Опыт сопоставления вариаций вектора индукции в магнитно-сопряженных точках

© И.И. Рокитянский, В.И. Бабак, А.В. Терешин, 2017

Институт геофизики НАН Украины, Киев, Украина

Поступила 21 сентября 2017 г.

Виконана обробка і отримані графіки зміни вектора індукції з 1991—2005 рр. до 2014 р. на 12 парах магнітно-спряжених обсерваторій, розташованих на всіх континентах і деяких островах в діапазоні геомагнітних широт від +82,73° до -78,91°. Виділені і проаналізовані річні варіації вектора індукції, отримано глобальні (від полюса до полюса) зміни амплітуди річних варіацій. У високих широтах річні варіації вектора індукції можуть досягати величини 0,5, в середніх і низьких широтах вони майже на порядок менше. Також визначено, що амплітуда річних варіацій зростає зі збільшенням періоду і не корелює з величиною і напрямком вектора індукції. На двох низькоширотних обсерваторіях, розташованих на півночі Південної Америки і в Австралії, після 2008 р. виявлено синхронне збільшення амплітуди річної варіації майже в два рази, що може бути проявом деякого глобального процесу. Чітко вираженого ефекту, пов'язаного з положенням обсерваторій в спряжених областях, на даному етапі не виявлено.

Ключові слова: вектор індукції, магнітно-спряжені точки, річні варіації векторів індукції.

Введение. Две точки на поверхности Земли, находящиеся на противоположных концах одной и той же силовой линии главного, в первом приближении дипольного, геомагнитного поля, называются магнитно-сопряженными. Поскольку распространение электромагнитных сигналов вдоль геомагнитных силовых линий происходит с минимальным затуханием, наблюдается сопряженность целого ряда явлений: полярных сияний, геомагнитных возмущений различного спектрального состава, инжекций электрических зарядов в атмосферу от падения метеоритов, ядерных взрывов, запусков ракет.

Спутниковые измерения плазменного и электромагнитного состояния магнитосферы зафиксировали перед сильными землетрясениями изменения не только над районом будущего эпицентра, но и над магнитно-сопряженным районом противоположного полушария Земли. Это явление удается объяснить, предположив, что подготовка землетрясений связана с модификацией глобальной электрической цепи [Pulinets, 2009]. При изучении связи магнитосферных явлений с тектоническими процессами [Khachikyan et al., 2013], была замечена геомагнитная сопряженность современных тектонических структур, а именно некоторых срединно-океанических хребтов Южного полушария с зонами сочленения орогенных и платформенных структур в Северном полушарии. Следовательно, можно предположить, что сопоставление векторов индукции в сопряженных областях может дать интересные результаты.

Имеющиеся в сети Intermagnet (www.inter magnet.org), на сайтах Geospatial Information Authority of Japan (GSI) (www.gsi.go.jp) и Kakioka Magnetic Observatory, Japan Meteorological Agenсу (KMO—JMA) (www.kakioka-jma.go.jp) наблюдения позволяют выбрать магнитно-сопряженные обсерватории весьма приближенно (табл. 1, рис. 1), основное внимание уделялось сопряженности по геомагнитной широте. Дискретность исходных временных рядов геомагнитных вариаций составляла 1 мин. В результате обработки по программе Семенова—Климкович [Климкович, 2009] были получены ежедневные значения четырех компонент вектора индукции для пяти интервалов периодов от 150 до 3600 с. Для уменьшения разброса ежедневные значения усреднялись за месяц. Неопределенность среднемесячных значений высокоширотных станций в среднем равна 0,01, в отдельных случаях в два-три раза превышая эту величину (табл. 2); для средне- и низкоширотных станций неопределенность изменяется от 0,002 до 0,02(в среднем 0,005).

Полученные временные ряды вектора индукции представлены на рис. 2. На них хорошо видны годовые вариации, на некоторых обсерваториях 11-летние вариации, а также тренды и неустраненные шумы, наиболее частые на самом короткопериодном интервале 2,5—5 мин.

Годовые вариации (ГВ) присутствуют на всех обсерваториях, но, как правило, не на всех периодах и компонентах каждой обсерватории. Анализ материалов позволяет выделить следующие обобщенные тенденции ГВ: 1) в исследованном диапазоне периодов амплитуда ГВ ра-

Код	Станция	Геомаг- нитная широта	Геомаг- нитная долгота	Геогра- фичес- кая широта	Геогра- фичес- кая долгота	Период работы
RES	Resolute Bay	82,73	-54,06	74,69	-94,895	1992—2014
HRN	Hornsund	73,93	125,18	77	15,37	2002—2014
SIT	Sitka	60,19	-78,62	57,06	-135,33	1991—2014
NUR	Nurmijarvi	57,74	113,04	60,51	24,66	1991—2014
ΟΤΤ	Ottawa	55,18	-4,12	45,403	-75,552	1991—2014
IRT	Irkutsk	42,11	177,23	52,27	104,45	1998—2014
GUI	Guimar-Tenerife	33,42	60,86	28,32	-16,43	1997—2014
YOK	Yokohama	32,28	-150,43	40,993	141,24	2001—2012
BMT	Beijing Ming Tombs	30,22	-172,56	40,3	116,2	1998—2014
KAK	Kakioka	27,46	-150,78	36,23	140,18	1956—2015
KNY	Kanoya	22,00	-158,80	31,42	130,88	1991—2016
KOU	Kourou	14,57	20,07	5,21	307,27	1996—2014
VSS	Vassouras	-13,43	27,06	-22,4	-43,65	1999—2014
KDU	Kakadu	-21,64	-154	-12,69	132,47	2000—2014
СТА	Charters Towers	-27,64	-138,65	-20,1	146,3	2000—2014
LRM	Learmonth	-32,1	-174,47	-22,22	114,1	2004—2014
ASP	Alice Springs	-32,51	-151,46	-23,77	133,88	1999—2014
HER	Hermanus	-33,91	84,66	-34,43	19,23	1995—2014
GNA	Gnangara	-41,5	-170,66	-31,8	116	1994—2013
AIA	Argentine Islands (Akademik Vernadsky base)	-55,19	5,86	-65,25	-64,25	2001—2014
PAF	Port-aux-Francais	-56,62	133,62	-49,35	70,26	1991—2014
MCQ	Macquarie Island	-59,7	-115,78	-54,5	158,95	2001—2014
MAW	Mawson	-73,08	111,61	-67,6	62,88	2005—2014
SBA	Scott Base	-78,94	-71,15	-77,85	166,78	1996—2014

Таблица 1. Список сопряженных станций с кодом, геомагнитными и географическими координатами и периодом работы (www.intermagnet.org)

Рис. 1. Карта с действительными C_u и мнимыми C_v векторами, построенными для периода 3600 с (интервал 40—60 мин), для сопряженных обсерваторий. Точками в кружках показаны геомагнитные полюсы для эпохи 2010 г., малыми точками — остальные обсерватории Intermagnet, проведен геомагнитный экватор.

стет с увеличением периода; 2) амплитуда ГВ максимальна в высоких геомагнитных широтах, достигая в максимуме значений 0,4—0,5, и уменьшается примерно на порядок в средних и низких широтах; 3) амплитуда ГВ не коррелирует с величиной и направлением вектора индукции, что видно из сопоставления длины векторов индукции, представленных на рис. 1, и амплитуд ГВ, которые можно измерить на рис. 2.

На эти тенденции наложены многочисленные пространственно-временные нерегулярности и отступления от указанных тенденций. Рассмотрим их последовательно для всех пар станций.

RES. На компонентах A_u и B_v на периоде 3000 с наблюдаются четкие ГВ с амплитудой -0,4 и -0,5 соответственно (знак "-" означает, что северная и восточная компонента вектора индукции в июне имеет минимум, а в январе максимум; при знаке "+" — все наоборот), на периоде 1800 с амплитуды ГВ этих компонент становятся вдвое меньше, на периодах 900— 225 с ГВ становятся меньше 0,1 на A_u и трудноразличимы на фоне нерегулярных колебаний или шумов на B_v . На компоненте A_u на периодах 1800 и 225 с наблюдается увеличение амплитуды примерно в два раза за время 24-летних наблюдений, в то время как на периодах 900 и 450 с амплитуда ровная. На (грубо) магнитно-сопряженной станции SBA все вариации значительно слабее, ГВ лучше всего просматриваются на периоде 1800 с, на котором амплитуда A_u и B_v приблизительно равна +0,15, а на $B_u = -0,15$. На периодах 900 и 450 с эти амплитуды уменьшаются в 2 и 3 раза.

Сопряженная пара HRN и MAW характеризуется сильной зашумленностью. ГВ просматриваются только на HRN на A_u на длинных периодах уже с изменившимся знаком "+", на A_v — только на коротких периодах тоже со знаком "+".

Следующая пара SIT и MCQ уже в средних широтах. ГВ четко видны только на SIT на длинных периодах только на B_u и A_v компонентах со знаком "+".

Пара NUR и PAF. Четкие ровные ГВ видны на A_v на всех периодах станции NUR, монотонно уменьшаясь от +0,2 на 3600 с до 0,03 на 225 с. На A_u ГВ видны только на длинных периодах со знаком "+".

Пара ОТТ и АІА. A_u на 1800 с + и + на обеих станциях, B_u + и – на длинных периодах обеих станций, A_v + и + на обеих станциях, B_v + и +.

Пара IRT и GNA. На A_u, B_u, A_v на длинных

Таблица 2. Значения неопределенности (умноженные на 1000) полученных ежемесячных величин компонент векторов индукции, усредненные за все время обработки. Светло-серым цветом выделены значения более 0,01, темно-серым более 0,025

Станция	3000 c	1800 c	900 c	450 c	225 c	Компонен- ты	3000 c	1800 c	900 c	450 c	225 c	Станция
RES	9,7	12,4	10,8	10,2	8,0	Au	9,9	13,9	12,4	11,5	8,6	SBA
	12,0	14,8	14,4	14,6	11,0	Bu	7,5	10,4	10,2	9,9	7,5	
	9,5	11,1	11,1	11,7	8,6	Av	9,3	13,7	13,3	11,7	8,6	
	11,7	15,2	14,8	14,8	11,3	B _v	7,5	10,2	10,2	10,0	7,7	
	11,5	16,8	16,8	17,9	13,9	Au	18,6	27,9	30,5	33,4	25,7	
	14,4	20,6	22,5	23,0	15,2	Bu	19,4	31,2	36,1	39,1	31,6	
HRN	10,8	16,8	17,9	19,2	14,4	Av	18,4	28,5	32,5	37,4	27,9	
	14,8	21,7	21,7	21,4	15,0	B _v	19,0	31,0	36,0	42,0	32,7	
	10,4	11,5	9,5	9,9	7,3	Au	8,2	10,2	9,7	9,5	7,7	мсq
SIT	8,8	10,6	9,9	11,3	8,4	Bu	11,1	13,5	12,8	13,3	10,8	
	10,6	12,8	10,8	9,9	6,9	Av	8,2	9,7	9,1	9,3	7,5	
	9,3	11,7	11,0	10,4	8,2	B _v	11,1	13,9	13,0	13,5	10,8	
	6,6	7,1	6,0	5,8	4,4	Au	4,7	5,8	6,2	5,3	4,2	PAF
	8,0	10,0	8,6	7,9	6,4	Bu	6,6	7,9	6,2	7,7	5,3	
NUR	6,2	7,3	6,9	5,8	4,4	Av	5,1	6,8	5,1	5,3	4,2	
	8,0	9,9	9,5	8,9	6,6	B _v	5,5	8,2	7,9	6,6	5,1	
ΟΤΤ	6,9	9,1	8,0	8,6	7,3	Au	6,6	7,1	5,7	6,0	5,1	AIA
	5,5	7,3	7,5	8,0	7,1	Bu	5,8	7,5	6,4	5,7	4,6	
	6,2	8,8	9,3	9,3	6,9	Av	6,6	6,9	5,5	6,0	5,5	
	5,3	7,1	9,3	8,0	7,3	B _v	6,2	6,2	4,7	5,8	4,7	
	2,9	2,7	2,6	3,5	3,1	Au	5,5	6,4	7,1	10,2	10,8	GNA
	3,3	4,0	4,0	5,3	4,7	Bu	3,8	3,5	3,8	6,8	7,1	
IRT	2,6	3,3	3,3	4,0	3,3	Av	5,3	4,6	5,5	9,9	10,6	
	3,3	3,8	4,2	5,3	4,9	B _v	3,8	3,3	3,8	6,8	7,3	

Окончание табл. 2

Станция	3000 c	1800 c	900 c	450 c	225 c	Компонен- ты	3000 c	1800 c	900 c	450 c	225 c	Станция
GUI	5,5	4,9	5,8	7,3	6,8	Au	9,3	9,7	10,8	14,6	14,1	HER
	6,8	5,3	6,4	6,9	5,7	Bu	12,0	10,4	12,0	18,8	19,4	
	5,5	6,2	6,2	7,5	6,8	Av	9,9	8,0	10,4	15,7	15,2	
	6,2	6,6	6,0	6,6	5,7	B _v	11,7	10,4	12,4	17,7	19,4	
	4,4	3,7	6,4	7,5	5,5	Au	2,0	2,6	3,3	4,9	4,7	
	6,8	7,5	9,3	11,5	10,0	Bu	2,7	4,0	4,6	6,4	6,4	
YOK	4,7	7,7	6,4	6,4	5,3	Av	2,2	2,7	3,1	4,6	4,7	ASP
	6,6	7,7	9,3	11,3	10,0	B _v	2,7	3,7	4,2	6,2	6,6	
	1,3	1,5	1,5	1,6	1,5	Au	6,9	8,0	9,9	10,2	6,4	LRM
	1,8	2,4	2,4	2,6	2,2	Bu	9,7	10,8	7,7	8,0	6,2	
BMT	1,6	1,8	1,5	1,6	1,5	Av	8,2	7,5	5,5	8,6	6,8	
	2,0	2,4	2,4	2,7	2,4	B _v	7,3	5,7	6,6	8,2	6,6	
	4,7	4,2	6,2	10,8	10,0	Au	2,0	2,0	2,0	2,7	2,9	СТА
17 4 17	6,6	6,0	7,3	13,5	14,4	Bu	3,1	3,5	3,3	4,2	3,8	
КАК	6,0	6,0	6,6	10,4	10,4	Av	2,2	2,2	2,2	2,9	2,9	
	6,8	5,8	7,1	12,8	14,4	B _v	3,3	3,5	3,3	4,0	4,0	
	4,2	4,0	6,0	7,3	5,5	Au	3,8	3,5	4,7	8,8	6,9	KDU
IZNINZ	6,2	4,7	4,9	7,5	7,9	Bu	6,8	9,5	7,7	8,8	8,0	
KNY	5,5	5,8	4,0	5,3	5,5	Av	3,8	4,6	5,7	6,9	6,8	
	6,9	5,8	4,6	7,1	8,0	B _v	6,9	6,2	8,8	10,8	8,6	
	10,0	9,9	8,2	10,8	9,9	Au	5,1	4,6	4,4	6,0	4,9	VSS
ROL	15,5	14,8	10,4	13,1	12,8	Bu	10,4	10,2	9,9	11,1	8,4	
KOU	9,5	9,3	8,0	10,8	10,2	Av	5,1	5,1	4,7	6,0	5,1	
	15,2	13,3	10,2	12,0	12,2	B _v	11,1	9,3	7,7	9,5	8,2	

Рис. 2. Сравнение графиков действительных A_u , B_u и мнимых A_v , B_v компонент векторов индукции на всех парах сопряженных станциях для пяти диапазонов периодов. В скобках после кода станций указана их геомагнитная широта. Внизу рисунка представлены графики индекса солнечной и геомагнитной активности R и K_p .

	1'00	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1.01		e e	700 1
	tadalahan jarah Ang ang ang ang ang ang ang ang ang ang a				And Andrews	1 2001 201
T State		A A A A A A A A A A A A A A A A A A A	Base	T B T B	Automatica A	200 200 201 1991
	- 	A 8 8 8 8 8 8 8 8 8 8	B ^A	- ABAB	B B	100 01 2011 1991 2
7	- Farta		- Tarta	4646	A Ba	200 K ₁ 2011 1991 20
B. A.	4.84.8	Prove Provide and	B ^a	B, B	B B B B B C C C C C C C C C C C C C C C	2011 1991 2001
(-33,91°)	(₀ Z'ZE-) dSV	(-33'1°)	(-52,64°)	(-51'63°) KDU	(₀ €₽ ⁺ €1-) SSA	200 Kp
(33'45°)	(33'58°) YOK	(30,22°)	(52'42°) KAK	(55'00°)	(14'22_) (14'22_)	

Окончание рис. 2.

периодах четкие, ровные ГВ со знаком "+" и амплитудой 0,08 для станции IRT и в 2 раза меньшей амплитудой и такими же знаками на A_{μ} и A_{ν} на станции GNA.

Пара GUI и HER. На GUI ГВ почти не видны, только на периодах 1800 и 900 с нечетко выраженные ГВ видны на A_u с амплитудой +0,03 и на B_u с амплитудой +0,05. На НЕК ГВ видны на трех длинных периодах 3600, 1800 и 900 с на компоненте A_v с амплитудами +0,06, +0,04, +0,02 соответственно и на компоненте A_u с амплитудой +0,03.

Следующие три пары (как и предыдущая) находятся в одном и том же регионе: северная часть в Японии и Китае, южная в Австралии. ГВ, если они видны, имеют стабильную небольшую амплитуду порядка 0,02-0,05 на большинстве компонент, периодов и станций со знаком "+". Знак "–" наблюдается только на станции LRM на северо-западном побережье Австралии на компонентах A_u и B_u с амплитудой, увеличивающейся с уменьшением периода в среднем от 0,02 до 0,1, причем амплитуда этих компонент за время наблюдений с 2004 по 2014 г. увеличилась в два раза.

KOU и VSS — самая низкоширотная пара станций, находящихся на Атлантическом побережье Южной Америки. На большинстве компонент обеих станций видны небольшие (0 — 0,06) положительные ГВ. Имеется одно исключение — на станции КОU ГВ отрицательна, а ее амплитуда до 2008 г. была -0,1 на периодах 900 и 1800 с, а с 2008 г. стала почти -0,2 на всех периодах. На всех компонентах этой пары видны длиннопериодные изменения, коррелирующиеся с 11-летними вариациями солнечной и геомагнитной активности.

Обсуждение. В предшествующих работах [Takeda, 1997; Araya, Ritter, 2016] суточные и годовые вариации вектора индукции выделялись методом наложения эпох, что исключало изучение зависимости ГВ от времени. Для усредненных за весь интервал наблюдений легче удавалось сделать конкретные заключения о поведении вариаций. Одно из этих заключений состоит в том, что ГВ на компоненте A_{μ} всегда положительна, а на компоненте А, отрицательна. У нас компонента А, всегда положительна. Это различие, по-видимому, связано с тем, что в формулах теории гармонических колебаний был выбран противоположный знак в экспоненте $e^{\pm i\omega t}$, что приводит к противоположным знакам мнимых компонент. Для действительной компоненты А, обнаружены два случая отрицательного знака ГВ: на самой высокоширотной станции RES (геомагнитная широта $+83^{\circ}$) и на LRM (геомагнитная широта -32°). На станции SIT ГВ на компоненте A_{μ} в 1991—1994 гг. была отрицательной на всех периодах, затем долгие годы ГВ не выделялась и только в 2009 г. появилась на периодах 3600 и 1800 с уже с положительным знаком.

Выводы. Выполнена обработка и получены графики изменения вектора индукции на 12 парах магнитно-сопряженных обсерваторий.

Выделены и проанализированы годовые вариации и получены глобальные от полюса до полюса изменения амплитуды годовых вариаций.

Четко выраженного эффекта, связанного с положением обсерваторий в сопряженных областях, на данном этапе не выявлено.

На двух низкоширотных станциях обнаружены одинаковые аномальные изменения ГВ: на LRM (компоненты A_u и B_u) и на станции KOU (компонента B_u) годовые вариации имеют отрицательный знак и в 2008 г. удваивают амплитуду. Это синхронное событие заслуживает обстоятельного изучения, поскольку может быть проявлением некоторого глобального процесса.

Благодарность. Авторы выражают благодарность сотрудникам геомагнитных обсерваторий и организациям по сбору и хранению информации (Intermagnet, Geospatial Information Authority of Japan (GSI), Kakioka Magnetic Observatory, Japan Meteorological Agency (KMO— JMA)) за предоставление качественных данных.

Список литературы

- Климкович Т. А. Особливості часових змін аномального магнітного поля та векторів індукції у закарпатському сейсмоактивному прогині: Дис. канд. ... фіз.-мат. наук. Київ, 2009. 195 с.
- Araya J. V., Ritter O., 2016. Source effects in midlatitude geomagnetic transfer functions. Geophys. J. Int. 204(1), 606—630. doi: 10.1093/gji/ggv474.
- Khachikyan G. Ya., Zhakupov N. S., Kadyrkhanova N. Zh., 2013. Geomagnetic conjugacy of modern tectonic structures. *Geodynamics & Tecto*-

nophysics 4(2), 187—195. doi: 10.5800/GT-2013-4-2-0097.

- *Pulinets S. A.*, 2009. Physical mechanism of the vertical electric field generation over active tectonic faults. *Adv. Space Res.* 44(6), 767–773. http://dx. doi.org/10.2016/j.asr.2009.04.038.
- *Takeda M.*, 1997. Local time variation of geomagnetic transfer functions. *Geophys. J. Int.* 130(3), 765–770.

The experience of comparing the variations of the induction vector in magnetically conjugate points

© I. I. Rokityansky, V. I. Babak, A. V. Tereshin, 2017

Processing was performed and graphs of induction vector change were obtained from 1991—2005 to 2014 on 12 pairs of magnetically conjugated observatories located on all continents and some islands in the geomagnetic latitude range from $+82,73^{\circ}$ to $-78,91^{\circ}$. The annual variations of the induction vector were separated and analyzed, and global variations of the amplitude of annual variations were obtained. At high latitudes the annual variations of the induction vector can reach 0,5, in the middle and low latitudes they are almost an order smaller. It is also determined that the amplitude of annual variations of the induction vector. At two low-latitude observatories located in the north of South America and in Australia after 2008 a synchronous almost two fold increase in the amplitude of the annual variation was found, which may be a manifestation of some global process. A clearly pronounced effect associated with the position of observatories in the conjugate regions at this stage was not revealed.

Key words: induction vector, magnetically conjugated point, annual variations of induction vectors.

References

- Klymkovych T. A., 2009. Peculiarities of temporal variations of anomalous magnetic field and induction vectors in the Transcarpathian seismic-active trough: *Dis. cand. phys. and math. sci.* Kiev, 195 p. (in Ukrainian).
- Araya J. V., Ritter O., 2016. Source effects in midlatitude geomagnetic transfer functions. Geophys. J. Int. 204(1), 606—630. doi: 10.1093/gji/ggv474.
- Khachikyan G. Ya., Zhakupov N. S., Kadyrkhanova N. Zh., 2013. Geomagnetic conjugacy of mo-

dern tectonic structures. *Geodynamics & Tectonophysics* 4(2), 187—195. doi: 10.5800/GT-2013-4-2-0097.

- *Pulinets S. A.*, 2009. Physical mechanism of the vertical electric field generation over active tectonic faults. *Adv. Space Res.* 44(6), 767—773. http://dx. doi.org/10.2016/j.asr.2009.04.038.
- *Takeda M.*, 1997. Local time variation of geomagnetic transfer functions. *Geophys. J. Int.* 130(3), 765— 770.