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This study considers the sharply changing loads on powerful 
transformers and the non-stationary electromagnetic processes they 
excite, consisting of a set of parameters of different physical nature. 
The task addressed relates to the fact that powerful transformers used 
in modern electrical technologies fail almost twice as often as those 
operating in public networks. This encourages the design of special-
purpose transformer equipment and requires establishing causal 
factors of accidents, their development, and new research methods.

This work reports a method for large-scale modeling of non-
stationary electromagnetic processes in transformers.

The proposed criteria for the physical similarity of electromag-
netic processes in the model and the original have been confirmed 
experimentally on a physical model and a real special-purpose trans-
former. A distinctive feature of the results is a method devised for the 
formation of sharply changing currents, which are characteristic of 
the electro-technological process in arc steelmaking furnaces.

The results of investigating additional losses and thermal over-
load of the transformer coincide, with reasonable accuracy for prac-
tice, with the experimental ones with an error not exceeding 5.7%. 
This makes it possible to compile project documentation for design-
ing new types of special-purpose transformers. This is achieved by 
improving engineering methods for calculating additional losses and 
thermal overloads of inactive parts of transformer structures. In prac-
tice, the results allow for the correction of acceptance tests both at the 
design stages and under industrial conditions.

Keywords: sharply changing loads, non-stationary electromag-
netic processes, cumulative effect, magnetostriction, non-sinusoidal 
current, equivalence method, streamers, ferroresonance processes, 
skin effect.
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drives, as well as optimization of power plants. It could be practically 
implemented under conditions of stable thermal regime of the mo-
tor and availability of reliable experimental data for identification of 
saturation parameters.

Keywords: induction motor, power plant, mathematical model, 
electromagnetic processes, dynamic inductances.
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This study considers the electromagnetic and electromechanical 
processes in a traction induction motor. The task addressed relates 
to the absence of a universal mathematical model of a high-power 
induction motor that accounts for magnetic circuit saturation, cross-
saturation, and core losses. Such a model is required for an adequate 
description of transient processes under the operating conditions of 
marine power plants. 

The essence of the results reported here is the construction of a 
system of equations describing the electromagnetic and electrome-
chanical processes in a traction induction motor, taking into account 
magnetic circuit saturation. The proposed model includes four differ-
ential and two algebraic equations, providing complete controllability 
over the machine dynamics on both linear and nonlinear segments 
of the magnetization characteristic. By applying the dynamic induc-
tance method, the model accounts for the interdependence between 
flux linkages and currents in different coordinate axes, as well as for 
the nonlinear variations of inductance parameters under magnetic 
saturation. These specific features have made it possible to accurately 
reproduce the real physical processes in the motor, as confirmed by 
bench verification based on the Caterpillar 3516 marine power plant. 
The results are attributed to the use of a generalized spatial model 
and dynamic inductances that reflect the variability of the motor’s 
magnetic state under different load conditions. 

The built model could be used in the synthesis of automatic con-
trol systems, analysis of transient processes, diagnostics of electric 
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The object of the study is the electromechanical part of a wind 
turbine with a horizontally arranged gearless rotor and an AC gen-
erator with a capacity of up to 40 kW. The study solves the problem 
of analyzing the electromechanical processes that occur during an 
interphase short circuit in a wind turbine generator.

The article presents the results of theoretical studies of the short-
circuit mode of the power circuit of an AC generator of a gearless 
type wind turbine with a capacity of up to 40 kW. The relevance of the 
study is due to the need to increase reliability and reduce accidents 
caused by interphase short circuits in wind turbines.

The choice of equations for the mathematical model of the electro-
mechanical part of the turbine is justified; a simulation model was devel-
oped using the MATLAB package; the adequacy of the simulation model 
was assessed by comparing transient processes obtained theoretically 
and experimentally on a laboratory bench under similar initial condi-
tions and the moments of inertia of the mechanical part of the rotating 
elements of the wind turbine rotor and generator; a theoretical study of 
transient processes during interphase short circuits has been performed.

Distinctive features: the proposed energy discharge equation and 
the developed model allow for the estimation of the energy character-
istics of a wind turbine, taking into account the dynamic character-
istics of the rotor and the generator, which increases the accuracy of 
the analysis of the energy characteristics in the mode of interphase 
short-circuit of the stator windings of the generator.

Practical significance: the research results can be used in the de-
sign, modernization, and adjustment of protection systems for wind 
turbine generators with a capacity of up to 40 kW.

Keywords: wind turbine, generator, short circuit, mathematical 
model, simulation modeling, dynamic processes.
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РОЗРОБКА МЕТОДУ МАСШТАБНОГО МОДЕЛЮВАННЯ НЕСТАЦІОНАРНИХ ЕЛЕКТРОМАГНІТНИХ 
ПРОЦЕСІВ В ПОТУЖНОМУ ТРАНСФОРМАТОРНОМУ УСТАТКУВАННІ ПРИ РІЗКОЗМІННИХ 
НАВАНТАЖЕННЯХ (с. 6–23)

В. В. Зіновкін, Ю. О. Крисан, С. І. Шило

Об’єктом дослідження є різкозмінні навантаження потужних трансформаторів та збуджуючі ними нестаціонарні електромагнітні 
процеси, що складаються із сукупності параметрів різної фізичної природи. Проблема, що вирішується, полягає в тому, що потужні 
трансформатори, які використовуються в сучасних електротехнологіях, виходять з ладу майже удвічі частіше в порівнянні із 
працюючими у мережах загального користування. Це спонукає до розробки трансформаторного устаткування спеціального призна�-
чення і потребує встановлення причинно-наслідкових факторів аварій, їх розвитку, та нових методів дослідження.

В роботі розроблено метод масштабного моделювання нестаціонарних електромагнітних процесів в трансформаторах.
Запропоновані критерії фізичної подоби електромагнітних процесів в моделі і оригіналі підтверджено експериментально на 

фізичній моделі і реальному трансформаторі спеціального призначення. Характерні відмінності результатів дослідження полягають 
у розробці методу формування різкозмінних струмів, що характерні для електротехноглогічного процесу дугових сталеплавильних 
печей. 

Результати дослідження додаткових втрат і теплового перевантаження трансформатора з достатньою для практики похибкою 
співпадають із експериментальними з похибкою, яка не перевищує 5.7%. Це дає змогу розробляти проектну документацію для розроб-
ки нових типів трансформаторів спеціального призначенння. Це досягається шляхом удосконалення інженерних методів розрахунку 
додаткових втрат і теплових перенвантажень неактивних деталей конструкції трансформаторів. На практиці отримані результати 
дозволяють корегувати приймально-здавальні випробування як на етапах проектування так і в умовах виробництва. 

Ключові слова: різкозмінні навантаження, нестаціонарні електромагнітні процеси, кумулятивний ефект, магнітострикція, не-
синосоїдальний струм, метод еквівалентування, стрімери, ферорезонансні процеси, скін-ефект. 
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РОЗРОБКА МАТЕМАТИЧНОЇ МОДЕЛІ АСИНХРОННОГО ДВИГУНА ТРАНСПОРТНОЇ ЕНЕРГЕТИЧНОЇ 
УСТАНОВКИ З УРАХУВАННЯМ ПРОЦЕСІВ МАГНІТНОГО НАСИЧЕННЯ (с. 24–35)

Д. О. Кулагін, І. З. Маслов

Об’єктом дослідження є електромагнітні та електромеханічні процеси тягового асинхронного двигуна. Проблема полягає у 
відсутності універсальної математичної моделі потужного асинхронного двигуна, яка б ураховувала насичення магнітних кіл, крос-
насичення та втрати в сталі. Така модель потрібна для адекватного опису перехідних режимів в умовах експлуатації суднових енерге-
тичних установок. Суть отриманих результатів полягає у створенні системи рівнянь, що описують електромагнітні та електромеханіч-
ні процеси в тяговому асинхронному двигуні з урахуванням насичення магнітного кола. Модель містить чотири диференціальні та 
два алгебраїчні рівняння, що забезпечують повну керованість динамікою машини на лінійних і нелінійних ділянках характеристики 
намагнічування. Завдяки використанню методу динамічних індуктивностей у моделі враховано взаємозв’язок потоків і струмів у 
різних осях координат, а також нелінійні зміни параметрів індуктивності під впливом магнітного насичення. Саме ці особливості 
забезпечили можливість точного відтворення реальних фізичних процесів у двигуні, що підтверджено стендовою верифікацією на 
основі суднової енергетичної установки Caterpillar 3516. Пояснюються результати використанням узагальненої просторової моделі та 
динамічних індуктивностей, які відображають змінність магнітного стану двигуна при різних режимах навантаження. Розроблена 
модель може бути використана під час синтезу систем автоматичного керування, аналізу перехідних процесів, діагностики стану 
електроприводів та оптимізації енергетичних установок. Її практичне застосування можливе за умов забезпечення стабільного тепло-
вого режиму двигуна, наявності достовірних експериментальних даних для ідентифікації параметрів насичення.

Ключові слова: асинхронний двигун, енергетична установка, математична модель, електромагнітні процеси, динамічні індук-
тивності.
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ІДЕНТИФІКАЦІЯ ДИНАМІЧНИХ ПРОЦЕСІВ СТРУМУ МІЖФАЗНОГО КОРОТКОГО ЗАМИКАННЯ 
ВІТРОГЕНЕРАТОРА, ЩО ПРАЦЮЄ В АВТОНОМНОМУ РЕЖИМІ (с. 36–44)

Gulim Nurmaganbetova, Vladimir Kaverin, Sultanbek Issenov, Gennadiy Em, Yerlan Ualiyev, Elmira Sarsembiyeva,  
Zhanara Nurmaganbetova, Zhanat Issenov

Об’єктом дослідження є електромеханічна частина вітротурбіни з горизонтально розташованим безредукторним ротором та 
генератором змінного струму потужністю до 40 кВт. Досліджувалась проблема аналізу електромеханічних процесів, що відбуваються 
під час міжфазного короткого замикання у вітротурбінному генераторі.
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У статті представлені результати теоретичних досліджень режиму короткого замикання силового кола генератора змінного стру-
му безредукторної вітротурбіни потужністю до 40 кВт. Актуальність дослідження зумовлена необхідністю підвищення надійності та 
зменшення аварійності, спричиненої міжфазними короткими замиканнями у вітротурбінах.

Обґрунтовано вибір рівнянь для математичної моделі електромеханічної частини турбіни; розроблено імітаційну модель за до-
помогою пакету MATLAB; адекватність імітаційної моделі оцінено шляхом порівняння перехідних процесів, отриманих теоретично 
та експериментально на лабораторному стенді за аналогічних початкових умов та моментів інерції механічної частини обертових 
елементів ротора та генератора вітротурбіни; проведено теоретичне дослідження перехідних процесів під час міжфазних коротких 
замикань.

Відмінні риси: запропоноване рівняння розряду енергії та розроблена модель дозволяють оцінити енергетичні характеристики 
вітрової турбіни з урахуванням динамічних характеристик ротора та генератора, що підвищує точність аналізу енергетичних харак-
теристик у режимі міжфазного короткого замикання обмоток статора генератора.

Практичне значення: результати дослідження можуть бути використані при проєктуванні, модернізації та налагодженні систем 
захисту вітрових турбогенераторів потужністю до 40 кВт.

Ключові слова: вітрова турбіна, генератор, коротке замикання, математична модель, імітаційне моделювання, динамічні про-
цеси.
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