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3anponoHOBaHO HOBY KOHLIEMLIiI0 aHani3y ceicMivyHuX aaHnx. BoHa 6a3yeTbest Ha nonepeg-
HbOMY BUBYEHHI cercMivyHOro cpoHy. [1nga noro napameTpm3aLii BAKOPUCTOBYETbLCA MaTeMaTMyHa
Mogzernb 3 i3NYHO He3OINCHEHHNMU curHanamMmu. Takox NponoHyeTLCA cneundiyHa matemaTuy-
Ha Mofenb camoro cencMivyHoro curHany. OcobnueicTb Mogeni nonsrae B TOMy, O BOHA A403BO-
ns€ CUMYIOBaTK CENCMIYHI XBWUII Pi3HUMM Knacamum CUrHarsis, KOXXeH 3 kX 3'siBNseTbCs B NO-
TOLi 3i CBOEIO TUMYaCOBOLO 3aTPUMKOH0. Ller npouec po3rnagaeTbes Ha MikpocerMcMiYHOMY (POHI.
MpupogHo mogentoBaTu NOTiK PIUYHO 34INCHEHHMMK curHanamun. MaeTbes Ha yBaasi, Lo CUrHa-
nn He MatloTb nepegicTopii. Ane Take ysaBNeHHs CUrHany HEMpPUNHATHO 3 4BOX NpuyuH. MNepia
NnoB’si3aHa 3 rMajkiCTio CUrHarny B TOYLi MOro NosiBu Ha cercMivHoMy 3anuci. [lpyra nos’sizaHa 3
TUM, LLO Ha POHi CENCMIYHOrO LYMY HE MOXMMBO YiTKO BUGINUTW Yac BCTyny curHany. OctaHHsA
o6CcTaBUHa He Ja€e MOXMMBOCTI OTpUMaTH TOYHUIA AeTEPMIHOBaHWI Yac BCTYNy curHany. Tomy 4ac
BCTYMy CUrHany npeacraBnsaeTbCa K BUMNaAKoBa BENMYMHA 3 JOBIPYMM iHTEpBArom, Lo 3ane-
XWTb Bif PiBHA MIKPOCENCMIYHMX WyMy. [TOHATTA y3aranbHEHOro CeMCMiYHOro curHany npeg-
CTaBneHO AK PYHKLI0 Yacy | BEKTOopa napamMeTpiB, AKi BU3Ha4yaloTb MOro opMy, eHeprito, micue
B MOTOL, iHLUMX CUrHarIB, NOro CnekTparnbHi XapakTepUCTUKU i B LLITOMY MOro NoBefiHKy B YCil
icTOpil noro icHyBaHHS. Byab-Aka LUMPOKO nolimpeHa MoAeNb CENCMIYHOIO CUrHany € OKpemMum
BMMAAKOM 3anponoHoBaHoi mogeni. A6o, BinbLu cTporo, 6yab-aKWUIA iHLLMI KNac LWUMPOKO BiJOMMX
MoJernen CeMCMi4YHOro curHany € rinepnsoLLnMHO B MPOCTOPI NapamMeTpiB 3anpornoHOBaHOT MO-
aeni.

Knro4voBi cnoBa: cencmiyHuin curHan, BunagkoBuii NoTiK, anocTEPMOpPHA BipOriaHICTb, CENC-
MIYHUI LWYM, MaTeMaTU4YHa MOAESb.

Introduction. For creation of a universal model of seismic signal we took into account the funda-
mental empirical research of seismic signal and mathematical models were used for their approximation
[Berzon et al., 1962; Ricker, 1953]. Also we used the streaming nature of seismic process and we con-
sidered that seismic signal must be a wave as it was noticed in [Addison, 2002]. So far as the aim of dis-
cussed modeling is to use the model for estimating the real signal parameters, which is registered aga-
inst the background microseismic noise, we use the next additional restrictions. The first one is con-
nected with the accuracy of the signal parameter evaluation that is dependent on the background noise
power. The second one is connected with the fact that such evaluation depends on the prehistory of sig-
nal energy. The prehistory we represent as a time of signal existence under the level of background noi-
se. Key property of mathematical model of every seismic signal: is this signal model physically realizab-
le oritisn’t? We will set such a frame rule. If the mathematical model is different from physically reali-
zable one in a selected metrics less then €, we consider the model may be taken in as a physically rea-
lizable model. Of course the e is dependent from the power of background noise. Note that the physical
reliability of the signal is to satisfy two conditions. These conditions have causality and stability [Robin-
son, 1967].

c y4yeToM KommeHTapus B. H. Mununenxko (c. 170).
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Mathematical model. The seismic process as a stochastic one has a dual nature. The coda of seis-
mic waves consists of superposition of a set of single waves. Every of these elements of a set is a sup-
plement for this composition in different time. These time moments are the structure of stochastic flow.
The second stochastic component of seismic process is the stochastic vector that defines the form of eve-
ry single wave from this set. In proposed mathematical model of seismic process we assembled the para-
meters that are defining a flow nature of process and the stochastic vector of wave shape into common
stochastic vector. This vector defines the every single wave in the set but when vectors are combined into
matrix this matrix represents the whole process.

Stochastic flow process. Taking into account the physical essence of Bernoulli flow as flow of po-
ints we stopped our attention at this one as a more suitable to model the real seismic process. Without
loss of generality in mathematical modeling of seismic process we shall use Bernoulli one as one of pos-
sible flow process.

In definition of stochastic Bernoulli process we shall be followed by [Bolshakov, 1969]. We call Ber-
noulli flow such a stream in which the events are falling out independently, and their number in the Q area
is fixed or, in more general case, do not exceed the specified number K. Let into Q area there are appe-
ared K or less then K events, but no more than K, that occurs with known partial probability density
e; (t,P;), i=1, K. P, is vector of free parameters of distribution. Moreover the events under number
i might be not occurred because of the fact that for probability p; of such eventitis permitted to be less
than unit. It depends from area Q.

pi (. P)=[e;(1,P)dr<l, i=1K. (1)
Q

From our point of view we stopped our attention at Bernoulli process as a more suitable to model the
real seismic one. Without loss of generality in mathematical modeling of seismic process we shall use
Bernoulli one as one of possible. For modeling seismic background we use Poisson process as a flow ar-
rival time of a single microseism.

Mathematical model of isolated single generalized seismic impulse. In composing the ma-
thematical model of seismic signal we are basing on the results of fundamental empirical researches of
seismic signal. The big part of these outcomes are reflected in [Berzon et al., 1962]. To follow this re-
sult we have a possibility to formulate the main requirement to mathematical model of seismic signal. It
should be compatible with the physical principles of mechanics on the one hand. And the same time
model should satisfy the requirements of a particular mathematical model in estimating the parameters
in the optimization procedure with the other hand. But these principles are included partly in mutual con-
tradiction. And we have to smooth these differences due to the approximation approach to solving the
problem. Moreover, it is unavoidable in the conditions of the presence of natural microseismic background.

We have to taking into account seismic signal has to satisfy the three main properties [Berzon et al.,
1962]. The specifics of these properties in are not discussed in rigorous manner but rather verbal one.
Into mentioned investigation there is assumed that the signal is physically realizable one and is consi-
dered it is appearing at the moment r = 0. The prehistory of seismic process before the signal appearan-
ce is not discussed. The set of successful examples of the mathematical models of signal are given. The
requirements are as the following.

1. The duration of impulse has to be approximately not less than duration of several the dominant pe-
riods.

2. The seismic impulse has to have the smooth pulse envelope function. The beginning of velocity equ-
als zero. Its smoothing degree has to be not less than degree of smoothing acceleration.

3. The wave front of seismic impulse has to be rather smooth one. Its smoothing degree has to be not
less than degree of smoothing acceleration. It means at beginning of ground motion the speed is
equal zero. The first derivative, which has discontinuity might be starting not before than with accele-
ration.

We complete the requirements to a single seismic signal in more rigorous manner following for [Ro-
binson, 1967; Addison, 2002]. In order to be classified as a single seismic signal S (¢), this function must
satisfy certain mathematical criteria. The first one is stability. It means to have finite energy E in L,
metric:
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E= _[(S(t))zdt<oo. )

— oo

The second one have to be a causal function. It means to satisfy such requirement:

oo oo

_[(S(t))zdt= j(S(z—r))Zdt. 3)

— oo T

The last property means the signal has a prehistory in which it does not exist and appears only after
moment t.

Together, these mentioned conditions are known as physically realizable requirements.

And the last condition for the signal is to be a wave. It means to satisfy such requirement as it does
not contain constant constituent in Fourier transform. If § (f) is the Fourier transform of S (7), i. e.

S(fry=[swe P, @)

— oo

Than such a condition must be fulfilled
o | 2
| 5
————df <o,
f

0

But working with such a kind of model for the flow of signals are associating with the difficulties with
using of the variation approach [Kirkpatrick et al., 1983] to the problem of estimating the parameters of
the flow. To say more accurate to calculate analytically the derivatives of parameters associated with the
appearance of signals in the stream. Taking into consideration that the process is accompanied by micro-
seismic background [Mostovoy et al., 2008], we cannot accurately estimate the parameters of the sig-
nal in the stream. This caused the need to consider the model physically unrealizable signals, but other
than realizable ones is not more than the amount of the background power in metric L,.

Heaviside function is used in mathematical model of seismic signal in [Mostovoy, Mostovyi, 2014].
The cumulative probability function (1) as a function of ¢ (upper limit of integral in (1)) is a probability of
arrival time of the signal number i. Moreover vector P; has components P;; — mathematical expectati-
onand P;,, — adispersion. For instance when we use p; (¢, P; ) normal distribution in our mathemati-
cal model we use it as an approximation of Heaviside function. If we approximate a cumulative probabili-
ty function of the normal distribution the degree of approximation quality is determined by the dispersion of
the distribution. The smaller the variance P;, more accurate approximation of the Heaviside function. But
this approximation is infinitely differentiable at each point in contrast to the Heaviside function. The sa-
me parameter is the variance of the distribution of the signal appearance. Naturally, this dispersion de-
pends on the power of the background. Hereinafter we’ll use instead of Heaviside function for ranging
signals not a real Heaviside function, but a mollified approximation H (¢, T, 6), which is infinitely differen-
tiable. The last condition is necessary for optimization approach to the solution [Evans, 1998]. H (¢, T, 0)=
=F (¢, 7, 0), where F (¢, T, ) is cumulative normal distribution function with dispersion y that is depending
on background power.

Let us define the single seismic signal S (z, P) as a function of argument r and of a vector P that con-
sists of eight free parameters of model. The transposed vector P’ looks like as following:

P’ =(1r,a,0,0,71,v2, v, 0), ©)

where: T stands as an arrival time of this signal in a wave train; a is an amplitude of signal; o is a damper
in form characteristic of signal; o is an angle frequency in carrier function; y1 is a damper power in form
characteristic of signal; y2 is a growing power of signal front in form characteristic; y is a carrier function
phase shift; o is dispersion of Heaviside approximation. We choose such a model of single seismic sig-
nal S (z, P):

S:RxRx[-A, A]xR,.x[Q,,Q, [xNU{0}xNU{o}xR_ xR, U{0}>R,
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S(t,P)zH(t,r,G)a(t—I)Ylexp{—(a(t—t)yz]}sin(m((t—t)—w)),

p’ =(7r,a,0,o,yl,y2, vy, o). (7)
We can see this function is the point into eight dimension space of free model parameters and time ©
S, P)=Cr(t,o,vy) En(t,7,a,a,vyl,vy2,0). (8)

This chosen function as mathematical model of generalized seismic signal (8) is convenient to repre-
sent by the product of two independent factors: Cr (¢, o, y) and En (¢, T, a, o, 1, y2, 6) . The first one of
the product in (8) is the carrier frequency function. In signal model it is responsible only for carrier frequ-
ency parameters .
Cr(t,o,y)=sin(o( —-1)+ V). 9)

The second factor in (8) is enveloping function En (7, 1, a, o, Y1, Y2, 6) which is responsible for the
shape of this single signal and for the placement of this signal in the streaming process. By the way the
function H (z, T, o) in envelope function is responsible for signal shape in period before its appearance up
to the time of overcoming the noise threshold. Another part of (10) controls the signal shape after the ti-
me of overcoming mentioned threshold.

En(t,z,a,0,vl,y2,6)=H (t,1,6)a(t-1)"" exp{—(a(r - 7)7? J} (10)

Particular cases. The universal impulse model gives us ability to get different models which are
spread used in practice. For this aim we have to choose the vector of free parameters in full space orin
hyperplane of this space or in a crossing some of hyper-planes. For instance if we choose the vector P
wheny1=1andy2=1itis a crossing of two hype-planes. We get the well known Berlage impulse [Ber-
zon et al., 1962]. So vector P looks like as following: pT (1,a,0,m,1, 2, y, 6). In such case free para-
meters give us dot in (n — 2) dimension space (n = 8) and result looks like as (11).

S(t,P)=H (1,7,0) a(t—1)exp{—(a(r - 1)) }sin (o ((r - 1) - v)). (11)

Another example when the vector pT (t,a,0,,0,2,vy, o). wheny1=0andy2=2itis a crossing of
two hypeplanes as well. We get the well known Puzirov impulse [Berzon et al., 1962]. In such case all
free parameters give us dot in (n - 2) dimension space and resultis given as (12).

S, P)=H (¢, , cs)aexp{—((nt(t—r)2 J} sin(co((t—r)—\u)). (12)

The third important particular case is discussed in [Berzon et al., 1962] it is damping sinusoid. In this
case vector P will be as P7 (1, a, 0o,m, 0,1, y, 6). Result will be

S(t,P)=H (1,7,0) aexp{-(a(r - 1)) }sin (o ((r = 1) = y)). (13)

Numerical simulation. Numerical experiment was directed at simulation all discussed aspect of
proposed mathematical model of seismic da-
ta analysis when the data is a wave flow aga-
inst background. To check up a possibility to

Microscism

get the information about signal behaviour un- D.:I W NE P J
der background by using specific unrealizab- voleettl OWIFTETI WY Ayt o
le seismic signals models. Under such condi- 0.2 ' |

tion estimation of wave parameters might be

=10 -5 1] 5 1o
only in probability sense. Background noise
was simulated as Poisson flow (Fig. 1). Wa- Fig. 1. Here is represented simulation of microseis-
. . mic background noise as Poisson flow of microseis-
ves flow was simulated as Bernoulli stream mic signals with intensity one per one second. In met-
of discussed signal models (Fig. 2). The mo- ric C power is at level 2.
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Addison P. S., 2002. The illustrated wavelet transform handbook. Institute of Physics Publishing, Bristol.

Wave train S & Mowld

ah
fact Flowic) =1

Fig. 2. Here is represented a simulation of Bernoul-
li flow of seismic waves against microseismic back-
ground noise. The wave train is consisted from three
unresolved signals. Three sharp curves are evalu-
ated a posteriori probability density of parameters
7. The result was got by variation method by Leven-

del of wave train is determined by matrix
M:{Pm, p2 P(3)}.

Conclusions. A new conception of seis-
mic data analysis is proposed. Itis based on
preliminary studying seismic background.
Its characteristic is a base for using mathe-
matical models of non realizable seismic sig-
nals. The specific mathematical model of the
seismic signal is proposed as well. If we ta-
ke into account the seismic background, the
timing of the seismic wave packet can be es-
timated only as a posteriori characteristics
in the form of arandom vector. These estima-
tes are based on the power of this backgro-
und, proposed as a functional vector proba-
bility density functions or confidence inter-

berg—Marquardt algorithm [Pujol, 2007]. vals matrices.

Mathematical model of seismic signal, as a flow
of physically non realizable single seismic waves

© V. S. Mostovoy, S. V., Mostovyi, 2016

The new conception of seismic data analysis is proposed. It is based on preliminary study-
ing of seismic background. Its characteristics are a base for using mathematical models of non
realizable seismic signals. The specific mathematical model of the seismic signal is proposed
as well. The peculiarity of the model is that it allows you to simulate the flow of seismic waves of
different classes each of them appears in the stream with specific time delay. This process ta-
kes place against the micro-seismic background noise. It is natural to model the flow of signals
by the physically realizable signal. It means those signals which do not have a trace in prehisto-
ry. But this representation of the signal is unacceptable for two reasons. The first one is related
to the smoothness of the signal at the time of its appearance on the seismic record. The second
one is related to the fact that the fade of the signal in the noise does not allow us to determine the
time of its appearance on the record accurately. The latter circumstance does not leave us the
possibility to simulate the time of the signal occurrence by using the determined value. Therefo-
re, the time of occurrence of the signal is simulated by random variable with variance depending
on the level of micro-seismic background. We introduce the notion of generalized seismic sig-
nal as a function of time and of the vector of parameters, which determine its shape, the energy,
the place in flow of the other signals, spectral characteristics, and in general behaviour in the enti-
re history of its existence. Any widely spread seismic signal models used in practice are a parti-
cular case of this one. Or in a more rigorous approach to the definition the different particular cases
of the signals classes are transformed into the different hyper-planes into space of parameters.

Key words: seismic signal, stochastic flow, a posterior probability, seismic background noi-
se, mathematical model.
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