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We report results of research into patterns in the progress of dy-
namic processes and into emergence of dynamic loads when a trolley 
of the cable crane moves with a suspended load. These patterns could 
be subsequently taken into consideration when calculating actual 
cranes, in order to improve their reliability and durability, to avoid 
unfavorable events during motion of a freight trolley, as well as to de-
fine parameters of cranes of the new design. The dynamics of a cable 
crane is considered from the point of view of the interaction between 
elements of the system “trolley-load-carrying rope”. We have im-
proved a mathematical model for the system “trolley-load-carrying 
rope” by introducing three damping coefficients, each of which char-
acterizes energy dissipation under different physical processes ‒ the 
motion of a trolley, a load, and the speed of a wind load. Numerical 
simulation was performed using the software package KiDyM, which 
at the analytical level allows the construction of motion equations 
for the systems that are described by a combination of ordinary dif-
ferential equations. We established patterns of change in the normal 
and tangential inertial forces occurring during motion of the trolley 
along a curvilinear trajectory. Their character and magnitude were 
quantified. We determined dynamic characteristics of the system, 
taking into consideration the influence of the masses of a swinging 
load, a trolley, and the curvature of a rope. Emergency mode that 
occurs at a break of the traction rope was investigated, as well as the 
influence of wind load on the swinging of the load. We defined causes 
for the emergence of the reverse speed for a freight trolley, and the 
ways for its elimination. The influence of wind load on the angle of 
load deviation from the vertical was examined. 

Keywords: cable crane, crane trolley, carrying rope, crane dy-
namics, numerical simulation.
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The intensification of utilization of railroad cars predetermines 
the wear of their bodies as the most loaded element of design and 
necessitates the introduction of new cars. To reduce the cost of 
manufacturing new car designs, it is proposed to prolong the opera-
tion of universal open top wagon bodies beyond standard 1.5 opera-
tion terms. 

When carrying out calculations for strength under conditions 
of wagon building enterprises, the normative magnitudes of loading 
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A new method for calculating bending oscillations of vertical 
cantilever structures with allowance for their own weight is pro-
posed. The method is based on the exact solution of the correspond-
ing partial differential oscillation equation with variable coefficients. 
In the analytical form with the help of dimensionless fundamental 
functions, formulas for dynamic parameters – motion, angle of rota-
tion, bending moment and shear force, which completely character-
ize the state of the rod, are written out.

In general, the frequency equation is written out and the method 
for finding its roots is determined. It is shown that the problem of 
determining natural frequencies can be reduced to finding the cor-
responding dimensionless coefficients from the frequency equations. 
The formulas for determining mode shapes are found. The algorithm 
that allows determining natural frequencies and mode shapes of can-
tilever structures with any given accuracy is described.

The algorithm is implemented on the example of a through 
lattice tower. It is found that the numerical values obtained by the 
author’s method coincide with the results obtained with the help 
of the software system that implements the finite element method.

In comparison with approximate methods, this method al-
lows obtaining a more reliable picture of oscillations of cantilever 
structures, since it is the exact solution that carries information of a 
qualitative nature and forms the most complete picture of the physi-
cal phenomenon under consideration. Using explicit analytical for-
mulas, the accuracy of calculation of bending oscillation is increased.

The proposed method does not require the discretization of the 
structure and is a real alternative to the use of approximate methods 
when solving this class of problems of solid mechanics.

Keywords: cantilever structure, own weight, bending oscilla-
tions, oscillation frequencies, mode shapes.
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Construction of an improved mathematical model of the axial 
and lateral oscillations of the riser in the plane of action of the 
velocity vectors of the fluid flow washing the riser was considered. 
This model makes it possible to study the stress-strain state of the 
riser with simultaneous impact on it from the sea and the change 
in the force of tensioning its upper end. In addition, the model 
specifies the force effect exerted on the riser by the washing fluid 
flowing in it.

Based on the developed mathematical model, a simulation model 
of operation of the “drilling ship – rope-type tensioning system of the 
riser – riser” system was created in the Modelica modeling language 
and a series of numerical experiments were performed at various 
levels of seaways. The obtained results show that the proposed 
model produces 22‒40 % higher calculated values of the amplitude 
of lateral oscillations and 10‒25 % higher calculated values of the 
bending moments in critical sections compared with the results of 
the classical model of lateral oscillations. The greatest difference 
between the simulation results was observed with moderate seaways. 
With a growth of seaways, the difference between the two models de-
creases. Proceeding from the obtained results, it is not recommended 
to neglect the effect of variation in time of the forces tensioning the 
riser in applied problems of studying riser operation in conditions of 
slight sea. 

are applied, which do not take into consideration possible wear in 
the elements of bearing structures of open top wagon bodies under 
operation. This can lead to a significant error when determining a 
possibility to extend a period of operation of open top wagon bodies 
that have exhausted their standard resource.

Therefore, when substantiating a possible prolongation of the 
operation period of cars it is important to take into consideration, at 
the stage of strength estimations, the refined magnitudes of dynamic 
loads acting on them in operation.

To investigate dynamic loading acting on a open top wagon body 
during an impact at shunting, which is the case of the greatest load-
ing to its structure, we employed mathematical modeling. The re-
sults of present research allowed us to conclude that the acceleration 
that acts on the bearing structure of a open top wagon with the wear 
characteristic of 1.5 terms of operation during an impact at shunting 
is about 4g. In addition, research into dynamic loading of the bear-
ing structure of a open top wagon body during an impact at shunting 
was performed using computer simulation based on the software 
CosmosWorks. The research results showed that the maximum ac-
celerations of a open top wagon body make up approximately 5g.

To verify the adequacy of the developed models, we used the 
Fisher criterion. Results of the calculations have shown that the 
hypothesis of adequacy is not contradicted. 

The research results obtained were taken into consideration when 
determining strength indicators of a open top wagon body with the 
wear characteristic of 1.5 terms of operation. To this end, we construct-
ed a spatial computer model of the body of a base open top wagon, mod-
el 12-757, whose bearing elements are of the thickness corresponding 
to the minimally defined one. The calculation employed a method of 
finite elements. Based on the performed calculations it was determined 
that the maximum equivalent stresses do not exceed the permissible 
ones and make up about 345 MPa, which makes it possible to draw a 
conclusion about the possibility of further utilization of a railroad car.

The study conducted would help determine the feasibility of 
prolongation of service operation of open top wagons that have ex-
hausted their standard resource. 

Keywords: transport mechanics, freight cars, open top wagon, 
operation cycle, structure strength, dynamic loading.
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A numerical method for axisymmetric adhesive contact of elastic 
bodies is proposed. It allows computing the size of the contact spot, 
the force of interaction as well as the contact pressure distribution 
unrestricted to any particular form of the initial gap between the 
bodies. Therefore, compared to the existing analytical theories, 
it is a more versatile research tool that can be used to study such 
phenomena as adhesive strength of conjugate bodies and stability 
loss induced energy dissipation in oscillating contact. A variational 
principle that can be used to construct an approximate solution is 
proposed. The derived nonlinear equations of the discretized mini-
max problem determine the unknown radius of the circular contact 
spot and the nodal values of the thought-for contact pressure. Un-
like other numerical methods where contact domain is updated by 
subtracting or adding separate boundary elements of finite size, the 
proposed approach enables gradual continuous variation of the con-
tact area. The arc-length method was implemented in the numerical 
routine in order to solve for the unstable sections of the adhesive 
interaction process. Besides the distance and force variables, the 
increment of the contact area is included in the control for the sake 
of convergence. The numerical error of the approximate method 
with respect to the known analytical solutions is evaluated. Linear 
convergence with mesh refinement in computed force and contact 
area is observed. Extension of the proposed approach for arbitrary 
three-dimensional shape of the contacting bodies is planned for the 
future. This is required to study the impact of the random surface 
roughness on their adhesive properties.

Keywords: adhesive contact, boundary element method, Kalk-
er’s variational principle, wavy roughness, arc-length method.
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Loading conditions for construction machines at bench tests 
were substantiated. Adequacy of loading conditions at bench tests 
and of the loads acting on construction machines in actual operating 
conditions was substantiated.

When releasing each machine from the manufacturer’s enter-
prise, it is subjected to tests. Most often, these tests are carried out 
on specially equipped test sites. Their use requires large financial and 
time inputs: delivery of the machine, washing and cleaning from dirt 
after testing, fee to operators. More accurate results are obtained 
with bench tests at operational loading conditions. Shortening of 
such test duration is achieved by reducing the work interruptions 
and improving the shift planning. Except tests for permanent load-
ing, it is expedient to test construction machines and their work 
elements for impact loads.

This study has established necessity of adherence to the following 
test conditions: the assembly under study should not approach reso-
nance; the effect of frequencies of the repeated variable loading on the 
fatigue destruction process should be insignificant. Compliance with 
these conditions makes it possible to use the mathematical apparatus 
given in the paper for calculation of endurance at various loading 
parameters and simulation of various machine operation conditions.

The procedure developed in this work makes it possible to 
save not only time and money. In manufacture, it shortens design 
of construction machines and ensures identification of assemblies 
that reduce reliability or require longer life. This results in a smaller 
metal consumption or improved quality of the machine. In the mass 
production, it enables conduction of periodic accelerated qualitative 
tests of the machine, determination of modernization efficiency, cre-
ation of new designs of the bench for testing construction machines. 
In the process of machine operation, it helps to reduce loads on the 
machine structures and improve reliability and durability.

Keywords: accelerated bench tests, random loads, hypothesis of 
spectral summation, chassis.
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dissipative links with linear characteristics. This allowed us to devise 
a procedure for designing a suspension system for a railroad carriage. 
The criterion when choosing the weight coefficients of quality was 
the requirement to ensure comfortable conditions for passengers 
and a locomotive crew. Therefore, the system must experience an 
oscillatory process with small amplitudes; the frequency of natural 
oscillations of the body should not exceed 2 Hz. We have performed 
decomposition of the dynamic programming method for continuous 
stochastic systems, which made it possible to develop a procedure 
for a phased suspension system design. The procedure is suitable for 
use when designing suspensions for carriages running at regular and 
high-speed speed. The first stage implies designing a passive suspen-
sion system. The second stage involves a validation of the feasibility 
of designing devices to control parameters of the elastic-dissipative 
links in a suspension system of transport carriages using the optimal 
Kalman-Bucy filters. The modeling proved that control over param-
eters of elastic-dissipative links improves the dynamics of transport 
carriages. Damping control alone could reduce the body’s center 
of mass acceleration by more than two times and hence decrease 
dynamic loads in the system. The Kalman-Bucy algorithm makes it 
possible to obtain optimal parameters of the elastic-dissipative links 
in a suspension system in complex dynamic systems. The procedure 
could be used independently and as part of the technique for a phased 
design of the suspension system. The procedure was demonstrated 
using test examples. The procedure is implemented in the simulation 
system. Control over parameters of the elastic-dissipative links in 
a suspension system of transport carriages would make it possible, 
first, to create comfortable working conditions for a locomotive crew 
and passengers, second, to improve operation reliability and motion 
safety of rolling stock by reducing dynamic loads.

Keywords: Kalman-Bucy filter, transport carriage, control over 
parameters of elastic-dissipative links, complex dynamic systems.
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We have studied patterns in the change and balancing of aerody-
namic imbalance of the impeller for the axial fan of type VO-06-300 
(Ukraine). 

We have found the aerodynamic imbalance of the impeller 
caused by mounting one blade:

– at a different angle of attack;
– with a violation in the step uniformity;
– not perpendicularly to the longitudinal axis of the impeller;
– with all three of the above-mentioned errors present at once.
We have estimated a change in the aerodynamic imbalance due 

to change in air density. We estimated the influence of air tempera-
ture, altitude above sea level, atmospheric pressure, on air density 
and aerodynamic imbalance. 

It was established that a different angle of attack and a violation 
of the perpendicularity give rise to the dynamic imbalance in which 
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The determination of the total resistance to penetration of the 
annular drill into the soil is based on the concept of changing the 
elastic state of the soil during its compaction, which is defined by the 
compression modulus of soil deformation. This parameter comprises 
all the physical and mechanical properties of each type of soil and 
makes it possible to specify the laws of the normal pressure of pen-
etration resistance acting on the surface of the conical and cylindri-
cal parts of the working body. 

The proposed theoretical models of processes occurring during 
penetration of the annular drill into the soil gives an opportunity to 
determine the influence of the parameters on the resistance force for 
each working procedure, depending on the physical and mechanical 
properties of the soil. It has been found that the maximum length of 
the annular drill is determined for the conditions of soil movement 
(unplugged condition), which, for example, with a cylinder diameter 
of 28 mm, is 0.87 m, 1.04 m and 1.16 m respectively for sandy clay, 
semi-solid loam and tough clay. It is now clear that a 2-fold increase 
in the internal diameter leads to an increase in the core length of 
1.75 times.

It has been determined that the two-cone drill does not facilitate 
passage of soil through itself and it causes soil plugging as well as for-
mation of soil plugs on the frontal planes, which leads to an increase 
in drag force. Therefore, to provide unplugged conditions during 
pipe jacking, the drill with a single external cone should be used.

The obtained results of the work can be used to substantiate the 
rational parameters of the working equipment for creating a horizon-
tal borehole in different types of soils.

Keywords: analytical model, trenchless technology, engineering 
communications, horizontal borehole, punching technology.

References 

1.	 Romakin, N. E., Lebedev, S. V. (2011). Soprotivlenie vnedreniyu 
konusnogo nakonechnika vintovoy svai v grunt. Stroitel’nye i doro-
zhnye mashiny, 2, 36–39. 

2.	 Zemskov, V. M. (2010). Opredelenie parametrov vibracionnogo 
instrumenta dlya prohodki gorizontal’nyh skvazhin. Stroitel’nye i 
dorozhnye mashiny, 9, 31–34.

3.	 Kovanko, V. V., Kovanko, O. V. (2008). Prokladannia liniyno-proti-
azhnykh obiektiv na noviy tekhnichniy osnovi. Visnyk inzhenernoi 
akademiyi Ukrainy, 3-4, 158–162. 

4.	 Penchuk, V. A., Suponev, V. N., Oleksin, V. I., Balesniy, S. P. (2015). 
Mekhanika processov prokola i rasshireniya gorizontal’nyh skvazhin. 
Mekhanizaciya stroitel’stva, 8, 40–42.

5.	 Oleksin, V. I. (2012). Kombinirovannyy metod razrabotki 
gorizontal’noy skvazhiny pri bestransheynoy prokladke kommuni-
kaciy. Vestnik HNADU, 57, 207–213.

6.	 Kantovich, L. I., Ruzhickiy, V. P., Grigor’ev, S. M., Grigor’ev, A. S. 
(2008). Rezul’taty issledovaniya prodavlivayushchih ustanovok dlya 
bestransheynoy tekhnologii stroitel’stva podzemnyh inzhenernyh 
kommunikaciy. Gornoe oborudovanie i elektromekhanika, 2, 2–5.

7.	 Najafi, M., Ma, B. (Eds.) (2009). Advances and Experiences with 
Pipelines and Trenchless Technology for Water, Sewer, Gas, and Oil 
Applications. ICTPP, 2137.

8.	 Najafi, М. (2012). Trenchless Technology: Planning, Equipment, and 
Methods. McGraw Hill, 608.



90

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 3/7 ( 93 ) 2018

of Low Frequency Noise Vibration and Active Control, 1–12.  
doi: 10.1177/0263092317714697 

10.	 Qu, X., Han, X., Bi, R., Tan, Y. (2015). Multi-objective genetic optimiza-
tion of impeller of rail axial fan based on Kriging model. Zhongguo Jixie 
Gongcheng/China Mechanical Engineering, 26 (14), 1938–1943. 

11.	 Bamberger, K., Carolus, T. (2017). Development, Application, and Val-
idation of a Quick Optimization Method for the Class of Axial Fans. 
Journal of Turbomachinery, 139 (11), 111001. doi: 10.1115/1.4036764 

12.	 Liu, Z., Han, B., Yeming, L., Yeming, L. (2017). Application of the ob-
jective optimization algorithm in parametric design of impeller blade, 
50 (1), 19–27. Available at: http://journals.tju.edu.cn/zrb/Upload/
PaperUpLoad/c3eb690d-ce15-49e7-98c4-2d431edf2c0d.pdf

13.	 Almazo, D., Rodríguez, C., Toledo, M. (2013). Selection and Design 
of an Axial Flow Fan. World Academy of Science, Engineering and 
Technology International Journal of Aerospace and Mechanical En-
gineering, 7 (5), 923–926.

14.	 Filimonikhin, G., Olijnichenko, L. (2015). Investigation of the 
possibility of balancing aerodynamic imbalance of the impeller of 
the axial fan by correction of masses. Eastern-European Journal of 
Enterprise Technologies, 5 (7 (77)), 30–35. doi: 10.15587/1729-
4061.2015.51195 

15.	 Filimonikhin, G. B., Yatsun, V. V. (2009). Determination of the prin-
cipal vector and the principal moment of aerodynamic forces acting 
on the rotating impeller of the fan. Collection of scientific works 
KNTU, 22, 364–370.

16.	 Yatsun, V. V. (2009). A mathematical model of the self-important 
culmovami auto-balancers of the crank of the axis fan. Vesnik mining 
university, 9, 11–18. 

17.	 Filimonikhin, G., Filimonikhina, I., Yakymenko, M., Yakimenko, S. 
(2017). Application of the empirical criterion for the occurrence 
of auto-balancing for axisymmetric rotor on two isotropic elastic 
supports. Eastern-European Journal of Enterprise Technologies,  
2 (7 (86)), 51–58. doi: 10.15587/1729-4061.2017.96622 

18.	 Olijnichenko, L., Goncharov, V., Sidei, V., Horpynchenko, O. (2017). 
Experimental study of the process of the static and dynamic bal-
ancing of the axial fan impeller by ball auto-balancers. Eastern-
European Journal of Enterprise Technologies, 2 (1 (86)), 42–50.  
doi: 10.15587/1729-4061.2017.96374 

19.	 Olijnichenko, L., Hruban, V., Lichuk, M., Pirogov, V. (2018). On the 
limited accuracy of balancing the axial fan impeller by automatic ball 
balancers. Eastern-European Journal of Enterprise Technologies, 1 
(1 (91)), 27–35. doi: 10.15587/1729-4061.2018.123025 

20.	 Brusylovskyy, I. V. (1984). Aerodynamics of axial fans. Мoscow: 
Engineering, 240. 

21.	 Alexandrov, V. L. (1951). Balloon screws. Мoscow: Oborongiz, 493.
22.	 Zahordan, A. M. (1955). The elementary theory of the helicopter. 

Мoscow: Voenizdat, 216.
23.	 World Meteorological Organization Global Weather & Climate 

Extremes Archive. Arizona State University. Available at: https:// 
wmo.asu.edu

24.	 Khrgian, A. Kh. (1969). Fizika atmosfery [Physics of the atmo-
sphere]. Leningrad: Gidrometeoizdat, 476.

the moment component is an order of magnitude larger than the 
static component. A violation of the step uniformity gives rise only to 
the static component, which is in the plane of the impeller.

Among the errors considered, the most undesirable one relates 
to mounting a blade at a different angle of attack. At such an error, 
aerodynamic imbalance is 6‒8 times larger than that due to other 
errors. A ±4-degree change in the angle of attack of a single blade in 
the impeller can degrade the accuracy of balancing of the impeller 
to the accuracy class G 6.3 at a frequency of 1,500 rpm, or G 16 ‒ at 
3,000 rpm.

It was established that the ordinary and aerodynamic imbal-
ances can be balanced at the same time. It is appropriate to carry out 
dynamic balancing in two correction planes. It is possible to conduct 
balancing by rotor mass correction or using passive auto-balancers.

A specific example is used to demonstrate the procedure for 
taking into consideration the aerodynamic imbalance in differential 
equations of motion of the axial fan. In accordance with the pro-
cedure, the aerodynamic imbalance components are added to the 
respective components of the ordinary imbalance. 

The results obtained are applicable when designing and manu-
facturing low-pressure axial fans. Employing them would improve 
vibration characteristics of the specified fans. 

Keywords: axial fan, aerodynamic forces, aerodynamic imbal-
ance, dynamic balancing, auto-balancer, auto-balancing.

References 

1.	 Polyakov, V., Skvortsov, L. (1990). Pumps and Fans. Moscow: Stroy-
izdat, 336.

2.	 Axial fans VO 06-300/VO-12-300. Gradvent. Available at: http://
gradvent.org.ua/ventilyatory/ventilyatory-osevye/vo-06-300

3.	 Ziborov, K., Vanga, G., Marenko, V. (2013). Imbalance As A Major 
Factor Influencing The Work Rotors Mine Main Fan. Modern engi-
neering. Science and education, 3, 734–740. Available at: http://doc-
player.ru/36451188-Udk-k-a-ziborov-g-k-vanzha-v-n-marenko.html

4.	 Korneev, N. (2008). Aerodynamic disbalance of the turbocompressor 
as the reason of lowering of power indexes of internal combustion 
engines. Machine Builder, 10, 24–27.

5.	 Korneev, N. V., Polyakova, E. V. (2014). The calculation of the aero-
dynamic the disbalance rotor of turbocharger ICE. Machine Builder, 
8, 13–16.

6.	 Idelson, A. M., Kuptsov, A. I. (2006). Elastic deformation of fan 
blades as a factor, influencing the gas-dynamic unbalance. Vestnik 
SSAU, 2-1 (10), 234–238.

7.	 Idelson, A. M. (2003). Modeling of aerodynamic unbalance on fan 
blades. Problems and prospects of engine development, 180–185.

8.	 Suvorov, L. M. (2009). Pat. No. 2419773 RU. Procedure for low 
speed mass balancing and aerodynamics of high speed vane ro-
tor. MPK G01M 1/00 (2006.01). No. 2009109011/28; declareted: 
11.03.2009; published: 27.05.2011, Bul. No. 15.

9.	 Yang, X., Wu, C., Wen, H., Zhang, L. (2017). Numerical simula-
tion and experimental research on the aerodynamic performance 
of large marine axial flow fan with a perforated blade. Journal 


