The object of this study is blockchain explorers and their usefulness in efficiently gathering data for blockchain network analysis. The process of blockchain analysis typically involves deploying and synchronizing a blockchain node, which requires significant computational resources and time for synchronization. Analyzing multiple blockchain networks simultaneously demands substantial effort and requires even greater costs.

The developed method involves utilizing publicly accessible blockchain explorers, which allows for rapid data retrieval with minimal computational resources for further analysis. Additionally, obtaining supplementary information from blockchain explorers provides valuable details that may be inaccessible using traditional data retrieval methods. The efficiency of the proposed method was verified through the development of a prototype system. Data was collected for 14 specified blockchain networks to analyze smart contracts within these networks. Information about accounts (including balance statistics) was gathered, smart contracts were identified among the accounts, data on existing tokens owned by smart contracts was obtained, and bytecode and source code (where available) of contracts were collected and decompiled. The process took nearly 24 hours on a cloud computing machine with minimal configuration.

Based on the collected data, an example smart contract was analyzed to demonstrate the completeness of the process. The results of this research minimize computational resource expenses and allow for a simplified and rapid data gathering process without manual configuration, enabling researchers and analysts to concentrate on subsequent stages of analysis.

Keywords: rapid data retrieval, blockchain analysis, blockchain explorers, multithreaded data processing.

References

4. Hardware requirements. Go-Ethereum. Available at: https://geth.ethereum.org/docs/getting-started/hardware-requirements

10. Acala chain explorer. Acala.network. Available at: https://blocks.cout.acala.network/
11. Aves explorer. Avescan.io. Available at: https://avescan.io
13. Erawap explorer. Erawap.info. Available at: https://erawap.info
15. Kava Ethereum Co-Chain Explorer. Kava.io. Available at: https://explorer.kava.io
16. MCH verse explorer. Myczryptoheroes.net. Available at: https://explorer.oasys.myczryptoheroes.net
17. Nahmii explorer. Nahmii.io. Available at: https://explorer.nahmii.io
19. Oasys explorer. OasysGames. Available at: https://scan.oasys.games
20. BONE BONE explorer. Shih.io. Available at: https://puppyscan.shih.io
22. SmartBCH explorer. SonarCash. AVAILABLE AT https://sonarcash
27. Chains & projects using blockscount. Blockscount.com. Available at: https://docs.blockscount.com/about/projects
29. Blockchair Explorer By Bitquery. Bitquery Explorer. Available at: https://explorer.bitquery.io/
30. Etherscan Explorer Services. Etherscan.io. Available at: https://etherscan.io/oaas
31. Unmarshal Blockchain Explorer. Xscan.io. Available at: https://xscan.io/
32. Open source Ethereum blockchain explorer. Beaconcha.In. Available at: https://beaconcha.in/
33. Otterscan. A blazingly fast, local, Ethereum block explorer built on top of Erigon. Available at: https://github.com/otterscan/otterscan
The object of research is means to increase computational ef-
fectiveness for automatic unit test generation process. It provides
arguments for developing new method to achieve wider use of
symbolic execution in commercial software development. The main
task of the research is to create adaptive code clustering method
that considers test generation complexity for structural source
code elements and available computational resources that will
increase effectiveness of computations. It is achieved by estimat-
ing test generation complexity and balancing the it for produced
clusters during clusterization. As a result, proposed clustering
method is adaptive to hardware and source code variability. It is
shown that developed approach provides up to 30% increase in
computation effectiveness compared to clustering based on code
structural properties alone for selected samples and up to 250% in
separate cases. This is caused by balanced estimated test genera-
tion complexity within generated clusters. It limits path explosion
to expected levels that match computational resources for every
cluster. Estimate of test generation complexity makes it possible to
stop the computation when the spent time exceeds the correspond-
ing complexity limit. Consequently, it makes it possible to prevent
performing unnecessary computations. Proposed method makes it
possible to use symbolic execution in commercial software devel-

element and available computational resources that will

efficiency within generated clusters. It limits path explosion to

each case. This is caused by balanced estimated test generation

element and available computational resources that will
en every cluster. Estimate of test generation complexity makes it possible to
stop the computation when the spent time exceeds the correspond-
ing complexity limit. Consequently, it makes it possible to prevent
performing unnecessary computations. Proposed method makes it
possible to use symbolic execution in commercial software develop-
due to higher adaptability for source code and hardware
variations. It will allow to reduce expenses on early-stage software
testing and provide means for determining feasibility of symbolic
execution for commercial projects.

Keywords: unit testing, effective computations, dynamic code
analysis, static code analysis.

References

Conference on Software Engineering (ICSE). doi: https://doi.org/
10.1109/icse.2013.6606567
Neuro-Symbolic Execution: Augmenting Symbolic Execution with
Neural Constraints. Proceedings 2019 Network and Distributed
System Security Symposium. doi: https://doi.org/10.14722/
nss.2019.23530
Execution. 2022 IEEE 33rd International Symposium on Software
Reliability Engineering (ISSRE). doi: https://doi.org/10.1109/
issre55969.2022.00055
2019. International Journal on Software Tools for Technology Transfer,
23 (6), 867–870. doi: https://doi.org/10.1007/s10009-020-00570-3
5. Vishnyakov, A., Fedotov, A., Kuts, D., Novikov, A., Parygina, D.,
Kobrin, E. et al. (2020). Sydr: Cutting Edge Dynamic Symbolic
Execution. 2020 Ivanivkov Ispras Open Conference (ISPRAS). doi:
https://doi.org/10.1109/ispras51486.2020.00014
Lecture Notes in Computer Science, 1067–125. doi: https://doi.org/
10.1109/53.2020.00014
ic Execution and Recent Applications to Worst-Case Execution, Load
Testing, and Security Analysis. Advances in Computers, 289–314. doi:
https://doi.org/10.1016/bs.adcom.2018.10.004
mated test generation system. Scientific Bulletin of UNFU, 32 (4),
77–83. doi: https://doi.org/10.36931/40320412
tering for symbolic execution. 2022 IEEE 17th International
Conference on Computer Sciences and Information Technologies
(CSIT). doi: https://doi.org/10.1109/csit56902.2022.10080433
INTERPRETATION OF LABORATORY RESULTS THROUGH COMPREHENSIVE AUTOMATION OF MEDICAL LABORATORY USING OpenAI (p. 26–34)

Kuanysh Kadirkulov
Saken Seifullin Kazakh Agrotechnical University, Astana, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0003-0506-4890

Aisulu Ismailova
Saken Seifullin Kazakh Agrotechnical University, Astana, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0002-8958-1846

Aliya Beissegul
Smart Lab Kazakhstan LLP, Almaty, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0002-0053-2539

Sandugash Serikbayeva
L. N. Gumilyov Eurasian National University, Astana, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0003-1729-6875

Dinara Kazimova
Karaganda Buketov University, Karaganda, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0001-7169-7931

Gulmira Tazhigulova
Karaganda Buketov University, Karaganda, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0001-7026-3947

In modern medicine, laboratory tests play an important role in the diagnosis, treatment and monitoring of patients. However, the volume and complexity of the data obtained can create challenges for interpreting the results. In this paper, we present a study on the application of integrated automation of a medical laboratory using OpenAI for a more accurate and effective interpretation of laboratory results.

Interpreting laboratory results through integrated automation using artificial intelligence (AI) and other digital technologies automatically analyzes and interprets laboratory results. This approach aims to streamline the process of interpreting laboratory results and provide more accurate, consistent and timely results to healthcare providers. Comprehensive automation of the interpretation of laboratory results can improve the efficiency and accuracy of laboratory results, leading to improved patient outcomes and better clinical decision-making. However, it is essential to note that AI models are imperfect and can still make mistakes. Therefore, healthcare professionals should always review automated interpretation results before diagnosing or treating. The work presented results in applying OpenAI to interpret laboratory results in the laboratory information system smartLAB Kazakhstan, which provides a complete cycle of automation of all medical laboratory processes.

In the course of the study, an automated information system of a medical research complex using artificial intelligence was developed and implemented.

Keywords: Information system, OpenAI, interpretation, laboratory analyzers, equipment.

References
12. Laboratory information system – a solution for automation of work processes in modern laboratories. Available at: www.lis.kz
13. Health Level Seven International. Available at: https://wiki.hl7.org/ Main_Page
Abstract and References. Information technology. Industry control systems

16. API reference. Available at: https://platform.openai.com/docs/api-reference

DOI: 10.15587/1729-4061.2023.286381

IMPROVING THE ACCURACY OF IDENTIFYING OBJECTS IN DIGITAL FRAMES THROUGH THE PROCEDURE OF PRELIMINARY IDENTIFICATION OF MEASUREMENTS (p. 35–43)

Sergii Khlamov
Kharkiv National University of Radio Electronics, Kharkiv, Ukraine
ORCID: https://orcid.org/0000-0001-9434-1081

Vadym Savanevych
Kharkiv National University of Radio Electronics, Kharkiv, Ukraine
ORCID: https://orcid.org/0000-0001-8840-8278

Vladimir Vlasenko
National Space Facilities Control and Test Center, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0001-8639-4415

Tetiana Trunova
Kharkiv National University of Radio Electronics, Kharkiv, Ukraine
ORCID: https://orcid.org/0000-0003-2689-2679

Volodymyr Troianskyi
Astronomical Observatory of Odesa I. I. Mechnykov National University, Odesa, Ukraine
ORCID: https://orcid.org/0000-0002-5899-2300

Viktorya Shvedun
National University of Civil Defence of Ukraine, Kharkiv, Ukraine
ORCID: https://orcid.org/0000-0002-5170-4222

Iryna Tabakova
Kharkiv National University of Radio Electronics, Kharkiv, Ukraine
ORCID: https://orcid.org/0000-0001-6629-4927

The object of this study is images of various objects of the Solar System on a series of digital frames. The variety and quality of shooting conditions make it difficult to identify a frame with the corresponding part of the sky. This fact significantly reduces the quality indicators of detection and estimation of the position of objects of the Solar System using already known computational methods and international astronomical astrometric and photometric catalogs. To solve this problem, a procedure for preliminary identification of measurements of digital frames of one series was devised.

This procedure is based on the determination of the shift parameters between the dimensions of a frame and the forms of a catalog or another frame. Also, taking into account the possibility of forming false measurements has made it possible to increase the accuracy of identification and resistance to various kinds of destabilizing factors. Based on this, the final estimation of the shift parameters between frames was performed. Due to these features, the use of the devised preliminary identification procedure makes it possible to improve identification with reference astronomical objects and reduce the number of false detections. The study showed that when identifying frames, the fitting gives the best accuracy of binding to the starry sky. Also, the standard deviation of frame identification errors in this case is 7–10 times less than without using the devised procedure.

The procedure developed for preliminary identification of measurements of digital frames of one series was tested in practice within the framework of the CoLiTec project. It has been incorporated into the Lemur software for automated detection of new and tracking of known objects. Owing to the use of the Lemur software and the proposed procedure implemented in it, more than 700,000 measurements of various astronomical objects under study were successfully identified.

Keywords: image processing, parameter estimation, measurement identification, series of frames, catalog form.

References
The problem of multiple zones in computer vision, including pattern recognition in the agricultural sector, occupies a special place in the field of artificial intelligence in the modern aspect.

The object of the study is the recognition of weeds based on deep learning and computer vision. The subject of the study is the effective use of neural network models in training, involving classification and processing using datasets of plants and weeds. The relevance of the study lies in the demand of the modern world in the use of new information technologies in industrial agriculture, which contributes to improving the efficiency of agro-industrial complexes. The interest of private agricultural enterprises and the state is caused by an increase in the yield of agricultural products. To recognize weeds, machine learning methods, in particular neural networks, were used. The process of weed recognition is described using the Mask model, as a result of processing 1,562 pictures, segmented images are obtained. Due to the annual increase in weeds on the territory of Kazakhstan and in the course of solving these problems, a new plant recognition code was developed and written in the scanner software module. The scanner, in turn, provides automatic detection of weeds. Based on the results of a trained neural network based on the MaskRCNN neural network model written in the scanner software module meeting new time standards, the automated plant scanning and recognition system was improved. The weed was recognized in an average of 0.2 seconds with an accuracy of 89%, while the additional human factor was completely removed. The use of new technology helps to control weeds and contributes to solving the problem of controlling them.

Keywords: computer vision, image segmentation, neural network model, pattern recognition algorithms.

References

ORCID
Assemgul Tynykulova: https://orcid.org/0000-0002-4557-6869
Akerke Akanova: https://orcid.org/0000-0002-8964-3891
Assel Mukanova: https://orcid.org/0000-0002-9162-6791
Assemgul Tynykulova: https://orcid.org/0000-0002-7178-2121

25. Srivastava, S., Devkar, A. V., Anilkumar, C., Naik, I., Kulkarni, V., Valladares, S., Toscano, M., Tufiño, R., Molina, M., Rebolledo-Albali, S., Ahmad Hassan Yar, G. N. (2022). Automated detection of ocular diseases using the suitability for IoT applications that support smart systems like Raspberry Pi and Self-powered components, which possess the ability to function as long as a charged battery is available. The highest accuracy of 0.9974 and 0.96 has been obtained in both proposed models for Myopia ocular disease detection and classification. Compared to research that had been presented in the same field, the performance accuracy of each of the two models shown was high. The P3448-0000 Jetson Nano Developer Kit is used to implement both of the proposed embedded models

Keywords: ocular diseases, fundus imaging, optical coherence tomography, deep learning, multi-label embedded architectures, parallel architecture, transfer learning, ODIR, training, validation

References

A qualitative analysis of the process of packaging liquid products (non-carbonated drinking water) using the example of a hybrid mechatronic dosing and packaging module was performed. The computer model of the mechatronic module is described by the basic operators of the Simulink program, taking into account the differential equations for changing the technological parameters of liquid dosing and the accepted initial and boundary conditions of the process. The modes of operation of the hybrid mechatronic dosing and packaging module are programmed using the driver. The boundary conditions of the process of formation and extrusion of the dose of the product are taken into account. The control system of the module is arranged on the principle of feedback and a sharp change in pressure in the portion receiver (from excess, within 3 bars to rarefaction up to −850 mbar). The analysis of individual stages of the process of formation and extrusion of the dose is based on qualitative analysis (Version 1). SciELO journals. doi: https://doi.org/10.6084/m9.figshare.22548323v1

References

The object of this study is the technological operation of removing the oxide film from the surface of the metal melt, foundry production of commercial lead, zinc. To carry out the robotization of this technological operation, it is proposed to use a manipulation robot with a spherical coordinate system. A kinematic structure of a manipulation robot with six degrees of mobility and two arms is proposed. On the first arm of the manipulation robot, a movable blade is fixed, and on the second arm, a rotary blade is fixed. With the translational movement of the first hand, the movable blade rakes the oxide film onto the rotary blade. Further, the oxide film collected on the rotary blade is thrown into a special container with a rotational movement. Restrictions are introduced on the values of generalized coordinates, velocities, and accelerations for each degree of mobility of the manipulation robot. Taking into account these limitations, for the implementation of this process, software trajectories have been developed for the degrees of mobility of the manipulation robot. The resulting graphs of program trajectories coincide with the calculated values of the generalized coordinates, time intervals, speeds, and accelerations of change in the generalized coordinates in terms of the degrees of mobility of the manipulation robot. The period of time required to remove the oxide film is 15.88 s. On the basis of the results obtained, a cyclogram for controlling a manipulation robot was built to perform the technological operation of removing the oxide film in the production of commercial lead, zinc.

Keywords: oxide film, manipulation robot, trajectory planning, program trajectory, quadratic interpolation.

References

АНОТАЦІЯ

INFORMATION TECHNOLOGY. INDUSTRY CONTROL SYSTEMS

DOI: 10.15587/1729-4061.2023.286079
РОЗРОБКА МЕТОДУ ШВІДКОГО ОТРИМАННЯ ДАНИХ З ВИКОРИСТАННЯМ ЕКСПЛОРЕІВ ДЛЯ БЛОКЧЕЙН АНАЛІЗУ (с. 6–16)

Я. Ю. Дорогий, В. Ю. Колісніченко

Об’єктом дослідження є блокчейн експлорери та їх використання у швидкому зборі даних для аналізу блокчейн-мереж. Процес блокчейн-аналізу зазвичай включає в себе розгортання та синхронізацію блокчейн-вузла, що потребує значних обчислювальних ресурсів та часу на синхронізацію. Проведення аналізу кількох блокчейн-мереж одночасно вимагає значних зусиль та вимагає ще більших витрат.

Розроблений метод полягає у використанні публічно доступних блокчейн експлорів, що дозволить швидко та з мінімальними обчислювальними ресурсами отримати необхідні дані для подальшого аналізу. Крім того, можливість отримання додаткової інформації з блокчейн експлорерів надає цінні деталі, які можуть бути недоступні, якщо використовувати традиційні методи отримання даних.

Ефективність запропонованого методу перевірена за допомогою розробленого прототипа системи. Для заданих 14 блокчейн-мереж були зібрані дані для проведення аналізу смарт-контрактів мереж. Були зібрані дані про акаунти (включаючи статистику по балансам), серед акаунтів виділені смарт-контракти, отримані дані про наявні токени (якими володіють смарт-контракти), зібрані байт-коди контрактів та їх вихідні коди (при наявності), проведена їх декомпіляція. Час процесу зайняв майже 24 години для обраної хмарної обчислювальної машини з мінімальною конфігурацією. На основі зібраних даних, для прикладу повноти процесу, було проаналізовано випадковий смарт-контракт.

Результати цього дослідження мінімізують витрати на обчислювальні ресурси та дозволяють без ручної конфігурації здійснювати спрощений і прискорений процес збору даних, надаючи дослідникам та аналітикам можливість зосередитися на наступних етапах аналізу.

Ключові слова: швидкий збір даних, блокчейн аналіз, блокчейн експлорери, багатопотокова обробка даних.

DOI: 10.15587/1729-4061.2023.286160
ПІДВИЩЕННЯ ЕФЕКТИВНОСТІ СИМВОЛЬНОГО ВИКОНАННЯ ШЛЯХОМ КЛАСТЕРІЗАЦІЇ ВХІДНИХ ДАНИХ НА ОСНОВІ СКЛАДНОСТІ ГЕНЕРУВАННЯ ТЕСТИВ (с. 17–25)

Р. П. Базилевич, А. В. Франко

Об’єктом дослідження є методи підвищення ефективності обчислень для автоматизованого модульного тестування. Обґрунтовано необхідність їх подальшого розвитку для ширшого застосування символьного виконання у комерційній розробці програмних продуктів. Для досягнення цієї мети запропоновано створити новий метод кластеризації вхідних даних, що дозволить ефективніше виконувати обчислення за рахунок адаптивності до особливостей апаратного забезпечення та вхідних даних у вигляді програмного коду. Це досягається за рахунок оцінювання складності генерування тестів для функцій, як структурних одиниць програмного коду. Запропоновано метод кластеризації, що поділяє вхідні дані символьного виконання на кластери та балансує їх для забезпечення граничного значення складності генерування тестів. Продемонстровано підвищення ефективності обчислень на 30 % для обраних прикладів завдяки використанню розроблених методів у порівнянні з кластеризацією лише за структурними характеристиками програмного коду та до 250 % у окремих випадках. Це досягається за рахунок розподілу структурних елементів програмного коду між кластерами таким чином, щоб складність генерування тестів для них відповідала можливостям обчислювальної системи. Визначено, що оцінка складності дает змогу вчасно зупинити обчислення, коли затрачений час є граничним по відношенню до оціненої складності генерування тестів, що запобігає виконанню зайвих операцій. У комерційній розробці програмного забезпечення запропоновані методи забезпечать адаптивність засобів символьного виконання до наявних вхідних даних та обчислювальних ресурсів, що підвищить ефективність тестування.

Ключові слова: модульне тестування, ефективність обчислень, статичний аналіз коду, динамічний аналіз коду.

DOI: 10.15587/1729-4061.2023.286338
ІНТЕРПРЕТАЦІЯ РЕЗУЛЬТАТІВ ЛАБОРАТОРНИХ ДОСЛІДЖЕНЬ ЗА ДОПОМОГОЮ КОМПЛЕКСНОЇ АВТОМАТИЗАЦІЇ МЕДИЧНОЇ ЛАБОРАТОРІЇ З ВИКОРИСТАННЯМ OpenAI (с. 26–34)

Kuanysh Kadirkulov, Aisulu Ismailova, Aliya Beissegul, Sandugash Serikbayeva, Dinara Kazimova, Gulmira Tazhigulova

У сучасній медицині лабораторні дослідження відіграють важливу роль у діагностиці, лікуванні та спостереженні за пацієнтами. Однак обсяг і складність отриманих даних можуть створювати проблеми при інтерпретації результатів. У даній роботі представлено методи аналізу отриманих даних з використанням комплексної автоматизації лабораторній дослідження з використанням OpenAI для більш точного і ефективного інтерпретування результатів лабораторних досліджень. Оцінка складності дает змогу вчасно зупинити обчислення, коли затрачений час є граничним по відношенню до оціненої складності генерування тестів, що запобігає виконанню зайвих операцій. У комерційній розробці програмного забезпечення запропоновані методи забезпечать адаптивність засобів символьного виконання до наявних вхідних даних та обчислювальних ресурсів, що підвищить ефективність тестування.
Підвищити їх ефективність та точність, що призведе до поліпшення результатів лікування пацієнтів та біль ефективного прийняття клінічних рішень. Однак важливо зазначити, що моделі іІІI недосконалі і все ще можуть приписуватися помилок. Тому медичні працівники завжди повинні перевіряти результати автоматичної інтерпретації перед діагностикою або лікуванням. У роботі представлені результати застосування OpenAI для інтерпретації результатів лабораторних досліджень у лабораторійній інформаційній системі smartLAB Kazakhstan, що забезпечує повністю цикл автоматизації всіх процесів медичної лабораторії.

В ході дослідження була розроблена і впроваджена автоматизована інформаційна система медичночного дослідницького комплексу з використанням штучного інтелекту.

Ключові слова: інформаційна система, OpenAI, інтерпретація, лабораторні аналізатори, обладнання.
Здійснено квалітативний аналіз процесу фасування рідких продуктів (вода питьна негазована) на прикладі гібридного мехатронного дозувально-фасувального модуля. Ком’ютерна модель мехатронного модуля описана базовими операторами програм Simulink з врахуванням диференційних рівнянь змін технологічних параметрів дозування рідини та прийнятих початковими й граничними умовами процесу. Програму встановлені різні роботи гібридного мехатронного дозувально-фасувального модуля за допомогою драйвера. Враховані граничні умови процесу формування та випускання дози продукту. Система керування модулем обслугована на принципі зворотного зв’язку та рівноваго зміни тиску у порційному ресивері (від надлишкового, у межах 3 бари до розрідження до ~830 мбар). Отримані результати необхідно перевірити відносно точності повторюваності формування дози в межах ±0,22 % та 0,9 % від встановленої величини маси дози 50..200 мл.

Виготовлена конструкція експериментального стенда, що надасть можливість перевірити отримані результати від комп’ютерної моделі. Отримані результати досліджень дозволяють за допомогою цифрового контролю-вимірювального обладнання перевірити точність дозування продукту від 50 мл до 200 мл.

В ході проведення комп’ютерного моделювання визначено вплив заданих параметрів процесу дозування на точність формування дози продукту, а також сформовані закони необхідного розподілення тиску стисненого повітря для дотримання заданої продуктивності. Отримані результати досліджень дозволяють удосконалити конструкції модулів дозування рідких продуктів та визначити квадратичні параметри для зв’язку відносини відносно точності дозування.

Ключові слова: формування дози, гібридний мехатронний модуль, дозувально-фасувальна операція, зворотний зв’язок, точність дозування.

DOI: 10.15587/1729-4061.2023.286643

ПЛАНУВАННЯ ТРАЄКТОРІЙ МАНИПУЛЯЦІЙНОГО РОБОТА ЗІ СФЕРИЧНОЮ СИСТЕМОЮ КООРДИНАТ ДЛЯ ЗНЯТТЯ ОКСИДНОЇ ПЛІВКИ ПРИ ВИРОБНИЧІЙ ТОРЦІ ТОВАРНОГО СВІНЦЮ ТА ЦИНКУ (с. 80–89)

Акандбай Бейсембайев, Анаргуль Ярбоссінова, Петро Паўленко, Мухит Баібатшяев

Об’єктом дослідження є технологічна операція з видалення оксидної плівки з поверхні розплаву металу ливарного виробництва товарного свинцю та цинку. Для проведення роботизації цієї технологічної операції пропонується застосувати маніпуляційний робот зі сферичною системою координат. Запропоновано кінематичну структуру маніпуляційного робота, який має шість ступенів рухливості та дві руки. На першій руці маніпуляційного робота закріплена рухлива, а на другій руці закріплена поворотна лопатка. Нагрівання рисунка на поворотній лопаті проводиться відповідно до визначених умов процесу формування розплаву. У першій руці робота з квадратичною інтерполяцією.