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Influence of fracture of the mixed nature on the life of rolls of 
plate-rolling mills was considered. This is important because the 
time of trouble-free operation of plate-rolling rolls significantly af-
fects the cost of the final product. However, there are objective diffi-
culties connected with definition of the optimal model of prediction 
calculation of the final roll life because there is an insufficient defi-
niteness of influence of the mixed fracture mechanism on the roll life.

Conventionally, when predicting roll durability, a posteriori 
models of the roll service life obtained by the methods of mathemati-
cal statistics are used. However, the use of such models causes some 
complexity since preliminary processing of large volumes of statisti-
cal information is required. In the framework of the study described 
in the article, solution to this problem was proposed by determining 
influence of the mechanism of a mixed fracture on the roll life. This 
influence indicates the possibility of using the method of survivabil-
ity curves for estimating the roll durability.

Thus, an applied aspect of using the obtained scientific result is 
the possibility of improving the conventional method for calculating 
the roll service life. This, in turn, makes it possible to optimize previ-
ously obtained technological solutions for constructing a diagnostic 
algorithm of estimating the technical state of the plate-rolling rolls 
and predicting their residual life.

Keywords: service life of the roll, residual life of the roll, method 
of survivability curves.
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A method has been developed for calculating the lateral earth 
pressure on a sheet pile wall with counterforts of various shapes – 
rectangular, trapezoidal with downward expansion, and trapezoidal 
with upward expansion. Moreover, in the design scheme, two char-
acteristic areas are distinguished along the height of the wall – with 
and without a counterfort. As a result of considering the equilibrium 
conditions for elementary volume, equations for determining the 
lateral earth pressure along the height of the wall have been obtained 
in the considered sections. The study has produced a mathematical 
modeling of the system “a sheet pile wall with counterforts plus the 
soil environment”. Diagrams of the lateral earth pressure are consid-
ered for a sheet pile with counterforts. A quantitative evaluation of 
the relief action of counterforts of various shapes has been obtained.

The conducted tests show that the use of counterforts in a sheet 
pile wall with the considered parameters reduces the pressure of the 
filling soil to 26 % due to the friction forces along the lateral surface 
of the counterforts.

The introduction of the developed calculation method into 
engineering practice will allow designing hydraulic engineering 
structures such as a sheet pile wall with various shapes of counter-
forts. This will enable the construction of new deepwater hydraulic 
structures with an increased bearing capacity.

Keywords: calculation method, sheet pile wall, counterfort, lat-
eral earth pressure, relief effect.

References

1.	 Doubrovsky, M., Poizner, M., Petrosyan, V., Kalugnya, V. (2007). 
European choice – deep water terminals from combined dowel. Ports 
of Ukraine, 06 (68), 42–44.

2.	 The deep water berth is being built (2010). Ports of Ukraine,  
4 (96), 3.

3.	 Fumiaki, T., Noriyuki, S. (1991). Self-erecting type landslide protec-
tion wall construction: Pat. No. 05009930 A Japan. Int. Cl E02D 
5/02, E02D 17/04. declareted: 04.07.1991; published: 19.01.1993. 

4.	 Doubrovsky, M. P., Meshcheryakov, G. N. (2012). Sheet pile testing & 
design improvement. Proceedings of IS-Kanazawa 2012 “Testing and 
Design for Deep Foundation”. Kanazawa University, Japan, 589–596.

5.	 Slobodyanik, A. V., Bagrationy, R. R., Slobodyanik, A. V. (2015). 
Research of the Work of Thin Retaining Wall with Stiffeners. East-
ern European Scientific Journal (Gesellschaftswissenschaften), 3, 
146–151.

6.	 Dubrovsky, M. P., Slobodyanik, G. V. (2006). Retaining wall: Pat. No. 
84888 UA. МPK (2006) E02D 29/2, E02B 3/06. No. a200605883; 
declareted: 29.05.2006; published: 10.12.2008, Bul. No. 23, 4.

7.	 Slobodyanik, G. V. (2016). A method of erection of hydraulic struc-
tures such as a hinged wall: Pat. No. 115379 UA. МPK (2017.01) 
E02B 3/06, Е02D 5/00, Е02D 29/02. No. 201611675; declareted: 
18.11.2016; published: 10.04.2017, Bul. No. 7, 4.

8.	 Shiau, J., Smith, C. (2012). Developing Numerical Models for the 
Design of Cantilever Sheet Pile Wall. Research, Development and 
Practice in Structural Engineering and Construction. doi: 10.3850/ 
978-981-08-7920-4_gfe-12-0308 

9.	 Bekdaş, G., Temür, R. (2017). Metaheuristic approaches for optimum 
design of cantilever reinforced concrete retaining walls. Challeng 
Journal of Structural Mechanics, 3 (1), 23–30. doi: 10.20528/cjsmec. 
2016.11.031 



73

Abstract and References. Applied mechanics

Podvizhnoy sostav XXI veka: idei, trebovaniya, proekty: materialy 
XII Mezhdnarodnoy nauchno-tekhnicheskoy konferentsii. Sankt-
Peterburg: FGBOU VO PGUPS, 32–33.

6.	 Marchenko, A., Chepurnoy, A., Senko, V., Makeev, S., Litvinenko, O., 
Sheychenko, R. et. al. (2017). Analysis and synthesis of complex spa-
tial thin-walled structures. Proceedings of the Institute of Vehicles. 
Institute of Vehicles of Warsaw University of Technology, 1, 17–29.

7.	 Nocedal J., Wright S. (2006). Numerical Optimization. New York: 
Springer-Verlag, 664.

8.	 Chinneck, J. W. Practical optimization: a gentle introduction. Avail-
able at: http://www.sce.carleton.ca/faculty/chinneck/po.html

9.	 Zienkiewicz, O. C., Taylor, R. L., Zhu, J. Z. (2013). The Finite Ele-
ment Method: Its Basis and Fundamentals. Oxford: Butterworth-
Heinemann, 756.

10.	 Sachsenberg, B., Schittkowski, K. (2015). A combined SQP–IPM 
algorithm for solving large-scale nonlinear optimization problems. 
Optimization Letters, 9 (7), 1271–1282. doi: 10.1007/s11590-015-
0863-x 

11.	 Byrd, R. H., Chin, G. M., Nocedal, J., Wu, Y. (2012). Sample size se-
lection in optimization methods for machine learning. Mathematical 
Programming, 134 (1), 127–155. doi: 10.1007/s10107-012-0572-5 

12.	 Tanchenko, A. Yu., Tkachuk, N. A., Artemov, I. V., Litvinenko, A. V. 
(2013). Dinamicheskie i prochnostnye harakteristiki tonkosten-
nyh elementov mashinostroitel’nyh konstruktsiy pri umen’shenii 
tolshchiny v protsesse ekspluatatsii. Aktual’nye voprosy mashinove-
deniya, 2, 210–213.

13.	 Karmanov, V. G. (2008). Matematicheskoe programmirovanie. Mos-
cow: Fizmatlit, 263.

14.	 Vasidzu, K. (1987). Variatsionnye metody v teorii uprugosti i plas-
tichnosti. Moscow: Mir, 542.

DOI: 10.15587/1729-4061.2018.123391
STUDY OF THE INFLUENCE OF A FAST CHANGING 
TEMPERATURE ON METROLOGICAL CHARACTERISTICS 
OF THE TENSORESISTIVE PRESSURE SENSOR (p. 30-37)

Myroslav Tykhan
Lviv Polytechnic National University, Lviv, Ukraine

ORCID: http://orcid.org/0000-0002-4910-6477

Taras Repetylo
Lviv Polytechnic National University, Lviv, Ukraine

ORCID: http://orcid.org/0000-0003-4509-1105

Ihor Dilay
Lviv Polytechnic National University, Lviv, Ukraine

ORCID: http://orcid.org/0000-0001-8747-787X

Viktor Markovych
Lviv Polytechnic National University, Lviv, Ukraine

ORCID: http://orcid.org/0000-0002-4441-3646

Based on dependences that describe the nonstationary tempera-
ture fields in the membrane and casing of the tensoresistive pressure 
sensor, we derived equations for thermomechanical processes in 
these elements, specifically equations of thermal deformation and 
thermal stresses. These equations make it possible to explore the 
effect of a thermal deflection in the membrane, as well as thermal 
stresses and thermal deformations in it, on the static and dynamic 
characteristics of the sensor. 

It is shown that the combination of thermal elastic processes 
in the membrane under a fast-changing effect of temperature on it 
significantly distorts the static and dynamic characteristics. It was 
established that during thermal deflection relative deformations on 
the surface of the membrane can be commensurate with the work-
ing deformations during pressure measurement, while a transitional 
characteristic of the sensor may differ from normal by up to 60 %.
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The approach is developed to substantiate technical solutions for 
thin-walled machine building structures. It implies that the problem 
is considered in the space of generalized parameters. These param-
eters combine design and technological factors, as well as operating 
conditions. In addition, we introduce criterial and constraint depen-
dences to a given space. In the generated uniform parametric space 
an approximated response surface is constructed, which stretches 
over a discrete set of solutions to analysis problems. For example, 
based on the results of examining the stresses-strained state, maxi-
mum stresses or displacements, mass or other controlled magnitudes 
are determined. They are unambiguously computed (a point in a 
common parametric space) for a specific set of variable generalized 
parameters. Having a cloud of such points, it is possible to construct 
an approximated response surface. Approximation constraints are 
also built on it. Next, by using the methods of nonlinear program-
ming, we search on the set of permissible values for the minimum (or 
maximum) of quality function of the examined structure. 

Specifically, for the thin-walled structures, important param-
eters are the shape and dimensions in a plan, as well as thickness 
of individual elements. Using a number of structures as examples, 
authors of present work performed analysis of influence of these 
parameters on the strength of designed structures. 

Keywords: thin-walled machine building structure, stressed-
strained state, response surface, innovative product.
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We proposed a geometrical model for weaving a wire cloth using 
the oscillations of a system of two-link pendulums within an abstract 
plane and under conditions of weightlessness. It is expected to initi-
ate oscillations through the application of pulses to each of the nodal 
elements of each of the pendulums, induced by two pulse jet engines. 
The pendulums are arranged in line on the platform, aligned with an 
abstract plane. The plane moves in the direction of its normal using 
the jet engines. Attachment points of the dual pendulums are select-
ed so that when unfolded their last loads come into contact. Upon 
simultaneous initiation of oscillations of all pendulums and setting 
the platform in motion, we consider traces from the spatial displace-
ments of the last loads of pendulums. It is assumed that wire that 
accepts the shape of the specified traces comes from the last loads and 
forms the zigzag-like elements of the mesh. In order to fix elements of 
the mesh, it is suggested that they should be point welded at the mo-
ments of contact between the last loads of the pendulums. A descrip-
tion of the inertial unfolding of dual pendulums is compiled using a 
Lagrange equation of the second kind, in which potential energy was 
not taken into consideration because of weightlessness. Reliability 
of the considered geometrical model for weaving a wire cloth was 

Our research shows that it is possible, when enabling radial 
thermal deformation, synchronized with the membrane of the 
sensor’s casing, in the region of coupling with the membrane, to 
minimize thermal stresses in it. In addition, by minimizing the 
heat transfer along the perimeter of the sensor’s membrane it is 
possible to eliminate the gradient of a temperature field along 
the radius. This is the way to minimize a thermal deflection of 
the membrane and decrease a temperature error of the sensor. 
Employing such measures may substantially reduce the influence 
of a fast-changing temperature on metrological characteristics of 
the sensor. 

Keywords: pressure sensor, membrane, fast-changing tempera-
ture, metrological characteristics.
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We analytically investigated dynamics of the vibratory machine 
with rectilinear translational motion of platforms and a vibration 
exciter in the form of a ball, a roller, or a pendulum auto-balancer.

The existence of steady-state motion modes of the vibratory ma-
chine was established, which are close to the dual-frequency regimes. 
Under these motions, loads in the auto-balancer create constant 
imbalance, cannot catch up with the rotor, and get stuck at a cer-
tain frequency. In this way, loads serve as the first vibration exciter, 
inducing vibrations with the frequency at which loads get stuck. 
The second vibration exciter is formed by the unbalanced mass on 
the casing of the auto-balancer. The mass rotates at rotor speed and 
excites faster vibrations of this frequency. The auto-balancer excites 
almost perfect dual-frequency vibrations. Deviations from the dual-

verified in a series of created animated videos that illustrated the 
process of formation of the elements of a wire cloth. Results might 
prove useful for designing large-sized structures in weightlessness, 
for example, antennas for ultralong waves.

Keywords: geometrical modeling, woven wire cloth, dual pendu-
lum, unfolding of antenna, Lagrangian equation of the second kind.
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We have studied the influence of loading a four-axle railroad 
car, geometrical and mechanical characteristics of the rail, joint bars, 
sleepers, and a ballast layer on the parameters of static interaction 
between a railroad car and a rail track. The results obtained are 
universal and apply to railroad cars of any purpose: tram cars or 
passenger or freight cars for railroad transportation. The discrete-
continuum model of the transport complex “railroad car − rail track” 
corresponds to the phase of car motion. The estimation schemes of 
static interaction relate to all four phases of the railroad car mo-
tion, as well as geometrical and structural parameters of the track 
dispatching and receiving rails and a four-axle railroad car. The 
structure of the research method and numerical algorithm implies 
determining the deflections of the track dispatching and receiving 
rails at the end, as well as the height of the joint that emerges in this 
case, depending on the car load.

frequency law are proportional to the ratio of loads’ mass to the mass 
of the entire machine, and do not exceed 2 %.

A dual-frequency vibratory machine has two oscillation eigen-
frequencies. Loads can get stuck only at speeds close to the eigenfre-
quencies of vibratory machine’s oscillations, or to the rotor rotation 
frequency.

The vibratory machine has always one, and only one, frequency 
at which loads get stuck, which is slightly lower than the rotor speed.

At low rotor speeds, there is only one frequency at which loads 
get stuck.

In the case of small viscous resistance forces in the supports, at 
an increase in the rotor speed, the quantity of frequencies at which 
loads get stuck in a vibratory machine increases, first, to 3, then to 5. 
In this case, new frequencies at which loads get stuck:

– occur in pairs in the vicinity of each eigenfrequency of the 
vibratory machine’s oscillations;

– one of the frequencies is slightly lower, while the other is 
slightly higher, than the eigenfrequency of vibratory machine’s oscil-
lations.

Arbitrary viscous resistance forces in the supports may interfere 
with the emergence of new frequencies at which loads get stuck. That 
is why, in the most general case, the quantity of such frequencies can 
be 1, 3, or 5, depending on the rotor speed and the magnitudes of 
viscous resistance forces in supports.

Keywords: inertial vibration exciter, dual-frequency vibrations, 
resonance vibratory machine, auto-balancer, dual-mass vibratory 
machine, Sommerfeld effect.
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We have established the laws of change in the vehicle accelera-
tion time at the existing step transmission of ICE, when implement-
ing the total traction force, boundary for the drive wheels adhesion 
to the road, and during implementation of the proposed rational 
law for acceleration control. To model ICE speed characteristics, 
we applied the empirical dependence by S.R. Leyderman. The ana-
lytical expressions obtained allow us to implement such a change in 
vehicle acceleration depending on its speed that makes it possible to 
ensure maximum dynamism at minimal engine power consumption, 
taking into consideration a nonlinear change in external resistance. 
The maximum acceleration, which is possible to implement using 
the rational dynamic characteristic, can reach 7 m/s2. Based on the 

Research into the influence of operating and structural parameters 
of a railroad car and the upper structure of a track on the static interac-
tion between a railroad car and a rail track in the zone of a butt joint 
was carried out based on a comprehensive approach and general cor-
relations in mechanics. We have calculated, in the transport systemic 
discrete-continuum mechanical complex “railroad car − rail track”, 
using the methods of modeling and numerical analysis, the height of 
a joint unevenness depending on the phase of motion and load of the 
car. We established a parabolic character of the impact of a car load 
on the static interaction when passing over a joint unevenness, which 
corresponds to a monotonous growth in the height of a joint when 
increasing the load of a railroad car at all phases of its motion.

The obtained theoretical results allow practical implementation 
of the improvement of structural and operating parameters in the 
operation of a railroad car and the upper structure of a track through 
rational selection and optimization. 

Keywords: rolling stock, four-axle railroad car, rail track, ballast 
layer, joint unevenness, dispatching and receiving track rails.
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dependences obtained, it is possible to determine effective work of 
ICE required to accelerate a vehicle at different gears. An analysis of 
calculation results revealed that the transition from lower to higher 
gears is accompanied by a sharp decrease in engine energy expendi-
ture required to accelerate the vehicle.

It was established that for the case of hybrid vehicles, accelera-
tion using the electric drive, rather than accelerating at lower gears 
of the mechanical drive, makes it possible to reduce energy losses 
by 20 % (for a four-cylinder internal combustion engine). Energy 
preservation is accomplished by reducing the fluctuation of traction 
force, as well as the possibility of a step-free change in motion speed. 

Keywords: acceleration dynamics, rational control, reducing 
energy consumption, rational speed.
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