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This study investigates the process of contact interaction between 
a rigid punch and an elastic half-space under the action of a centrally 
applied clamping load. The task addressed is automating the process-
ing of results for data analysis.

This paper considers a problem for a punch with complex ge-
ometry. The contact zone has a doubly connected shape bounded by 
concentric ellipses, which complicates the analytical description of 
the stressed-strained state.

To solve the problem analytically, a perturbation method was 
applied, using the previously found expansion of the simple layer 
potential with a small parameter. This makes it possible to reduce 
the problem to a configuration with a circular ring whose exact 
solutions are known in the form of a series with recurrent coef-
ficients. The obtained analytical results serve as a reference basis 
for assessing the accuracy of numerical modeling, for example, 
when constructing a finite element model. Such mathematical 
formalization makes it possible to effectively assess the reliability 
of the results.

Consequently, calculation models were built in the Ansys soft-
ware environment taking into account features of the punch shape. 
Special software was developed that enables exporting calculation 
data to the MATLAB software package with subsequent post-process-
ing to automate data processing. The proposed approach reduced the 
complexity of post-processing by approximately 45–55%.

It was found that with an increase in the eccentricity of the ellipse, 
the pressure under the punch increases. In the central zone, a lower 
pressure is recorded, which increases along the edges of the contact 
area. The numerical results correlate well with the analytical ones.

The results reported here could be used for strength calcula-
tions in engineering practice under conditions of contact interaction 
between structural elements of mechanical engineering where the 
contact zone has the shape of an elliptical ring.

Keywords: contact zone, punch, software tools, finite element 
method, analytical solution.
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This study considers forced vibrations of a heterogeneous elastic 
structure in the form of a multilayer cylindrical shell consisting of 
rigidly connected layers and reinforced with discrete ring elements. 

A mathematical model of vibrations of an elastic heteroge-
neous structure under the action of a non-stationary load has been 
constructed. The stressed-strained state of a multilayer cylindrical 
shell with discrete ring ribs was investigated using the geometrically 
nonlinear theory of Timoshenko-type shells and rods. The presence 
of a complex right-hand side and discontinuous coefficients in the 
spatial coordinates in the hyperbolic equations of vibrations of a het-
erogeneous elastic cylindrical shell (at the locations of the reinforcing 
ribs) necessitated the use of numerical methods for solving them. A 
numerical algorithm using Richardson extrapolations has been pro-
posed for studying the constructed model. 

For example, a three-layer reinforced cylindrical shell is con-
sidered, taking into account the discreteness of the ribs’ placement 
under dynamic loading with rigidly clamped ribs. The proposed 
numerical algorithm has made it possible to investigate the stressed-
strained state of a three-layer reinforced elastic structure of a cylindri-
cal type at any given moment in time. A comparative analysis of the 
numerical results of the calculations revealed that, according to the 
standard approach, the discrepancy in the deflection values for n = 40 
and n = 160 reached 31%, for n = 80 and n = 160 it was about 5%, 
according to Richardson’s approach for n = 40 ÷ 80 and the standard 
approach for n = 160, this difference was about 1%. 

A distinctive feature of this study is the use of Richardson ex-
trapolation to identify the stressed-strained state of a three-layer 
reinforced cylindrical shell, which made it possible to increase the 
accuracy of the solution to the dynamic problem without reducing 
the calculation step.

The study’s results reported in this work could be used for in-
vestigating unsteady vibrations of shell structures at research and 
engineering organizations.

Keywords: multilayer shells, forced vibrations, unsteady loading, 
numerical methods, Richardson extrapolation.
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In this research, the mechanical properties and the reinforce-
ment mechanism of finger-jointed laminated Merbau beams pro-
cessed from wood-industry wastes are investigated and unreinforced 
specimens and externally U-shaped carbon fiber reinforced poly-
mer (CFRP) strengthened beams are compared. The problem to be 
solved is the brittle failure and reduced flexural capacity of finger-
jointed glulam; hence, it determines the combined impact of joint ori-
entation (face-finger and face-butt), the number of lamination (three 
and five layers), and CFRP reinforcement on block-assembled beams 
with randomly distributed finger joints through four-point bending 
tests. The outcome of the study reveals that the use of CFRP has a 
huge impact on the flexural performance of the material, with the 
ultimate load being increased by 27.4–48.8% and the maximum bend-
ing moment being raised by 45.3% when compared to non-reinforced 
beams. The mid-point deflection at the maximum load has also in-
creased by 6.5–51.4%, which shows a higher capacity for deformation 
and better ductility of the material.

The noted enhancements are credited to the successful shifting 
of the stress from the timber tension zone to the CFRP, lessening of 
stress concentration at the fingerjoint discontinuities, and the crack 
initiation and propagation taking longer time in random locations 
which together change the structural response from sudden brittle 
fracture to more stable damage progression leading up to failure. 
Among the tested configurations, face-butt beams have obtained 
the highest modulus of elasticity of 20.46 GPa (an 8.8% increase), 
while the five-lamina face-butt configuration strengthened by CFRP 
has reached the greatest modulus of rupture of 55.85 MPa (a 33.4% 
increase). The three-lamina face-finger beams showed the highest 
increase of MOR after reinforcement, being at 48.30 MPa (a 46.4% in-
crease). Changing lamination from three to five layers raised flexural 
strength by 18.9%, suggesting a homogenization effect that improves 
stress distribution in laminated beams composed of blocks. All in all, 
the collaboration of finger-joint configuration, number of lamination, 
random block assembly, and CFRP strengthening has opened a door 
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This study investigates processes related to the occurrence, ac-
ceptance, and redistribution of loads in the supporting structure of 
a railroad flat wagon. The task addressed is to improve the technical 
and economic indicators of the modernized flat wagon for container 
transportation by reducing its tare.

To this end, the stress distribution fields in the modernized rail-
road flat wagon structure were determined. It was established that the 
main longitudinal beams of the frame have a strength reserve, which 
is due to the underutilization of railroad flat wagon bearing capac-
ity. This leads to an excess sprung mass of its supporting structure. 
Therefore, it is proposed to introduce perforation in the walls of the 
main longitudinal beams of a railroad flat wagon. To substantiate this 
solution, the strength of the bearing structure of a railroad flat wagon 
was calculated. It was established that the maximum stresses in the 
bearing structure are 13.6% lower than the permissible ones.

to convert Merbau wood waste into higher-performance engineered 
timber elements for low-carbon structural applications.

Keywords: merbau, glulam, beams, CFRP, reinforcement, bend-
ing, mechanical performance, MOE, MOR.
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The design service life of a railroad flat wagon is at least 32 years. 
The biaxiality calculation of the bearing structure showed that its 
greatest values are reached in the middle parts of girdle beams.

A special feature of the proposed solution is that it makes it pos-
sible to improve the technical and economic indicators of the mod-
ernized railroad flat wagon with minor capital investments.

The scope of practical application of the results is railroad transport.
A condition for practical use of the results is symmetrical loading 

of the bearing structure of a railroad flat wagon with cargo.
The results of the research could contribute to improving the ef-

ficiency of container cargo transportation along international routes. 
In addition, the results might prove useful for designing and fabricat-
ing new structures of railroad flat wagons, as well as for modernizing 
existing ones.

Keywords: railroad transport, railroad flat wagon, modernization 
of the structure, stressed state of the structure, container transportation.
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This study investigates acoustic processes that occur during 
the flow of air around the blade segment of a wind turbine. The 
issue of aerodynamic noise generated by wind turbines is one of 
the factors that hinders the widespread implementation of wind 
turbines. Noise reduction is possible by changing the design of the 
turbine blade to influence the aerodynamic processes during the 
flow of air around it. 

This paper reports an experimental study on the possibility of 
reducing the aerodynamic noise of wind turbines by modifying 
the trailing edge of the blade. An original methodology of acoustic 
experiments in an anechoic chamber is described; the results of 
experimental studies are given. 

Two different modifications of serrated trailing edges of the 
blade with the NACA0012 aerodynamic profile have been con-
sidered: a flat serrated edge and a three-dimensional serrated 
edge. The results from aerodynamic noise measurements of the 
prototypes of the blade segments were compared with the noise 
from the basic original sample. Acoustic measurements were 
carried out in the range of flow speeds: 7.5–20 m/s and angles of  
attack 0–15°. 

The results demonstrated that both configurations of the ser-
rated trailing edge make it possible to reduce the level of aerody-
namic noise compared to the base segment. It was found that the 
noise reduction occurs at relatively small angles of attack (0–5°) 
and moderate flow speeds (up to 15 m/s). In the specified range 
of parameters, the reduction of aerodynamic noise occurred due 
to a decrease in the sound pressure level in a certain frequency 
range by up to 4 dB. The segment with flat serrations turned out 
to be somewhat more effective in terms of noise reduction in the 
low-frequency range. 

Results of this work could be used when designing new gen-
eration wind energy systems with reduced noise levels, as well as 
other aerodynamic devices.

Keywords: aerodynamic noise, wind turbine blades, acoustic 
experiment, Fourier analysis, passive methods.
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This work investigates the process of powder particle acceleration in 
a supersonic nozzle for cold gas-dynamic spraying (CGS). The task ad-
dressed in the study is predetermined by the lack of established patterns 
in the comprehensive influence of gas parameters and nozzle geometry 
on the speed of powder particles at the nozzle outlet, which complicates 
predicting and controlling the spraying process.

A new approach to the design of nozzles for CGS has been proposed 
and implemented, which allows for targeted optimization of their geo-
metric parameters taking into account the gas parameters at the nozzle in-
let. The approach is based on a combination of analytical modeling (isen-
tropic model, particle acceleration model), methods of statistical planning 
and analysis of experiments (central compositional design, construction 
of regression equations), and multifactor optimization of nozzle geometry. 

Regularities have been established between the velocity of alumi-
num particles with a size of 25 μm at the nozzle outlet and the gas param-
eters: braking pressure 0.8–2.5 MPa and braking temperature 300–700°C. 
The calculations also took into account the influence of the nozzle 
geometry: critical diameter 1.0–3.0 mm, outlet diameter 5.0–10.0 mm, 
length of the expansion section 80–150 mm. The resulting nozzle and 
spraying mode ensure that the particles achieve a velocity at the outlet of 
596 m/s, which exceeds the required minimum of 550 m/s, at an air flow 
rate of 1.0 m3/min. 

The proposed approach could be applied to designing new nozzles 
for mobile and stationary CGS installations operating on compressed air, 
nitrogen, or helium with a pressure of 0.6 to 4.0 MPa; in particular, for 
spraying protective and restorative coatings under conditions of limited 
gas flow. The results lay out the foundation for developing a software tool 
or an automated system for designing nozzles for CGS in a wide range of 
initial gas and powder parameters.

Keywords: isentropic model, particle acceleration, multifactor 
optimization, critical speed, analysis of variance.
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A belt conveyor has been investigated in this work. The effect of 
the angle of the belt axis relative to the drum axis on the lateral runout 
of the belt was considered. The influence of the belt speed, the load at 
the point of contact of the belt with the generator drum, the curvature 
of the generator drum, and the linear mass of the belt on the lateral 
runout of the belt were also examined. The friction coefficient of the 
belt sliding on the rollers in the running section of the belt on the drum, 
the belt tension at the point of running on the drum were investigated.

It was established that lateral runout always occurs in the absence 
of perpendicularity of the belt axis relative to the drum axis. The belt 
speed during lateral runout is maximum at the beginning of the tran-
sition process and decreases as the displacement increases. During 
lateral runout of the belt in the zone of its contact with the generator 
drum, tangential and normal loads occur.

The stationary state is achieved when the belt axis becomes per-
pendicular to the drum axis.

Tangential loads in the absence of slippage do not depend on 
normal loads and are caused by the non-perpendicular location of the 
belt axis relative to the drum axis. Tangential load is proportional to 
the lateral displacement of the belt. The transient process of belt slip-
page on a drum with a slight curvature of the generator is described 
by an equation corresponding to an aperiodic link of the first order.

This study make it possible to determine optimal parameters 
when designing a system for automatic belt centering on a drum with 
a curved generatrix. Thus, in the development of the end station of a 
belt conveyor (Patent of Ukraine No. 98378), a hydraulic pump NSH-
10E was used. The magnitude of the drum curvature is limited by the 
resulting unevenness of belt tension across the width, as well as the 
possibility of belt slippage, and significantly depends on the stiffness 
of the belt.

Keywords: belt conveyor, lateral belt runout, drum, mathemati-
cal model, transient process.
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РОЗРОБКА І ПОСТПРОЦЕСІНГ МАТЕМАТИЧНИХ ТА КОМП’ЮТЕРНИХ МОДЕЛЕЙ КОНТАКТНИХ ЗАДАЧ 
(с. 6–15)

Т. А. Зайцева, Г. А. Шишканова, Я. А. Гончаров 

Об’єктом дослідження є процес контактної взаємодії жорсткого штампа з пружним півпростором під дією центрально прикладе-
ного стискаючого навантаження. Вирішувалась проблема автоматизації обробки результатів для аналізу даних. 

У роботі розглянуто задачу для штампа зі складною геометрією. Контактна область має двозв’язну форму, обмежену концентрич-
ними еліпсами, що ускладнює аналітичний опис напружено-деформівного стану.

Для аналітичного розв’язання задачі застосовано метод збурень, використовуючи знайдене раніше розвинення потенціала про-
стого шару за малим параметром. Це дає змогу привести задачу до конфігурації з круговим кільцем, для якої відомі точні розв’язки у 
вигляді ряду з рекурентними коефіцієнтами. Отримані аналітичні результати слугують еталонною основою для оцінки точності чи-
сельного моделювання, наприклад, при побудові скінченно-елементної моделі. Така математична формалізація дозволяє ефективно 
оцінювати достовірність отриманих результатів.

В результаті у програмному середовищі Ansys побудовано розрахункові моделі з урахуванням особливостей форми штампа. Роз-
роблено спеціальне програмне забезпечення, яке дозволяє експорт розрахункових даних до програмного пакета MATLAB з подаль-
шим постпроцесінгом для автоматизації обробки даних. Запропонований підхід знизив трудомісткість постпроцесінгу приблизно 
на 45–55%.

Виявлено, що зі збільшенням ексцентриситету еліпса зростає величина тиску під штампом. У центральній зоні фіксується ниж-
чий тиск, який зростає по краях області контакту. Виявлені чисельні результати добре корелюють з аналітичними.

Отримані результати можуть бути використані при розрахунках на міцність в інженерній практиці за умов контактної взаємодії 
у конструктивних елементах машинобудування, де зона контакту має форму еліптичного кільця.

Ключові слова: контактна зона, штамп, програмне забезпечення, метод скінченних елементів, аналітичний розв’язок.
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ЧИСЕЛЬНА РЕАЛІЗАЦІЯ ЕКСТРАПОЛЯЦІЇ РІЧАРДСОНА ДЛЯ ДИНАМІЧНИХ ЗАДАЧ БАГАТОШАРОВИХ 
ЦИЛІНДРИЧНИХ ОБОЛОНОК (с. 16–29)

Ю. А. Мейш, М. О. Бєлова, Н. В. Арнаута, Н. В. Майбородіна, В. П. Герасименко

Об’єктом дослідження є вимушені коливання неоднорідної пружної структури у вигляді багатошарової циліндричної оболонки, 
яка складається з жорстко-з›єднаних шарів і підсилена дискретними кільцевими елементами. Побудовано математичну модуль 
коливань пружної неоднорідної структури під дією нестаціонарного навантаження. Напружено-деформований стан багатошарової 
циліндричної оболонки з дискретними кільцевими ребрами досліджено з використанням геометрично нелінійної теорії оболонок 
і стрижнів типу Тимошенка. Запропоновано чисельний алгоритм із застосуванням екстраполяцій Річардсона для дослідження по-
будованої моделі. 

Для прикладу розглянуто тришарову підкріплену циліндричну оболонку з врахуванням дискретності розміщення ребер при 
динамічному навантаженні з жорстко защемленими краями. Запропонований чисельний алгоритм дав можливість дослідити на-
пружено-деформований стан тришарової підкріпленої пружної структури циліндричного типу в довільний момент часу. Проведений 
порівняльний аналіз чисельних результатів розрахунків показав, що згідно стандартного підходу розбіжність по величинам прогинів 
для n = 40 і n = 160 досягала 31%, для n = 80 і n = 160 порядку 5%. Згідно підходу по Річардсону для n = 40 ÷ 80 і стандартного для 
n = 160 ця різниця становила близько 1%. 

Особливістю даного дослідження є використання екстраполяції Річардсона для визначення напружено-деформованого стану 
тришарової підкріпленої циліндричної оболонки, що дозволило підвищити точність розв’язку динамічної задачі без зменшення 
кроку обчислень.

Результати проведених в роботі досліджень можна використовувати при дослідженні нестаціонарних коливань оболонкових 
конструкцій в науково-дослідних та інженерно-конструкторських організаціях.

Ключові слова: багатошарові оболонки, вимушені коливання, нестаціонарне навантаження, чисельні методи, екстраполяція 
Річардсона.
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ВИЗНАЧЕННЯ МЕХАНІЧНИХ ХАРАКТЕРИСТИК З’ЄДНАНИХ З ЛАМІНОВАНИХ ДЕРЕВ’ЯНИХ БАЛОК 
МЕРБАУ, АРМОВАНИХ ВУГЛЕЦЕВИМ ВОЛОКНОМ ПОЛІМЕРОМ (с. 30–44)

Lilis Nurhayati, Sri Murni Dewi, Wisnumurti, Devi Nuralinah

У цій роботі досліджуються механічні властивості та механізм армування з’єднаних шипами клеєних балок Мербау, виготовле-
них з відходів деревообробної промисловості, а також порівнюються неармовані зразки та балки, посилені зовнішньо U-подібним 
вуглецевим волокном полімером (ВВП). Проблема, яку необхідно вирішити, полягає в крихкому руйнуванні та зниженій згиналь-
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ній здатності клеєного бруса зі шипами; отже, вона визначає комбінований вплив орієнтації з’єднань (лицьова сторона-шип та 
лицьова сторона-стик), кількості шарів (три та п’ять шарів) та армування ВВП на блочно зібрані балки з випадково розподіленими 
шипами за допомогою чотириточкових випробувань на згинання. Результати дослідження показують, що використання ВВП 
має величезний вплив на згинальні характеристики матеріалу, при цьому граничне навантаження збільшується на 27,4–48,8%, а 
максимальний згинальний момент – на 45,3% порівняно з неармованими балками. Середній прогин при максимальному наван-
таженні також збільшився на 6,5–51,4%, що свідчить про вищу здатність до деформації та кращу пластичність матеріалу. Зазначені 
покращення пояснюються успішним зміщенням напружень із зони розтягу деревини на вуглепластик, зменшенням концентрації 
напружень у місцях розривів шипоподібних з’єднань, а також збільшенням часу зародження та поширення тріщин у випадкових 
місцях, що разом змінює структурну реакцію від раптового крихкого руйнування до більш стабільного прогресування пошко-
дження, що призводить до руйнування. Серед протестованих конфігурацій балки, що з’єднуються торцевими стінками, отримали 
найвищий модуль пружності 20,46 ГПа (збільшення на 8,8%), тоді як п›ятишарова конфігурація з’єднань, що з’єднуються торце-
вими стінками, посилена вуглепластиком, досягла найбільшого модуля пружності на розрив 55,85 МПа (збільшення на 33,4%). 
Тришарові балки з’єднуються торцевими стінками та продемонстрували найбільше збільшення міцності на згин після армування, 
яке склало 48,30 МПа (збільшення на 46,4%). Зміна шарування з трьох до п›яти шарів підвищила міцність на згин на 18,9%, що 
свідчить про ефект гомогенізації, який покращує розподіл напружень у шаруватих балках, що складаються з блоків. Загалом, по-
єднання конфігурації шипоподібного з’єднання, кількості шаруватості, випадкового складання блоків та посилення вуглецевим 
композитом (ВВП) відкрило шлях для перетворення деревних відходів мербау на високопродуктивні інженерні дерев›яні елементи 
для низьковуглецевих конструкційних застосувань.

Ключові слова: Мербау, клеєний брус, балки, ВВП, армування, згинання, механічні властивості, MOE, MOR.
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НАУКОВЕ ОБҐРУНТУВАННЯ ВИКОРИСТАННЯ БАЛОК ІЗ ПЕРФОРАЦІЄЮ В НЕСУЧІЙ КОНСТРУКЦІЇ 
МОДЕРНІЗОВАНОГО ВАГОНА-ПЛАТФОРМИ ДЛЯ ПЕРЕВЕЗЕНЬ КОНТЕЙНЕРІВ (с. 45–52)

С. В. Панченко, А. О. Ловська, І. Л. Журавель, Є. О. Науменко, О. В. Жарова

Об’єктом дослідження є процеси виникнення, сприйняття та перерозподілу навантажень в несучій конструкції вагона-плат-
форми. Проблема, що вирішувалась в даному дослідженні, полягає у покращені техніко-економічних показників модернізованого 
вагона-платформи для перевезень контейнерів шляхом зменшення його тари. З цією метою проведено визначення полів розподілень 
напружень в модернізованій конструкції вагона-платформи. Встановлено, що в основних повздовжніх балках рами має місце резерв 
міцності, який обумовлений недовикористанням вантажопідйомності вагона-платформи. Це викликає зайву підресорену масу його 
несучої конструкції. Тому пропонується впровадження перфорації в стінках основних повздовжніх балок вагона-платформи. Для об-
ґрунтування такого рішення проведено розрахунок на міцність несучої конструкції вагона-платформи. Встановлено, що максимальні 
напруження в несучій конструкції на 13,6% нижчі за допустимі. 

Проєктний строк служби вагона-платформи склав не менше 32 років. Розрахунок біаксиальності несучої конструкції показав, що 
її найбільші значення мають місце в середніх частинах хребтових балок. 

Особливістю запропонованого рішення є те, що воно дозволяє покращити техніко-економічні показники модернізованого ваго-
на-платформи при незначних капітальних вкладеннях.

Сфера практичного використання отриманих результатів – залізничний транспорт.
Умовою практичного використання результатів є симетричне завантаження несучої конструкції вагона-платформи вантажем.
Результати проведеного дослідження сприятимуть підвищенню ефективності контейнерних перевезень вантажів в міжнародно-

му сполученні. Також отримані результати будуть корисними напрацюваннями при проєктуванні та створенні нових конструкцій 
вагонів-платформ та модернізаціях існуючих.

Ключові слова: залізничний транспорт, вагон-платформа, модернізація конструкції, напружений стан конструкції, контейнерні 
перевезення.
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ВИЗНАЧЕННЯ ВПЛИВУ МОДИФІКАЦІЇ ЗАДНЬОЇ КРАЙКИ ЛОПАТІ ТУРБІНИ ВІТРОГЕНЕРАТОРА НА 
АЕРОДИНАМІЧНИЙ ШУМ (с. 53–62)

С. В. Алексєєнко, А. Ю. Дреус, Л. В. Накашидзе, В. А. Дербаба, С. А. Золотаренко

Об’єктом дослідження є акустичні процеси, що виникають під час обтікання потоком повітря сегмента лопаті турбіни вітроенер-
гетичної установки. Проблема аеродинамічного шуму, що генерується вітряними турбінами, є одним з факторів, що стримує широке 
впровадження вітрогенераторів. Зменшення шуму можливо за рахунок зміни дизайну лопаті турбіни для впливу на аеродинамічні 
процеси під час обтікання потоком повітря. Роботу присвячено експериментальному дослідженню можливості зменшення аероди-
намічного шуму вітрових турбін за рахунок модифікацій задньої крайки лопаті. Представлено оригінальну методику акустичного 
експерименту в безлунній кімнаті та подано результати експериментальних досліджень. Розглянуто дві різні модифікації зазубре-
них задніх крайок лопаті з аеродинамічним профілем NACA0012: плоску зазубрену крайку, та об’ємну зазубрену крайку. Результати 
вимірювань аеродинамічного шуму дослідних зразків сегментів лопатей порівнювалися з шумом базового оригінального зразка. 
Акустичні вимірювання проводилися в діапазоні швидкостей потоку: 7,5–20 м/с та кутів атаки 0–15°. Результати досліджень про-
демонстрували, що обидві конфігурації зазубреної задньої крайки дозволяють знизити рівень аеродинамічного шуму порівняно з 
базовим сегментом. З’ясовано, що зниження шуму відбувається за відносно малих кутів атаки (0–5°) та помірних швидкостей по-
току (до 15 м/с). У зазначеному діапазоні параметрів зменшення аеродинамічного шуму відбувалося за рахунок зниження рівня 
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звукового тиску в певному частотному діапазоні на величину до 4 дБ. Сегмент із пласкими зазубринами виявився дещо ефективні-
шим з точки зору зниження шуму в низькочастотному діапазоні. Результати роботи можуть бути використані під час проєктування 
вітроенергетичних систем нового покоління зі зниженим рівнем шуму та інших аеродинамічних пристроїв.

Ключові слова: аеродинамічний шум, лопаті вітрогенератора, акустичний експеримент, Фур’є аналіз, пасивні методи.
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РОЗРОБЛЕННЯ ПІДХОДУ ДО РОЗРАХУНКУ І ОПТИМІЗАЦІЇ НАДЗВУКОВОГО СОПЛА ДЛЯ ХОЛОДНОГО 
ГАЗОДИНАМІЧНОГО НАПИЛЮВАННЯ (с. 63–70)

О. В. Шорінов, Н. В. Савченко, О. В. Шипуль, І. В. Зорік, С. М. Нижник

Об’єктом дослідження є процес прискорення частинок порошку в надзвуковому соплі для холодного газодинамічного напилю-
вання (ХГН). Проблемою, на вирішення якої було спрямовано дослідження, є відсутність встановлених закономірностей комплек-
сного впливу параметрів газу та геометрії сопла на швидкість частинок порошку на виході з сопла, що ускладнює прогнозування та 
керування процесом напилювання.

Запропоновано та реалізовано новий підхід до проєктування сопел для ХГН, який дає змогу цілеспрямовано оптимізувати їх 
геометричні параметри з урахуванням параметрів газу на вході в сопло. Підхід базується на поєднанні аналітичного моделюван-
ня (ізоентропічна модель, модель прискорення частинок), методів статистичного планування та аналізу експериментів (централь-
ний композиційний план, побудова рівнянь регресії) і багатофакторної оптимізації геометрії сопла. Встановлено закономірності 
між швидкістю частинок алюмінію розміром 25 мкм на виході з сопла і параметрами газу: тиск гальмування 0,8–2,5 МПа і темпе-
ратура гальмування 300–700°C. Також в розрахунках враховано вплив геометрії сопла: критичний діаметр 1,0–3,0 мм, вихідний діа-
метр 5,0–10,0 мм, довжина розширювальної ділянки 80–150 мм. Отримане сопло та режим напилювання забезпечують досягнення 
частинками швидкості на виході 596 м/с, що перевищує необхідний мінімум 550 м/с, при витраті повітря 1,0 м3/хв. Запропонова-
ний підхід може бути застосований для проєктування нових сопел для мобільних і стаціонарних установок ХГН, що працюють на 
стисненому повітрі, азоті або гелії з тиском від 0,6 до 4,0 МПа, зокрема для напилювання захисних і відновлювальних покриттів в 
умовах обмеженої витрати газу. Отримані результати створюють основу для розроблення програмного інструмента або автомати-
зованої системи проєктування сопел для ХГН в широкому діапазоні початкових параметрів газу та порошку. 

Ключові слова: ізоентропійна модель, прискорення частинок, багатофакторна оптимізація, критична швидкість, дисперсійний 
аналіз.
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ВИЗНАЧЕННЯ ПЕРЕХІДНОГО ПРОЦЕСУ БОКОВОГО СХОДЖЕННЯ СТРІЧКИ З БАРАБАНА КОНВЕЄРА З 
НЕЗНАЧНОЮ КРИВОЛІНІЙНІСТЮ (с. 71–83)

О. В. Гаврюков, М. Ю. Колесніков, А. В. Запривода, О. П. Дєдов

Об’єкт дослідження – стрічковий конвеєр. Досліджено, як впливає на боковий сход стрічки кут установки осі стрічки відносно 
осі барабана. Також досліджено вплив на боковий сход стрічки швидкості стрічки, навантаження в місті контакту стрічки з твірною 
барабана, криволінійность твірної барабана, погонна маса стрічки. Досліджено коефіцієнт тертя ковзання стрічки по роликах в на-
бігаючому перерізу стрічки на барабан, натягнення стрічки в точці набігання на барабан.

Встановлено, що боковий схід завжди має місце за відсутності перпендикулярності осі стрічки відносно осі барабана. Швидкість 
стрічки при боковому сході максимальна на початку перехідного процесу і зменшується по мірі збільшення зміщення. При боковому 
сході стрічки в зоні її контакту з твірною барабана мають місце дотичні і нормальні навантаження.

Стаціонарний стан досягається, коли вісь стрічки стає перпендикулярною осі барабана.
Дотичні навантаження за відсутності прослизань не залежать від нормальних і викликані не перпендикулярним розташуванням 

осі стрічки відносно осі барабана. Дотичне навантаження пропорційне боковому зміщенню стрічки. Перехідний процес сходу стрічки 
на барабані з незначною криволінійністю твірної описується рівнянням, відповідним аперіодичній ланці першого порядку.

Наведені дослідження дозволяють отримати оптимальні параметри при проектуванні системи автоматичного центрування 
стрічки на барабані з криволінійною твірною. Так, при створенні кінцевою станцію стрічкового конвеєра (патент України №98378) 
був застосовуваний гідронасос НШ-10Е. Величина криволінійності барабана обмежується виникаючою нерівномірністю натягнення 
стрічки по ширині, а також можливістю сходу стрічки, і істотно залежить від жорсткості стрічки.

Ключові слова: стрічковий конвеєр, боковий сход стрічки, барабан, математична модель, перехідний процес.


