energy function, therefore, numerical procedures 
for finding minimum points of such functions are cumbersome 
in program implementation and sometimes make it impossible 
to obtain the contact problem solution with sufficient accuracy. 
Non-variational method, based on using nonlinear operator 
equations with no difficulties during its implementation is pro-
posed in the paper. Applying these equations allows to use mod-
ern achievements of nonlinear functional analysis, fixed-point 
theory of continuous mappings, theory of iterative methods for 
solving operator equations for both proving theorems of exis-
tence of solutions to contact problems, and developing effec-
tive iterative procedures for approximate solutions. Nonlinear 
boundary integral equations, used in this paper to simulate the 
contact interaction of elastic bodies, allow (unlike other similar 
equations) to take into account both the linkage and partial slip 
on the contact surface of bodies, and loading history of these 
bodies. Based on these equations, simple and efficient iterative 
procedures for approximate solutions to the contact problems 
are developed. A numerical solution of the contact problem on 
indenting the elastic sphere in the elastic half-space is obtained, 
and comparison of results with the known problem solution is 
made.

Keywords: elastic body, contact problem, Coulomb friction, 
integral equation, iterative method.
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SOLUTION OF CONTACT PROBLEMS OF 
ELASTICITY THEORY USING A DISCRETE FINITE-
SIZE ELEMENT (р. 41-45)

Aleksandr Shamrovskiy, Еlyzaveta Bogdanova

The paper deals with studying the possibility of solv-
ing contact problems of the elasticity theory, in particular 
the punch problem using a discrete model of a continuous 
medium. Mixed boundary value problem of statics of elastic 
body is solved. Namely, the elastic equilibrium of the body is 
found if the displacements of some part of its surface points 
are given. Physically, this corresponds to the case when, 
using the forces, applied to the surface points, the given 
displacements are imparted to these points, and the surface 
is fixed in this form. The difference of the solved contact 
problems of the elasticity theory is that forces are given for 
some surface points, and displacements - for others. This 
work is based on the idea of modeling a continuous medium 
using the finite-size element. The rectangle, in the corners 
of which there are point masses, connected by elastic links 
was proposed as a structural element of the discrete model, 
replacing the rectangular element of continuous elastic 
medium. To make calculations for this model it is proposed 
to use the method of successive displacements, which gave 
a good account of itself in calculating beam structures. The 
obtained discrete models allow effectively solve contact 
problems of the elasticity theory, including at any values of 
the Poisson’s ratio.

Keywords: discrete model, continuous medium, discrete 
finite-size element, method of successive displacements.
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DESTABILIZATION OF STREAM IN A CHANNEL 
WITH THE LENGTH-VARYING FLOW RATE  
(р. 45-49)

Oleg Yakhno, Natalya Seminskaya,  
Denis Kolesnikov, Serhiy Stas

The flow of viscous and abnormally-viscous fluids in hy-
draulic systems with a curvilinear pipeline and length-varying 
mass, used for surface irrigation is experimentally investigated 
in the paper. A comparison of the hydraulic characteristics of 
such streams with similar results at a constant flow rate is car-
ried out.

These studies are caused by the need to justify the design 
parameters of water supply and irrigation systems, which en-
sure their reliability. Violation of stability and reliability can 
be caused by unstabilized processes, constantly arising in the 
operation of such systems and can lead to destabilization of the 
equipment.

As a result of the studies, the difference in determining the 
hydraulic losses is found, and recommendations for calculating 
the pressure drop in the channels of the discrete liquid sam-
pling along the length are given.

This will allow to forecast the operation of irrigation sys-
tems at given geometric parameters, kinematic and dynamic 
characteristics of the stream.

Keywords: discrete sampling, destabilization, channel cur-
vature, transit flow rate, fictitious length.
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RESEARCH OF HYDRODYNAMIC CONDITIONS 
OF ENTRANCE IN CHANNELS OF PROCESS 
EQUIPMENT (р. 49-54)

Sergey Nosko

The obtained solutions of the equations of unstabilized flow 
of viscous fluid allow to take into account the influence of the 
hydrodynamic conditions of the channel entrance on develop-
ing the velocity field on the initial section. Research of equa-
tions in dimensionless form has expanded the physical under-
standing of hydrodynamic features of these flows and allowed 
to assess the validity of assumptions and suppositions that are 
used in approximate solutions of the Navier-Stokes equations.

The results of solutions are consistent with the known 
theoretical studies for the case of uniform velocity distribu-
tion at the entrance to the initial section (at n1=∞) and make 
existing adjustments to conventional calculated dependencies 
on determining the length of this section if the velocity profile 
differs from the rectangular. Thus, at n1=1,7 specifications 
reach 85 %. Correction factors, included in the expressions for 
determining the length of the initial section reflect the impact 
of reconstructing the velocity profile during the flow.

Analytically and experimentally obtained calculated de-
pendencies have served as the basis for developing a method-
ology of hydrodynamic calculation of channels and working 
bodies of technological equipment.

Keywords: motion equation solution, conditions of en-
trance in hydrodynamic initial section.
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