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This study investigates the technological process of surfacing parts 
with a powder tape. The task addressed is to optimize the technological 
process of multilayer arc surfacing with powder tapes based on mathe-
matical modeling of the formation of a seam of a given chemical compo-
sition with a minimum allowance for subsequent mechanical processing. 

The technological parameters for the coating formation process 
have been calculated depending on the thickness of the surfacing 
layer of surfaces after machining, the maximum number of surfacing 
layers, and the required chemical composition of the weld metal. That 
has made it possible to devise technological recommendations for 
surfacing complex alloys on parts of a wide range of applications that 
operate under conditions of intensive wear. 

The results are relevant in additive technologies, part of which 
is arc surfacing with powder electrodes of various designs, when it is 
necessary to fabricate an article by sequentially applying layers along 
a trajectory that repeats the geometry of the parts. The proposed 
mathematical models make it possible to obtain a reliable and oper-
ational assessment of the influence of technological process parame
ters on the formation of the chemical composition and geometry of 
the deposited layer during multilayer surfacing, taking into account 
the minimum waste of deposited metal after finishing grooving.

With values of the ratio of the height of the reinforcement roller 
to its width (≤ 0.3) and the relative surfacing step within 0.75–0.90, the 
maximum efficiency of the formation of a multilayer coating is ensured 
(by the minimum height of the deposited layer). It also enables the 
minimization of costs for subsequent machining, taking into account 
the imitation of errors (by the maximum height of irregularities).  
If the weld reinforcement coefficient is more than 2, then the required 
chemical composition is achieved already in the second coating layer. 

The resulting numerical accuracy makes it possible to predict 
effective ways to save welding materials and reduce the labor intensity 
of the process when surfacing complex-alloyed wear-resistant alloys.

Keywords: powder tape, multilayer deposition, deposited metal, 
mathematical model, complex alloys.
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This study investigates the process of 3D printing of polymer 
articles in light industry. The task addressed is to determine the 
stressed-strained state of 3D-printed articles made of PETG polymer, 
taking into account the nonlinear (inelastic) physical and mechanical 
properties of the material and the influence of printing density on its 
mechanical behavior.

The study’s result established that the tensile curve of 3D-printed 
samples from PETG follows the form of power function that reflects 
the properties of an inelastic polymer material. Applying the resulting 
power function relationship between deformations and stress, unlike 
the linear one, has made it possible to determine the normal stresses 
that appear in the internal layers of 3D-printed articles in the form of 
a beam of rectangular cross-section at bending.

Numerical values were derived for parameters of the power func-
tion that reflects the dependence of stresses on strain when stretching 
3D-printed samples from PETG, manufactured at a print density of 
70%, 80%, 90%, and 100%. It was found that with an increase in the 
density of PETG 3D printing from 60% to 100%, the tensile stresses in 
the samples increase from 12.3 to 19.6 MPa, while the relative defor-
mation at their rupture decreases from 0.076 to 0.062. The resulting 
dependences make it possible to determine the required density of  

3D printing to ensure the predefined limit load parameters for articles 
during their application.

Taking into account the nonlinear nature of deformation and 
the influence of the density of the structure on tensile stresses and 
relative deformation at the rupture of the polymer material creates 
opportunities for designing and manufacturing 3D-printed articles in 
light industry with predictable properties to enable their operability 
under operational loads.

Keywords: 3D printing density, PETG, Ludwick’s power func-
tion, nonlinear stress-strain dependence.
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This study focuses on the processes and phenomena related to 
post-processing of FDM articles in the form of mechanical, ther-
mal (laser), or chemical action, as well as their influence on the set of 
FDM-printed parts’ properties. At present, the lack of a methodolog-
ical basis for the choice of post-processing methods creates obstacles 
in the attempt to improve the operational properties of articles and is 
an important problem in additive engineering.

The paper investigates the post-processing of articles obtained 
by the method of layer-by-layer arrangement of plastic filament from 
the point of view of changing their mechanical and physical-technical 
characteristics due to the formed modified surface layer.

It was noted that post-processing can be performed by mechan-
ical action (blade cutting or abrasive processing), physical-technical, 
thermal (for example, laser), and chemical (etching, application of ad-
hesive layers). As a result of such actions, a modified layer of a certain 
thickness is formed on the surface of the article, the structure, and 
properties of which will differ from the base, and its features can sig-
nificantly change the operational properties of the article as a whole.

The analysis of various post-processing options was performed 
on the basis of the functional transformation of the input parameters 
of the workpiece into the output ones, which made it possible to link 
the regularities in the formation of stresses, thermal fields, and fields 
of motion of matter from the parameters of the state of the surfaces, 
which change in the process of post-processing from the initial to 
the final one, and which are reflected by combinatorial sets. This 
approach allows one to avoid duplication of operations or individual 
transitions, determine the expediency of using certain techniques, 
increase the reproducibility of the additive process, and ensure the 
reliability of the finished article as a whole.

The dependence of FDM articles’ properties on the state of the 
surfaces has been established; the corresponding functional depen-
dences have been proposed for determining the thickness of the 
modified layer formed by certain mechanical or physical-technical 
influences. It is shown that the use of sharply sharpened tools makes 
it possible to obtain for PLA Ra = 3.0…3.6 μm, Rz = 20…40 μm during 
turning, milling, and drilling; for ABS, respectively, Ra = 1.2…1.6 μm, 
Rz = 5…8 μm, with a modified layer thickness of 0.15–0.65 mm 
and 0.1–0.25 mm, respectively. Laser exposure modifies the layer at 
a depth of 0.2…0.5 mm; chemical treatment with ketone vapors forms 
a layer with a thickness of 0.3…1.1 mm and is determined by the tem-
perature of the saturated vapor, as well as diffusion rate.

Keywords: additive manufacturing, mechanical properties, 
post-processing, mathematical modeling, temperature and stress 
fields.
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This study investigates a grinding process in a tumbling mill load-
ed by impact, crushing, and abrasion. The impact, compression, and 
shear interactions of particles are taken into account, the intensity of 
which is determined by the zones of flight, shear layer, and solid flow 
of the fill in the cross-section of the rotating drum chamber. 

The task addressed is to determine the influence of rotation speed 
on the energy intensity of the grinding process for individual loading 
mechanisms. 

An experimental method for numerical modeling of productivity 
analogs for grinding mechanisms by the energies of the correspond-
ing interactions was applied.

The energy intensity of the process was estimated by the ratios of 
productivity analogs and the relative power of rotation drive. Energy 
efficiency was determined taking into account experimental data on 
physical productivity and drive power of the mill model. 

The effect of rotation speed on grinding was experimentally esti-
mated at a chamber filling degree of 0.45. 

The phenomenon of an intensive decrease in the energy intensity of 
the grinding process with a decrease in rotation speed was established. 

The results made it possible to identify energy-efficient values of 
the relative rotation speed for the grinding processes: coarse – by im-
pact at ψω = 0.75–0.9, medium – by crushing at ψω = 0.55–0.65, and 
fine – by abrasion at ψω = 0.3–0.4. The established effect is explained 
by the revealed activation of interactions: impact – at high-speed, 
compressive – at medium-speed, and shear – at low-speed rotation. 

The established patterns enable prediction of rational technolog-
ical parameters for energy-saving processes of multi-stage grinding in 
tumbling mills.

Keywords: tumbling mill; intra-chamber filling; grinding by 
impact, crushing, and abrasion; energy efficiency.
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This study considers graphic differentiation, in particular, a chord 
method, as one of the options for graphic differentiation in terms of 
replacing graphic operations with analytical ones in point form.

Determining the reference point and the center of projection for 
constructing a strip of differential projection correlates its positions 
with respect to the values of the derivative of the function, which is 
graphically represented by a discrete series of points. The reference 
point, the right differential projection of the first and left differential 
projection of the second points have the same values in the field of 
derivatives. However, they do not coincide with the values of the de-
rivatives of the original functions. To establish such a correspondence, 
the difference between the left and right differential projections of the 
first point is divided in half and subtracted from the first derivative of 
the original function – the point polynomial.

Relative to the reference point, parallel to the first link of the 
accompanying broken line of the discretely represented curve,  
a straight line is drawn that intersects the abscissa axis at the center 
of the projection. Finding the reference point and the projection 
center is carried out analytically in point form without any graphic 
operations. Rays are drawn from the projection center parallel to 
one of the links of the accompanying polyline, thus forming a strip 
of differential projections, within which the values of the angles 
of inclination of the tangents to the curve at the base points are 
selected. Discrete derivative values are connected by straight line 
segments or remain separate points. The resulting derivative values 
coincide with the analytical values with a deviation of no more  
than 0.5–1.5 units. 

The developed algorithms could be integrated into automated 
design and engineering analysis systems for effective calculation of 
derivatives of discretely given curves. In addition, they could serve as 
the basis for designing computationally productive modules in artifi-
cial intelligence and digital data processing systems that work with 
geometric and discrete information arrays.

Keywords: point polynomial, strip of diffprojections, approxima-
tion, analytical chord method, drawings analytization.
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This study’s object is the approximation of a non-swept helical 
tubular surface by strips of sweeping surfaces (toruses) and the con-
struction of sweeps of these strips. 

Approximating non-swept tubular surfaces by sections of sweep 
ones is a common practice in the design of various types of pipelines. 
A clear example of such an approximation is a sports ball whose outer 
shell consists of a certain number of separate elements. These ele-
ments must fit most tightly to the non-swept surface along its certain 
lines. Such lines are the lines of curvature. The task is to find these 
lines on the surface in order to subsequently analytically describe the 
torus strip, which is tangent to the non-swept surface along this line. 

As is known, there are two families of mutually perpendicular 
lines of curvature on surfaces. This paper considers a family of 
curvature lines that has advantages over another one in terms of 
approximation. This explains the results reported here. Their special 
feature is that in order to find the desired family of curvature lines, it 
is necessary to solve a differential equation.

The solution to this equation was borrowed from a scientific 
article and used for further calculations. The results were visual-
ized in the form of an approximated tubular surface with four and 
six strips.

The sweeps of these strips were constructed for a tubular surface, 
in which the center line is a helical line r = 1. All dimensions are 
given in linear units. Instead of a circle generatrix, it is given by the 
radius of the cylinder a = 2, which hosts it, and the helical parameter  
b = 1.5 (step H = 9.4). The radius of the circle generatrix of the tubular 
surface of the original tubular surface in the approximated surface in 
the given examples is a polygon (square or equilateral hexagon).

Keywords: line of curvature, tangent strip, geodesic curvature, 
sweeping surface, numerical integration.
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This study investigates the sequential and continuous formation 
of thermal fields in the main fairing of a launch vehicle when using 
protective screens. While thermostating, it is necessary to predict the 
risk in overheating the payload body and, if necessary, take measures 
to reduce the temperature near the payload. 

An engineering solution to this problem can be found through 
the use of protective screens of various configurations inside the main 

fairing. These screens reduce the heat flow from the heated outer wall 
of the fairing to the payload surface. However, there are no standard 
methods for solving this problem. 

To evaluate the effectiveness of this protection, a numerical 
model based on the fundamental equations of continuum mechanics 
has been constructed. The modeling equations include the energy 
equation and the equation of motion of a non-viscous gas. Using the 
numerical model built, a computational experiment was conducted, 
which confirmed the effectiveness of using protective screens to 
shield the payload body from excessive heating. The computer time 
required to perform the computational experiment is 3 seconds. This 
makes it possible to perform a significant number of calculations in 
a working day. 

The proposed simple technical means for protecting the payload 
from excessive heating could be used in the design of new models 
for rocket technology. Applying these screens slightly reduces the 
need for large volumes of clean air. The numerical model built 
could be used at specialized organizations at the "for-sketch" design 
stage. Numerical experiments have shown that the use of protective 
screens inside the main fairing makes it possible to achieve a tem-
perature 2–4°C lower than the maximum permissible temperature 
near the payload.

Keywords: thermal pollution, main fairing, protective screen, 
numerical model, computational experiment.
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ВИЗНАЧЕННЯ ОСОБЛИВОСТЕЙ ФОРМУВАННЯ ЗНОСОСТІЙКОГО ШАРУ, НАПЛАВЛЕНОГО ПОРОШКОВОЮ 
СТРІЧКОЮ (c. 6–15)

В. Д. Кассов, О. В. Бережна, С. О. Єрмакова, С. В. Малигіна, Д. М. Турчанін

Об’єктом дослідження є технологічний процес наплавлення деталей порошковою стрічкою. Вирішувалась проблема оптимізації 
технологічного процесу багатошарового дугового наплавлення порошковими стрічками на основі математичного моделювання 
формування шва заданого хімічного складу з мінімальним припуском на наступну механічну обробку. Проведено розрахунок техно-
логічних параметрів процесу формування покриття залежно від товщини наплавленого шару поверхонь після механічної обробки, 
максимальної кількості наплавлених шарів, необхідного хімічного складу металу шва. Це дозволило розробити технологічні реко-
мендації для наплавлення складнолегованих сплавів на деталі широкого спектру застосування, які працюють в умовах інтенсивного 
зношування. Отримані результати актуальні й в адитивних технологіях, частиною яких є дугове наплавлення порошковими елек-
тродами різної конструкції, коли необхідно створювати виріб за рахунок послідовного нанесення шарів за траєкторією, що повторює 
геометрію деталей. Запропоновані математичні моделі дозволяють отримати достовірну та оперативну оцінку впливу технологічних 
параметрів процесу на формування хімічного складу та геометрії наплавленого шару при багатошаровому наплавленні з урахуван-
ням мінімальних відходів наплавленого металу після чистової проточки. При значеннях величини відношення висоти посилення 
валику до його ширини (≤ 0,3) і відносному кроку наплавлення в межах 0,75–0,90 забезпечується максимальна ефективність форму��-
вання багатошарового покриття (за мінімальною висотою нанесеного шару). Також забезпечується мінімізація витрат на наступну 
механічну обробку з врахуванням наслідування погрішностей (за максимальною висотою нерівностей). Якщо коефіцієнт посилення 
шва більше 2, то необхідний хімічний склад досягається вже у другому шарі покриття. Отримана числова точність дозволяє спрогно-
зувати ефективні шляхи економії зварювальних матеріалів та зниження трудомісткості процесу при наплавленні складнолегованих 
зносостійких сплавів.

Ключові слова: порошкова стрічка, багатошарове наплавлення, наплавлений метал, математична модель, складнолеговані сплави. 
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ВИЯВЛЕННЯ ВПЛИВУ ЩІЛЬНОСТІ 3D-ДРУКУ НА ФІЗИКО-МЕХАНІЧНІ ВЛАСТИВОСТІ ПОЛІМЕРНИХ ВИРОБІВ (c. 16–22)

Б. М. Злотенко, О. Ю. Воляник, М. М. Рубанка, Д. В. Стаценко, А. О. Поліщук, О. В. Дука

Об’єктом цього дослідження є процес 3D-друку полімерних виробів легкої промисловості. Вирішувалась проблема визначення 
напружено-деформованого стану 3D-друкованих виробів із полімеру PETG, з урахуванням нелінійних (непружних) фізико-механіч-
них властивостей матеріалу та впливу щільності друку на його механічну поведінку.

В результаті дослідження виявлено, що залежність напружень від деформації 3D-друкованих зразків з PETG має вигляд степене-
вої функції, яка відображає непружні властивості полімерного матеріалу. Використання отриманої степеневої залежності між дефор-
маціями і напруженнями, на відміну від лінійної, дозволило визначити нормальні напруження, які виникають у внутрішніх шарах 
3D-друкованих виробів у формі балки прямокутного поперечного перетину при згинанні.

Отримані числові значення параметрів степеневої функції, яка відображає залежність напружень від деформації при розтяганні 
3D-друкованих зразків з PETG, виготовлених при щільності друку 70%, 80%, 90% і 100%. Встановлено, що із збільшенням щільності 
3D-друку PETG з 60% до 100% розривні напруження у зразках збільшуються з 12,3 до 19,6 МПа, а відносна деформація при їх розриві 
зменшується з 0,076 до 0,062. Отримані залежності дозволяють визначити необхідну щільність 3D-друку для забезпечення заданих 
граничних параметрів навантаження виробів у процесі їх експлуатації.

Врахування нелінійного характеру деформування і впливу щільності структури на розривні напруження та відносну деформацію 
при розриві полімерного матеріалу створює можливості для проєктування і виготовлення 3D-друкованих виробів у легкій промисло-
вості з прогнозованими властивостями для забезпечення їх працездатності, з урахуванням експлуатаційних навантажень.

Ключові слова: щільність 3D-друку, PETG, степенева функція Людвіка, нелінійна залежність напруження-деформація.
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ФОРМУВАННЯ ВЛАСТИВОСТЕЙ ДЕТАЛЕЙ, ОТРИМАНИХ FDM, МОДИФІКАЦІЄЮ ПОВЕРХНЕВОГО ШАРУ 
МЕХАНІЧНОЮ ТА ФІЗИКО-ТЕХНІЧНОЮ ОБРОБКОЮ (c. 23–40)

Walid Alnusirat, Swook Hann, О. Ф. Саленко, В. М. Орел, Т. Ф. Козловська, А. О. Костенко, Д. O. Цуркан, П. П. Мельничук, 
Я. П. Коваленко

Об’єктом дослідження є процеси і явища постоброблення FDM виробів у вигляді механічної, теплової (лазерної) або хімічної дії та 
їх вплив на комплекс властивостей деталей FDM-друку. Відсутність на сьогодні методологічного підґрунтя щодо вибору методів посто-
роблення створює перепони в намаганні поліпшити експлуатаційні властивості виробів, і є важливою проблемою адитивного машино-
будування. В роботі досліджуються варіанти постоброблення виробів, отриманих методом пошарового викладання пластикового філа-
менту з точки зору зміни їх механічних та фізико-технічних характеристик за рахунок утвореного модифікованого поверхневого шару. 

Зазначено, що постоброблення може виконуватися шляхом механічного впливу (лезового різання або абразивного оброблення), 
фізико-технічного, теплового (наприклад, лазерного) та хімічного (протравлення, нанесення клейових шарів). В результаті таких дій 
на поверхні виробу утворюється модифікований шар певної товщини, структура і властивості якого відрізнятимуться від основи,  
а його особливості можуть істотно змінювати експлуатаційній властивості виробу в цілому.
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Аналіз різних варіантів постоброблення виконано на основі функціонального перетворення вхідних параметрів заго-
товки у вихідні, що дозволило пов’язати закономірності формування напружень, теплових полів та полів руху речовини  
з параметрів стану поверхонь, які змінюються в процесі постоброблення від початкового до кінцевого, і які відображено ком-
бінаторними множинами. Такий підхід дозволяє уникати дублювання операцій або окремих переходів, визначати доцільність 
застосування тих чи інших прийомів, підвищувати відтворюваність адитивного процесу та забезпечувати надійність готового 
виробу в цілому. 

Встановлено обумовленість властивостей FDM виробів станом поверхонь та запропоновано відповідні функціональні за-
лежності для визначення товщини модифікованого шару, утворюваного певними механічними або фізико-технічними впли-
вами. Показано, що використання гостро заточених інструментів дозволяє отримати для PLA Ra = 3,0…3,6 мкм, Rz = 20…40 мкм 
при точінні, фрезеруванні та свердлінні; ABS – відповідно Ra = 1,2…1,6 мкм, Rz = 5…8 мкм, з товщиною модифікованого шару 
0,15−0,65 мм та 0,1−0,25 мм відповідно. Лазерний вплив модифікує шар на глибині 0,2…0,5 мм; хімічна обробка парами кетонів 
формує шар товщиною 0,3…1,1 мм і визначається температурою насиченої пари, швидкістю дифузії.

Ключові слова: адитивне виробництво, механічні властивості, постоброблення, математичне моделювання, поля температур 
та напружень.

DOI: 10.15587/1729-4061.2025.343388
ВСТАНОВЛЕННЯ ВПЛИВУ ШВИДКОСТІ ОБЕРТАННЯ НА ЕНЕРГЕТИЧНУ ЕФЕКТИВНІСТЬ ПРОЦЕСІВ ПОДРІБНЕННЯ 
УДАРОМ, РОЗДАВЛЮВАННЯМ ТА СТИРАННЯМ В БАРАБАННОМУ МЛИНІ (c. 41–53)

Ю. В. Науменко, К. Ю. Дейнека

Об’єктом дослідження є процес подрібнення в барабанному млині при реалізації навантаження ударом, роздавлюванням та сти-
ранням. Враховано ударну, стискаючу та зсувну взаємодії частинок, інтенсивність яких визначається зонами польоту, зсувного шару 
та твердотільного руху завантаження у поперечному перерізі камери обертового барабана.

Вирішувалась проблема визначення впливу швидкості обертання на енергоємність процесу помелу для окремих механізмів 
навантаження.

Застосовано експериментальний метод чисельного моделювання аналогів продуктивності для механізмів подрібнення за енер-
гіями відповідних взаємодій.

Енергоємність процесу оцінювалась за співвідношеннями аналогів продуктивності та відносної потужності приводу обертання. 
Енергетична ефективність визначалась із урахуванням експериментальних даних фізичної продуктивності та потужності приводу 
моделі млина.

Експериментально оцінено вплив швидкості обертання на помел при ступені заповнення камери 0.45. 
Встановлено явище інтенсивного зниження енергоємності процесу помелу зі зменшенням швидкості обертання.
Отримані результати дозволили виявити енергетично ефективні значення відносної швидкості обертання для процесів подріб-

нення: грубого – ударом при ψω = 0.75–0.9, середнього – роздавлюванням при ψω = 0.55–0.65 та тонкого – стиранням при ψω = 0.3–0.4. 
Встановлений ефект пояснюється виявленою активізацією взаємодій: ударної – при швидкохідному, стискаючої – при середньоходо-
вому та зсувної – при тихохідному обертанні.

Встановлені закономірності дозволяють прогнозувати раціональні технологічні параметри енергоощадних процесів багатоста-
дійного подрібнення в барабанних млинах.

Ключові слова: барабанний млин, внутрішньокамерне завантаження, подрібнення ударом, роздавлюванням та стиранням, 
енергетична ефективність.
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АНАЛІТИЧНИЙ ОПИС У ТОЧКОВІЙ ФОРМІ СПОСОБУ ГРАФІЧНОГО ДИФЕРЕНЦІЮВАННЯ ПЛОСКОЇ  
КРИВОЇ ЛІНІЇ (c. 54–63)

В. М. Верещага, К. Ю. Лисенко, Є. О. Адоньєв, Е. Г. Муртазієв, І. В. Верещага, Т. М. Воліна

Об’єктом дослідження є графічне диференціювання, зокрема – метод хорд, як один із варіантів графічного диференціювання 
щодо заміни графічних операцій на аналітичні у точковій формі.

Визначення точки відліку і центру проєктування для побудови смуги дифпроєкції корелюють її положення щодо значень похід-
ної функції, яка графічно подається дискретним рядом точок. Точка відліку, права дифпроєкція першої та ліва дифпроєкція другої 
точок мають однакові значення у полі похідних. Однак вони не збігаються зі значеннями похідних вихідних функцій. Для встанов-
лення такої відповідності різницю між лівою і правою дифпроєкціями першої точки ділять навпіл та віднімають від першої похідної 
вихідної функції – точкового поліному. 

Відносно точки відліку, паралельно першій ланці супровідної ламаної лінії дискретно поданої кривої проводиться пряма, 
що перетинає вісь абсцис в центрі проєктування. Знаходження точки відліку та центру проєктування здійснюється аналітично 
у точковій формі без будь-яких графічних операцій. Із центру проєктування проводяться промені, паралельні одній із ланок 
супровідної ламаної лінії, утворюючи таким чином смугу дифпроєкцій, всередині якої обираються значення кутів нахилів до-
тичних до кривої в базисних точках. Дискретні значення похідних з’єднуються відтинками прямих або залишаються окремими 
точками. Отримані значення похідних збігаються з аналітичними значеннями з відхиленням не більше 0,5–1,5 одиниць. Розро-
блені алгоритми можуть бути інтегровані в системи автоматизованого проєктування та інженерного аналізу для ефективного 
обчислення похідних дискретно заданих кривих. Крім того, вони можуть слугувати основою для створення обчислювально-про-
дуктивних модулів у системах штучного інтелекту та цифрової обробки даних, що працюють з геометричними та дискретними 
масивами інформації.

Ключові слова: точковий поліном, смуга дифпроєкцій, апроксимація, аналітизація методу хорд, аналітизація креслеників.
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СПОСІБ АПРОКСИМАЦІЇ ТРУБЧАСТОЇ ГВИНТОВОЇ ПОВЕРХНІ СМУГАМИ ТОРСІВ (c. 64–70)

А. В. Несвідомін, С. Ф. Пилипака, В. М. Несвідомін, В. М. Бабка, О. В. Шоман, О. Ю. Савойський, Т. С. Пилипака,  
М. М. Лохоня, С. Л. Семірненко, Я. О. Бородай

Об’єктом дослідження є апроксимація нерозгортної гвинтової трубчастої поверхні смугами розгортних поверхонь (торсів) та 
побудова розгорток цих смуг. Апроксимація нерозгортних трубчастих поверхонь відсіками розгортних є поширеною практикою  
в конструюванні різного роду трубопроводів. Наочним прикладом такої апроксимації є спортивний м’яч, зовнішня оболонка якого 
складається із певної кількості окремих елементів. Ці елементи повинні найщільніше прилягати до нерозгортної поверхні вздовж 
певних її ліній. Такими лініями є лінії кривини. Проблема полягає в тому, щоб знайти ці лінії на поверхні з наступним аналітичним 
описом смуги торса, яка є дотичною до нерозгортної поверхні вздовж цієї лінії.

Як відомо, на поверхнях є дві сім’ї взаємно перпендикулярних ліній кривини. В статті вибрано таку сім’ю ліній кривини, яка має 
переваги перед другою в сенсі апроксимації. Цим пояснюються отримані результати. Особливості отриманих результатів полягають  
в тому, що для знаходження потрібної сім’ї ліній кривини необхідно розв’язувати диференціальне рівняння. Розв’язок цього рівнян-
ня було запозичено авторами у науковій статті і використано для подальших розрахунків. Здійснено візуалізацію отриманих резуль-
татів у вигляді апроксимованої трубчастої поверхні чотирьома і шістьома смугами. Побудовано розгортки цих смуг для трубчастої 
поверхні, у якої лінією центрів є гвинтова лінія r = 1. Всі розміри задані в лінійних одиницях. Замість твірного кола вона задана 
радіусом циліндра а = 2, на якому вона розташована, і гвинтовим параметром b = 1,5 (кроком Н = 9,4). Радіус твірного кола трубчастої 
поверхні вихідної трубчастої поверхні в апроксимованої поверхні у наведених прикладах є багатокутник (квадрат або рівносторонній 
шестикутник).

Ключові слова: лінія кривини, дотична смуга, геодезична кривина, розгортна поверхня, чисельне інтегрування.
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РОЗРОБКА МАТЕМАТИЧНОЇ МОДЕЛІ ПРОЦЕСУ ТЕПЛОМАСО-ПЕРЕНОСУ У ГОЛОВНОМУ ОБТІЧНИКУ РАКЕТИ-НОСІЯ 
НА ЕТАПІ ПЕРЕДСТАРТОВОЇ ПІДГОТОВКИ (c. 71–79)

М. М. Біляєв, В. В. Біляєва, Т. І. Русакова, В. А. Козачина, П. В. Семененко, О. В. Берлов, П. С. Кіріченко, Н. С. Грудкіна,  
Ю. В. Войтенко, О. В. Долженкова

Об’єктом дослідження є послідовне та неперервне формування теплових полів в головному обтічнику ракети-носія при вико-
ристанні захисних екранів. При термостатуванні необхідно спрогнозувати ризик перегріву корпусу корисного навантаження та при 
необхідності здійснити заходи по зниженню температури біля корисного навантаження. Інженерним рішенням такої задачі може 
бути знайдено у використанні захисних екранів різної конфігурації в середині головного обтічника. Ці екрани зменшують тепловий 
потік від нагрітої зовнішньої стінки обтічника до поверхні корисного навантаження. Але відсутні нормативні методи розв’язку цієї 
задачі. Для оцінювання ефективності даного захисту побудована чисельна модель на базі фундаментальних рівнянь механіки су-
цільного середовища. Моделюючі рівняння включають в себе рівняння енергії та рівняння руху нев’язкого газу. За допомогою розро-
бленої чисельної моделі проведено обчислювальний експеримент, що підтвердив ефективність використання захисних екранів для 
захисту корпусу корисного навантаження від надлишкового нагріву. Витрати комп’ютерного часу на проведення обчислювального 
експерименту дорівнюють 3 секунди. Це дає можливість проводити значну кількість розрахунків протягом робочого дня. Запропоно-
ваний простий технічний засіб захисту корисного навантаження від надлишкового нагріву може використовуватися при створенні 
нових зразків ракетної техніки. Використання цих екранів дещо зменшує потребу використання великих об’ємів чистого повітря. 
Розроблена чисельна модель може бути використана в спеціалізованих організаціях на етапі проектування «фор-ескіз». Чисельні 
експерименти показали, що використання захисних екранів в середині головного обтічника дає можливість отримати температуру 
на 2–4°C нижче, ніж максимально допустима температура біля корисного навантаження.

Ключові слова: теплове забруднення, захисний екран, чисельна модель, обчислювальний експеримент, головний обтічник.
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