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This paper reports an analysis of the frequencies and shapes of oscil-
lations of the tank with a volume of 3000 m3 with a winding of high-
strength steel wire with a diameter of 3 mm, 4 mm, and 5 mm, applied 
in increments of 1:3. In addition, for the tension force of the turn in the 
range from 0.2 to 0.8 of the yield strength of the wire material. The study 
was carried out on the basis of a finite-element method in the ANSYS 
software package for a three-dimensional geometric model of the struc-
ture. At the same time, the software took into consideration the height-
uneven width of the cylindrical wall taking into account the height of 
the filling to the maximum height and the tension forces of the winding.

It has been established that a change in the diameter of the winding 
wire does not lead to a significant change in the spectrum for the first 
ten significant frequencies. And an increase in the tension force of the 
wire in the winding leads to a decrease in the magnitude of oscillation 
frequencies. The exception is the sixth frequency. Its values are equal to 
one-tenth of a Hz for all estimated cases of the force of tension of the turn 
in the range from 0.2 to 0.8 of the yield strength of the wire material. The 
oscillation shapes of the tank reinforced by the winding have been deter-
mined. The change in the tension force of the wire in the winding does 
not change the number of waves at the circumferential coordinate at the 
free edge of the structure. We studied the loss of stability of the tank wall 
under distributed internal pressure. A comparative analysis of the sixth 
oscillation shape and the shape of stability loss reveals that they have the 
same number of waves at the circumferential coordinate.

The results reported here could make it possible to effectively use 
the pre-stress in order to detune the tank from the resonant frequency 
when operating in seismically hazardous areas.

Keywords: oil tank, tank oscillations, preliminary stresses, winding 
tension, numerical method.
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thermal method, taking into consideration the conditions of their opera-
tion and the physical and mechanical properties of the materials. 

The problem considered is the plastic deformation of the reactor 
in the process of reducing titanium tetrachloride. To solve this task, an 
axisymmetric geometric model of the reactor was built using a CAD 
module of the Comsol Multiphysics software package. For the calcula-
tion, the Nonlinear Structural Materials module was used. Owing to 
the method of finite elements, the critical parameters for the formation 
of the plastic deformation band of the reactor were determined.

Modeling the process of thermoplastic deformation of the reac-
tor under the conditions of obtaining titanium sponge has made it 
possible to determine the temperature gradient in the upper part of 
the reactor wall, which leads to local plastic deformation of the wall. 
The solution to the problem of continuing the reactor service would 
be to prevent overheating (overcooling) of the reactor wall within the 
resulting temperature. The physical and mechanical parameters of the 
material of the reactor wall, necessary to prevent the occurrence of an 
annular band of plastic deformation, have also been determined. It was 
shown that at ∆T˃∆Tcrit=60 °C, the walls of a 10-ton reactor during the 
reduction of titanium tetrachloride with magnesium perceive plastic 
deformation whose maximum value can reach max 5.5 %.plε =

Deformation mechanisms that lead to a change in the shape of the 
side wall of reactors of magnesium-thermal production of sponge tita-
nium under the action of a heterogeneous temperature field have been 
determined. The proposed technological solutions are to eliminate 
local changes in diameter in the upper part of the reactor wall. This 
will make it possible not only to increase the life of the reactors but 
will reduce the flow of alloy components into the titanium sponge of 
nickel, chromium, and iron.

Keywords: titanium sponge, titanium tetrachloride reduction 
reactor, reactor thermoplastic deformation process simulation, finite-
element method.
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The object of research reported in this paper is the stressed-strained 
state of reactors when producing titanium sponge by the magnesium 
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The object of the study is a single-pass cylindrical shell consist-
ing of two rigidly fastened butt-fastened sections made of different 
materials. Each of the shells is assumed to be elastic isotropic, having 
a cross-section of medium thickness. The equations of axisymmetric 
deformation of shells are used within the framework of Timoshenko 
hypotheses.

An approach to solving direct and inverse problems for such 
discretely heterogeneous objects is proposed, which implies the condi-
tional separation of a discretely heterogeneous cylindrical shell along 
the length, followed by the addition of functions of fictitious loads. 
The main analytical relationships for building a system of integral 
Volterra equations are given, for which an analytic-numerical solution 
is derived.

The final ratios have been obtained, which make it possible to 
calculate the kinematic and force parameters of the study object in 
the process of non-stationary deformation. The inverse problem of 
identifying arbitrary loads acting on a shell that is heterogeneous in 
length is solved in a general form. An algorithm for the restoration of 
pulse loads has been developed, which is robust to errors in the initial 
data (about 5 %).

The material related to solving direct and inverse problems for 
shells that are discretely heterogeneous in length can significantly 
advance the methodology for identifying pulse loads acting on struc-
tural elements.

Keywords: cylindrical shell, nonstationary deformation, inverse 
problem, integral equation, Tikhonov regularization.
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The problem of identifying the load acting on the elements of 
structures belongs to the class of inverse problems of the mechan-
ics of a deformable solid, which are often incorrect. Solving such 
problems is associated with the instability of the calculation results, 
which requires the development of special methods for their re-
search. This predetermines the relevance of this study.
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Spherical shells are used in many areas of the national economy. 
Spherical domes are widely used in the construction of vari-
ous structures (technoparks, testing laboratories, entertainment 
complexes, reservoirs, etc.). They are also used in aircraft, ship 
structures, radar antennas and other structures. It is known that 
coatings have sufficient strength and durability even with a small 
thickness. However, to increase the working life of coatings, to 
ensure their long-term operation, as well as to increase their hard-
ness, it is necessary to strengthen them on the surface or inside with 
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The object of this study is the processes related to the emer-
gence, perception, and redistribution of loads in the improved struc-
ture of a passenger car frame. The scientific and applied task tackled 
in this paper is to ensure the strength of the supporting structure of 
a passenger car under operating loads. In this regard, it is proposed 
to improve the frame of a passenger car by constructing a girder 
beam from two rectangular pipes filled with material with energy-
absorbing properties. The regularities of the frame load have been 
determined by taking into consideration the proposed solutions. 
It was found that the maximum equivalent stresses in the frame, 
taking its improvement into account, are 11.2 % lower than in the 
structure without filler, and 11.7 % lower than in the typical design. 
The results reported here are explained by the fact that the use of 
rectangular pipes filled with energy-absorbing material contributes 
to an increase in the moment of resistance of the frame, and, accord-
ingly, reduces stresses.

In addition, the study has determined the natural oscillation fre-
quencies of the frame. The results of the calculation of the strength of 
the weld in the zone of interaction of the girder beam with the pivot 
beams are given. 

A feature of the results obtained is that the improvement in the 
strength of the frame is achieved not by strengthening its compo-
nents but reducing the load. 

The scope of practical application of the reported results con-
cerns railroad transportation, as well as other sectors of mechanical 
engineering. The conditions for the practical use of these findings are 
the introduction of closed profiles in the structure of vehicles at the 
stage of their design and modernization.

This study could help reduce the cost of maintaining passen-
ger cars and improve the efficiency of their operation. In addition, 
the research might prove useful for designing modern railroad car 
structures.

Keywords: girder beam, energy-absorbing filler, frame with 
filler, energy-absorbing frame concept.

Such studies have not been considered for a reinforced spherical 
shell with a no uniform filler in thickness.

Keywords: spherical shell, free oscillation, frequency, Legendre 
polynomial, spherical Bessel functions.
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The object of this study is a concrete pipe and a pipe whose integrity 
was restored using a metal clamp while filling the layer between the 
existing pipe and the metal clamp with self-expanding concrete mortar.

It has been established that the most common types of defects 
and damage to pipes on the roads are transverse and longitudinal 
cracks, as well as concrete chipping and spalling.

A procedure has been devised to test experimentally a new con-
crete pipe without reinforcement and a concrete pipe reinforced with 
a metal clamp under static load.

Experimental tests of the concrete pipe without reinforcement 
and with reinforcement with a metal clamp were carried out in the 
laboratory. Digital indicators, an analog-to-digital converter, and a 
personal computer were used to measure pipe deformations.

It was found that the maximum value of vertical deformations of 
a new concrete pipe before cracking was 4.75 mm, and that reinforced 
by a metal clamp – 4.36 mm. At the same time, the maximum deforma-
tion at which the destruction of the new pipe occurred was 6.36 mm, 
and that of the reinforced pipe with a metal clamp – 10.51 mm.

It was established that the reinforcement of the destroyed pipe 
with a metal clamp in the initial period of loading leads to detachment 
of the clamp from the concrete of the pipe. Further, when the clamps are 
included in the work, there is a stable operation of the concrete pipe and 
the amount of growth of pipe deformations increases smoothly.

The results of measuring vertical deformations at the top of the 
pipe without reinforcement and with it showed different deforma-
tion values. It was established that the complete destruction of the 
pipe with a reinforced metal clamp takes place during deformations 
61 % higher than the deformation at which the non-reinforced new 
concrete pipe is destroyed.

It was found that one of the methods of restoring the bearing 
capacity of damaged and defective pipes in the road industry is the 
use of metal clamps.

Keywords: concrete pipe, metal clamp, deformation diagram, 
three-layer structure, static load.
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The results of an experimental study of the hydraulic friction fac-
tor of perforated pipelines that work with the collection of fluid along 
the path are reported. Clarification of this issue will make it possible 
to solve an important engineering task – to devise a reliable procedure 
for the hydraulic calculation of perforated pipes. The experiments 
were carried out on an assembled experimental bench. A steel pipeline 
with a perforated part of 1–3 m was investigated. Perforation holes 
were taken with a diameter of 3.6 and 9 mm. In the experiments, 
fluid flow, pressure loss, and average velocity were measured. Based 
on the data obtained, the values of the coefficient under study were 
calculated. It has been established that it is significantly larger than 
its values with uniform movement and is variable in length of the 
pipeline. Experimental dependences λcol on the value of the ratio of the 
velocities of the flowing jets of liquid to the average flow velocity in 
the corresponding section (Uh/V), as well as on the design characteris-
tics of the channel, were obtained. It is shown that the lower value of 
the degree of pipe perforation corresponds to the higher values of λcol. 
This result can be explained by the influence of the attached flow rate 
on the main flow. The confirmation of this conclusion is the resulting 
shapes of diagrams of the average flow velocity obtained in the experi-
ments, which differ significantly from standard diagrams with uniform 
motion. Obviously, additional energy is spent on the reformation of 
the velocities, and this causes additional head losses. Dependences 
were obtained for calculating the considered coefficient for prefabri-
cated pipelines, including in the presence of transit flow rate. Their 
use in the calculation of the pipes under consideration will increase the 
reliability and efficiency of the sewage treatment plant, in which they 
are important structural elements.

Keywords: prefabricated perforated pipeline, variable flow rate, 
hydraulic friction factor.
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In this research paper, focusing on the basic variables of the gear 
modeling process and setting its dimensions to see which gears are 

Due to the varied needs of persons who have lost a lower limb in 
their everyday lives, ankle-foot prosthetic technology is continually 
evolving. Numerous prosthetic ankles have been created in recent 
years to restore the ankle function of lower limb amputees. Most ankle 
foot prostheses, on the other hand, are passive, such as the solid ankle 
cushion heel and the energy storage and release foot (ESAR). The 
solid ankle foot can only provide steady vertical support during ambu-
lation; however, the ESAR foot can store energy and gradually release 
it throughout human walking periods, hence increasing the walking 
pace of amputees. The aim of this work is to describe the design and 
manufacture of an actuated ankle-foot prosthesis. The main benefit of 
powered ankles is that they are capable of mimicking natural stride, 
particularly in steep or uneven terrain conditions. The primary objec-
tive is to establish two degrees of freedom of ankle rotation in two 
planes, plantar flexion and dorsiflexion in the sagittal plane, besides 
inversion and eversion in the frontal plane. As software can improve 
the gait stability, an automatic modifiable transmission arrangement 
was prepared for delivering the current design motions in the sagittal 
plane based on empirical collected biomechanical data related to pas-
sive prosthetic normal gait circumstances. However, the ankle rolling 
in the frontal plane was guided mechanically by means of mono leaf 
spring. The majority of the ankle mechanical components are made of 
7075-T6 aluminum alloy and are integrated onto ESAR carbon fiber 
laminated foot. For a unilateral above-knee amputee, the ankle func-
tion at self-selected walking was assessed, achieving maximum results 
of 10° inversion, 10° eversion, 12° plantar flexion and 18° dorsiflexion 
ankle angles. Also, the patient gait experiment in a normal cadence 
showed an improvement in plantar flexion behavior for the powered 
ankle in contrast with the passive ankle.

Keywords: prosthetic ankle, ankle kinematics, above knee amputee, 
prosthetic gait, energy storage and release foot.
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The object of this study is a structural member made from a C-
shaped cold-formed profile, investigated to search for optimal cross-
sectional dimensions. The parametric optimization task is stated as the 
problem to find the optimal cross-sectional dimensions of the structural 
member under axial compression conditions, taking into account its 
post-buckling behavior (local buckling of the web and flanges, as well 
as a distortional buckling of the cross-section) and structural require-
ments. In this case, the material consumption and mechanical charac-
teristics of steel, as well as the design lengths of the structural member, 
were considered constant and predefined. The considered criterion of 
optimality was the maximization of the load-carrying capacity of the 
structural member for the overall buckling under the axial compres-
sion. The stated optimization problem is solved using the method of 
exhaustive search while applying the developed software. Additionally, 
for fixed steel consumption, compromise solutions were searched that 
do not depend on the thickness of the profile and the design lengths 
of the structural member. The resulting cold-formed C-shaped profiles 
with optimal cross-sectional dimensions are characterized by a higher 
load-carrying capacity for the overall buckling under axial compression 

capable of withstanding transmission operations and its rigidity was 
done. Because one of the most prominent transmission mechanics is 
gears, as the types of gears are numerous and common, and one of 
the most prominent types of gears is the helical gear. The helical gear 
is one of the most widely used and widespread gears in mechanical 
fields due to the increase in the contact area during the interlock 
process, as this increase reduces noise during gear rotation. Three 
main variables were used to establish the results. The first of which 
is the pressure angle, the helix deflection angle, and the module 
number, and they made a number of cases to see which one was able 
to withstand the movement operations with a proven torque. The 
results proved that the distortion value in the first case at module 1 
was 87×10-6 m, while in module 2 the distortion value was 3.75×10-6. 
The data are useful and important because the values of the stresses 
that affect the gears must be known by changing the module due 
to it gives a stronger concept of the extent to which the gears can 
withstand movement. Pressure angle is one of the basic variables that 
change the dimensions of wind turbine gears. The value of the great-
est stress was 2.13×108 Pa, but at the pressure angle of 20 degrees, 
the stress value was 1.93×108 Pa. It affects the diameter, stiffness and 
tensile strength of a wind turbine. The study of this research paper 
depends on helical gears. It is known that the angles of the helical 
teeth increase the large contact area between two gears. From the 
resulting deformation values, it is noted that the deformation value 
is 4.26×10-6 m when the helix angle is 20 degrees.

Keyword:  Finite element method, helical gear  ,pressure angle, 
helix angle, stress analysis.
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This paper proposes an experimental method for studying the 
Sommerfeld effect in auto-balancers or exciters of resonant vibra-
tions of pendulum, ball, or roller type. The method is based on the 
processing of signals acquired from analog sensors of rotations and 
vibration acceleration using regression analysis. The method is 
tested on a specially designed rotor bench on isotropic viscoelastic 

(to 24.45 % and 22.19 %) at the same steel consumption compared to 
the profiles offered by the manufacturer. Analysis of the reported results 
made it possible to devise recommendations for optimal ratios of dimen-
sions and geometric characteristics of the structural members made 
from C-shaped profiles operating under axial compression. The ratios 
could be used both at the stage of selection of cross-sections of structural 
members from cold-formed profiles, and in the development of effective 
assortments of cold-formed profiles.

Keywords: cold-formed profile, load-carrying capacity, flexural-
torsional buckling, post-buckling behavior, parametric optimization.
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When solving many tasks related to mine workings, rock pressure 
management, development systems, support structures, the issues of 
strength and stability of rocks become relevant. Limitations and gaps 

supports, which executes spatial motion, and an auto-balancer with 
one ball.

Checking the accuracy of the method using stroboscopic lighting 
demonstrates the accuracy of determining the speed of rotation of 
the rotor, ball, oscillation frequency of the rotor, etc. with an error of 
several hundredths of a percent.

When fixing the ball relative to the rotor, a classic inertial vibration 
exciter is obtained. The rotor has two resonant velocities. The Som-
merfeld effect is almost not manifested. With a gradual increase in the 
frequency of the current, the rotor speed increases monotonously. There 
is no significant slip or jump in the rotor speed. There are two distinct 
peaks on the amplitude-frequency characteristic. Therefore, such a 
vibration exciter is not suitable for the excitation of resonant vibrations.

With the free placement of the ball in the oil, the behavior of the 
system changes significantly in the vicinity of the first resonant velocity. 
The first narrow resonant peak disappears in the roto. Instead, there is 
a long, gentle resonant rise. It lasts at a current frequency of 9.4 Hz to 
19.3 Hz. The amplitude at the reference point on the resonant rise in-
creases from 0.7 mm to 2.84 mm. Therefore, by changing the frequency 
of the current, it is possible to smoothly change the amplitude of the 
rotor oscillations by almost 4 times. The maximum amplitude of rotor 
oscillations is the same as at the first resonance with a fixed ball. Due to 
the gentleness of the resonant rise, a freely installed ball itself is a reliable 
exciter of resonant vibrations.

Keywords: inertial vibration exciter, resonant vibratory machine, 
steady state motion, Sommerfeld effect, autobalancing, motion stability.
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are identified, emphasizing the need for further research and develop-
ment of new methods for solving applied problems of elasticity theory.

It is of theoretical and practical interest to determine the influence 
of half-space geometry on the stressed state of the medium and to assess 
whether it would suffice, in this case, to confine oneself to radial stress 
when characterizing the stressed state. To build a mathematical model 
of the stressed state of the array, a complex variable function argument 
method was used. Based on the developed complex variable function ar-
gument method, the applied problem of mechanics on loading the wedge 
with a concentrated force in polar coordinates was solved.

A feature of the proposed approach is the introduction of tangen-
tial stresses with the need to meet boundary conditions along inclined 
faces. The introduction to the consideration of tangential stress shows 
that it cannot be neglected at a certain stage of the search for a solu-
tion. First of all, this is due to the half-space geometry, the angle at 
the apex, and the depth of the array. When changing the angle of the 
wedge, the interface surface changes fundamentally and can pass from 
a convex shape to a concave one. Simplification of the proposed ex-
pressions leads to a complete coincidence with the solutions by other 
authors obtained by the stress method, which indicates the reliability 
of the result reported here. This method may be advanced by compli-
cating the half-space geometry, as well as loading, and by building a 
mathematical model for assessing the effect of tangent stresses on the 
strength and stability of soils.

Keywords: soil arrays, soil mechanics, stressed state, argument 
functions, half-space.
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