Экспериментальный годограф объемных волн для западной части Восточно-Европейской платформы (Волыно-Подолия — Украинский щит)

© В. В. Кутас¹, Ю. А. Андрущенко², И. А. Калитова¹, 2012

 1 Институт геофизики НАН Украины, Киев, Украина 2 Главный центр специального контроля НКА Украины, Макаров-1, Украина Поступила 1 марта 2012 г.

Представлено членом редколлегии В. Д. Омельченко

Наведено результати розрахунку годографа P- і S-хвиль в інтервалі епіцентральних відстаней 10—350 км за записами 25 місцевих землетрусів (mb=2,0÷3,4; h_0 =2÷7 км) і 43 промислових вибухів. Проведено порівняння розрахованого годографа з глобальними годографами (h_0 =0 км). Установлено, що в межах досліджуваного інтервалу відстаней відмінності з годографом Кеннетта незначні і не перевищують 1,5 с (P) і 2 с (S), з годографом Джеффриса—Буллена розбіжності дуже істотні на близьких відстанях до 100 км — 3—6 с (P) і 4—8 с (S). Розрахований годограф зіставлений з раніше обчисленим для відстаней до 500 км за записами землетрусів (mb=2,0÷4,0; h_0 =2÷10 км) Карпатського регіону і західної частини Східноєвропейської платформи, а також промислових вибухів.

Results of travel-time curve calculation have been presented for P- and S-waves in the interval of epicentral distances 10—350 km by the records of 25 local earthquakes (mb=2,0÷3,4; h_0 =2÷7 km) and 43 industrial explosions. Comparison of calculated hodograph with global hodograph (h_0 =0 km) has been conducted. It has been found that within the limits of the studied interval of distances differences with Kennett hodograph are not essential and do not exceed 1,5 s (P) and 2 s (S), with hodograph of Jeffreys—Bullen differences are considerable within the distances less than 100 km — 3—6 s (P) and 4—8 s (S). The obtained hodograph has been compared with calculated earlier for the distances up to 500 km by the records of the earthquakes (mb=2,0÷4,0; h_0 =2÷10 km) of the Carpathian region, the western part of the East-European platform and industrial explosions.

Введение. При ощутимых землетрясениях, происходивших на Восточно-Европейской платформе (ВЕП) в пределах территории Украины в XIX и XX вв., на земной поверхности в районах эпицентров наблюдались сотрясения интенсивностью 5—7 баллов по шкале МSK-64; магнитуда соответствовала интервалу значений 4,2—5,3. Обобщение данных о наиболее сильных землетрясениях приведено в работах [Кендзера, 2007; Кутас и др., 2006; 2007; 2009].

Изучение инструментальными методами слабой сейсмичности в западной части ВЕП не проводилось вплоть до начала XXI в. Развитие сети цифровых сейсмических станций в этой части платформы начато с 2002 г., в настоящее время регистрация землетрясений осуществляется в 10 пунктах наблюдений. Параметры локальных землетрясений рассчитывались по данным групп станций — Украинской сейсмической группы (УСГ) Главного центра специ-

ального контроля (ГЦСК) Национального космического агентства Украины и Карпатской опытно-методической сейсмической партии (ОМСП) Института геофизики НАН Украины.

В рассматриваемой части ВЕП на Украинском щите (УЩ) проводятся промышленные взрывы. Сетью сейсмических станций УСГ зарегистрированы взрывы в карьерах, расположенных в широком диапазоне расстояний от пунктов наблюдений, а ближайшие — в 10— 70 км. Наиболее мощные взрывы производятся в центральной и восточной частях УЩ — на удалении до 500 км от сейсмических станций. Станциями карпатской сети зарегистрированы в основном взрывы, источники которых находятся в нескольких районах Волыно-Подолии и в западной части УЩ. Некоторые из взрывов, произведенных на щите на расстоянии 100—200 км от карпатских станций, в каталогах бюллетеней [Сейсмологический..., 2007—2009]

представлены как местные землетрясения; в связи с этим возникла необходимость в проведении исследований по распознаванию происхождения слабоинтенсивных сейсмических событий, регистрируемых на платформе.

Результаты применения методики идентификации природы сейсмических событий, разработанной в ГЦСК, и обобщение данных о локальных землетрясениях, произошедших в 2005—2011 гг. в западной части ВЕП, представлены в статьях [Андрущенко, 2006; Андрущенко и др., 2010—2012]. Рассмотрены различия в значениях координат эпицентров землетрясений, рассчитанных в разных центрах обработки данных. Оценено влияние на точность результатов особенностей годографов, использованных при обработке записей сейсмических событий в Карпатской ОМСП и УСГ.

Цель настоящей работы — анализ возможностей использования записей местных землетрясений и промышленных взрывов с магнитудой *mb*≥2,0, зарегистрированных в западной части платформы, для расчета годографа *P*- и *S*-волн в интервале близких эпицентральных расстояний — до 350 км и сопоставление рассчитанного экспериментального годографа с табличными данными о времени пробега объемных волн, применяемыми при обработке записей сейсмических событий в других регионах.

Пункты сейсмических наблюдений. На ВЕП в северо-западной части щита находится локальная сейсмологическая сеть ГЦСК НКАУ, элементы которой, расположенные в районе г. Малин (в частности, центральный 3-компонентный элемент УСГ-PS-45, далее по тексту называемый станция «Малин»), входят в УСГ — PS-45, являющуюся составной частью Международной системы мониторинга. Эта группа станций оснащена короткопериодными вертикальными датчиками, расположенными в скважинах, и трехкомпонентным широкополосным сейсмометром, установленным в шахте на глубине 37 м. Телеметрическая система, объединяющая элементы сети, выполняет функции сбора информации и централизованного управления элементами системы с одной технической площадки. Сейсмические станции (c/cт) «Подлубы», «Зеленица» и «Каменный Брод» расположены в коренных породах в шахтных сооружениях в северозападной части УЩ; южнее на щите находится с/ст «Любар»; на Волыно-Подолии вблизи границы щита — c/cт «Каменец-Подольский».

В карпатскую сейсмическую сеть цифровых станций входят 19 пунктов наблюдений,

большинство из которых находится в Карпатах и Закарпатье. Для построения экспериментального годографа использованы записи только четырех станций карпатской сети, расположенных на платформе. В южной части Волыно-Подолии на близких расстояниях от края щита (≤90 км) находятся с/ст «Городок», «Каменец-Подольский» и «Черновцы». На югозападном крае щита расположена с/ст «Новоднестровск».

Материал для построения годографа. Годограф рассчитан по данным о временах пробега *P*- и *S*-волн локальных сейсмических событий, зарегистрированных цифровой аппаратурой в 2005—2011 гг.

Пункты наблюдений и эпицентры сейсмических событий находятся в западной части платформы в районах Волыно-Подолии и УЩ на площади, ограниченной координатами: φ =48÷51°N, λ =25÷29°E. В течение рассматриваемого периода времени отмечено 32 землетрясения с магнитудой 1,5—3,5; для построения годографа использованы данные о времени пробега волн, полученные по записям 25 из них с $mb \ge 2$,0, а также более 40 взрывов аналогичной магнитуды.

Результаты расчета параметров землетрясений по данным карпатской группы станций представлены в разделах «Каталоги и подробные данные о землетрясениях Карпатского региона» в бюллетенях [Сейсмологический..., 2007—2011]. Координаты эпицентров и магнитуда сейсмических событий разного происхождения, полученные в результате обработки записей на станциях УСГ, взяты из «Каталогов местных сейсмических событий, зарегистрированных сейсмологической сетью станций Главного центра специального контроля НКАУ с 2005 по 2011 гг.». Схема расположения пунктов сейсмических наблюдений и эпицентров локальных землетрясений показана на рис. 1.

Параметры сейсмических событий, приведенные в этих каталогах, в ряде случаев различаются. Погрешности, возникающие при определении координат эпицентров сейсмических проявлений, связаны с небольшим числом станций в группах и односторонним расположением групп по отношению к источникам колебаний — пункты наблюдений УСГ находятся на северо-востоке, Карпатской сети станций — на юго-западе. Расхождение в значениях ф и λ эпицентров, рассчитанных по записям разных сейсмических групп, обусловлено не только особенностями расположения станций. На точность расчетов оказывают влияние ошибки в

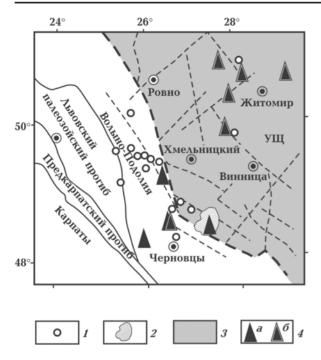


Рис. 1. Схема расположения эпицентров землетрясений и пунктов сейсмических наблюдений: 1 — эпицентры локальных землетрясений с $mb \ge 2,0$, произошедших в 2005-2011 гг.; 2 — область расположения эпицентров землетрясений на юго-западном крае УЩ; 3 — западная часть УЩ; 4 — пункты сейсмических наблюдений (a — Института геофизики; b — ГЦСК).

определении времени пробега P-волны, в связи с нечеткостью первых вступлений на записи, и использование разных годографов, существенно различающихся в диапазоне близких расстояний — до $200 \, \mathrm{km}$.

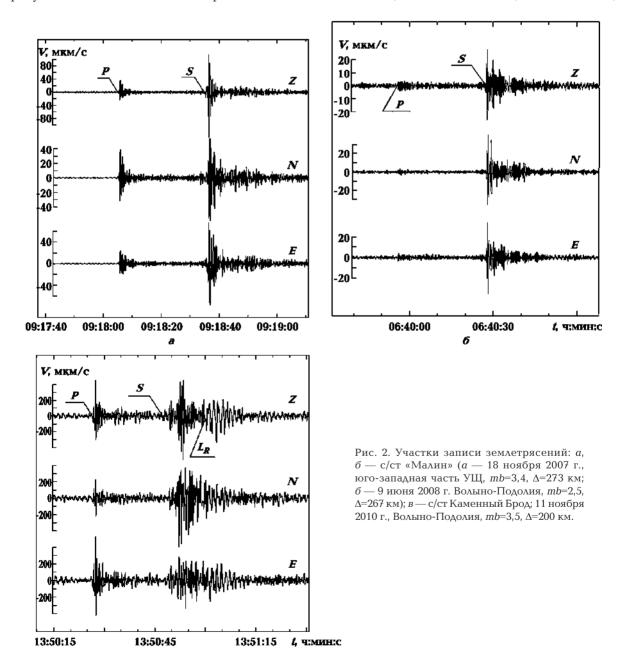
В каталогах ГЦСК кроме данных о локальных землетрясениях приведены сведения о магнитуде и координатах эпицентров множества промышленных взрывов, произведенных в карьерах, расположенных в разных районах УЩ. Часть тектонических событий не нашла отражения в каталогах Карпатской ОМСП; выявлены также не соответствия в оценках уровня магнитуды некоторых сейсмических событий и их природы.

Сведения о расхождении значений координат эпицентров локальных землетрясений, зарегистрированных в рассматриваемых районах платформы, рассчитанных по записям каждой из групп станций в отдельности, а также полученные при использовании данных обеих групп, представлены в работе [Андрущенко и др., 2011].

На юго-западном крае УЩ 10 землетрясений с mb=2,0÷2,7 зарегистрировано в районе г. Новоднестровск: в 2005 (18.10), 2006 (09.04,

18.06 и 22.10), 2007 (18.11), 2009 (23.04, 12.07 и 13.07), 2010 (12.08), 2011 (14.01) годах. Очаги землетрясений находятся на глубине 3—5 км. Ближе к границе с Молдовой произошло два землетрясения — 09.06.2007 г., mb=2,0, h_0 =6 км и 02.06.2008 г., mb=2,9, h_0 =7 км [Сейсмологический..., 2007—2011].

В оценках магнитуды некоторых землетрясений (09.06.2007, 18.11.2007, 02.06.2008 и других) отмечены различия. В случае землетрясения 18.11.2007 г., при котором интенсивность сотрясений вблизи эпицентра соответствовала 4 баллам, значение магнитуды равно 3,4 по данным УСГ и 2,6, согласно каталогу, приведенному в [Сейсмологический..., 2009]. Единичные слабоинтенсивные локальные тектонические события зарегистрированы на щите северо-восточнее очаговой зоны новоднестровских землетрясений. По данным УСГ вблизи г. Хмельник 17.03.2008 г. произошло землетрясение с mb=2,5. В районе Коростенского плутона станциями обеих групп 12.03.2006 г. зарегистрировано землетрясение с магнитудой 3,4 по каталогу ГЦСК и 2,9 по данным, приведенным в бюллетене [Сейсмологический..., 20081.

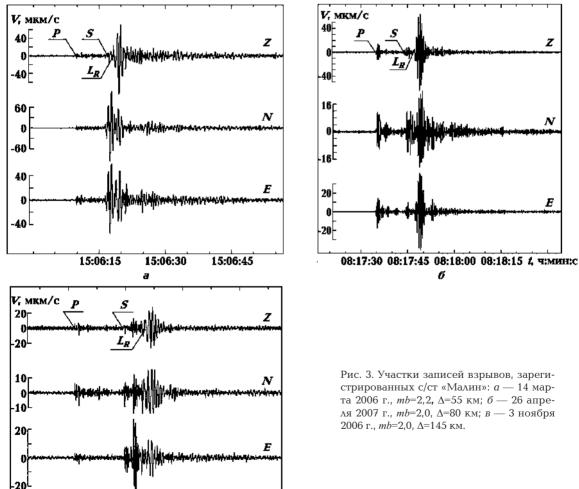

Различие в значениях магнитуды на 0,5 и более отмечено также и в случае землетрясений, произошедших на Волыно-Подолии возле г. Каменец-Подольский (17.10.2005 г. и 11.11.2010 г.). Уровень магнитуды выше по оценкам, сделанным по записям станций УСГ, по сравнению с данными карпатской группы станций; также различаются значения t_0 — времени возникновения процесса в очагах землетрясений (до 5—7 с) и координат эпицентров (на 0,2—0,3°).

Значения магнитуды и координаты эпицентров девяти землетрясений (31.03.2006; 12.04.2007; 09.06, 03.09, 26.09 и 16.10.2008; 16.11.2010; 22.02 и 26.02.2011 г.) с *mb*=2,0÷2,9, очаги которых находятся на Волыно-Подолии вблизи западной границы щита, определены по записям станций УСГ. Сведения о параметрах этих землетрясений не приведены в каталогах [Сейсмологический..., 2008—2011]. Координаты эпицентров некоторых землетрясений были пересчитаны с учетом данных о времени вступлений волн на записях нескольких карпатских станций. Землетрясение 16.10.2008 г. зарегистрировано всеми цифровыми станциями, которые находятся на платформе. Значение долготы эпицентра, вычисленное при использовании данных обеих групп станций, совпало с первым вариантом расчета, сделанным по записям станций УСГ. Различие в расположении эпицентра по широте оказалось незначительным — 0.1° [Андрущенко и др., 2011].

Расхождение в параметрах сейсмических событий, отмеченное при обработке записей отдельных групп станций, связано с использованием различных годографов. В каталогах ГЦСК приведены данные о координатах эпицентров, расчет которых в течение ряда лет проводился с помощью годографа Джеффриса—Буллена (Д-Б) [Jeffreys, Bullen, 1940]. Этот годограф модифицирован для условий северо-западного региона Украины на основе результатов статистической обработки запи-

сей землетрясений и нескольких тысяч взрывов, зарегистрированных в ближней зоне (до 1000 км) [Андрущенко, 2006].

Координаты эпицентров землетрясений, очаги которых находятся в верхней части земной коры в Карпатском регионе и прилегающих к нему районах платформы, в ОМСП рассчитываются с использованием экспериментального карпатского годографа [Харитонов и др., 1996], который на близких расстояниях существенно отличается от годографа Д-Б. Различие годографов значительно: P-волны на 5—6 с в интервале эпицентральных расстояний Δ =10÷50 км, 3 с — на 100 км и 1,5 с — на 150 км;


S-волны (на тех же расстояниях) — на 7—8, 4 и 2 с. При сравнении карпатского годографа с табличными данными о времени пробега Р-, S-волн, приведенных в работе [Kennett, 1991], установлена их идентичность в полосе расстояний до 300 км и расхождение на 1,5—2 с в интервале 300—500 км. Правомерность применения карпатского годографа при определении параметров локальных сейсмических событий, возникающих в изучаемом районе платформы вблизи земной поверхности, подтверждается совпадением значений рассчитанных координат эпицентров с установленными по макросейсмическим данным при ощутимых землетрясениях в районе г. Новоднестровск (22.10.2006 и 18.11.2007 г.).

Данные о времени пробега объемных волн. Для расчета годографа использованы значения времени пробега P- и S-волн в зависимости от расстояния до эпицентров сейсмических событий с mb=2,0÷3,4: 25 местных землетрясений и 43 взрывов. Глубина очагов 80 % землетрясений не превышает 5 км, остальных — 6÷7 км. (Участки записей с/ст «Малин» землетрясений, произошедших в разных районах рассматриваемой части платформы, и промышленных взрывов в карьерах, приведены на рис. 2, 3.)

Координаты эпицентров 14 землетрясений в западной части щита, были рассчитаны по записям каждой из групп станций в отдельности. Уточнение параметров землетрясений с использованием данных обеих групп выполнено после опубликования каталогов сейсмических событий в бюллетенях [Сейсмологический..., 2007—2011]. При построении зависимости $t_{PS} = F(\Delta)$, представленной на рис. 4, α , использованы значения t_0 и эпицентральных расстояний, полученные с учетом данных обеих групп станций, кроме того, добавлены значения времени пробега P- и S-волн, зарегистрированных только станциями УСГ от девяти землетрясений, очаги которых находятся на

z

E

12:45:00 4 ч:мин:с

Рис. 3. Участки записей взрывов, зарегистрированных с/ст «Малин»: а — 14 марта 2006 г., mb=2,2, Δ =55 км; σ — 26 апреля 2007 г., *mb*=2,0, ∆=80 км; *в* — 3 ноября

12:44:00

12:44:20

12:44:40

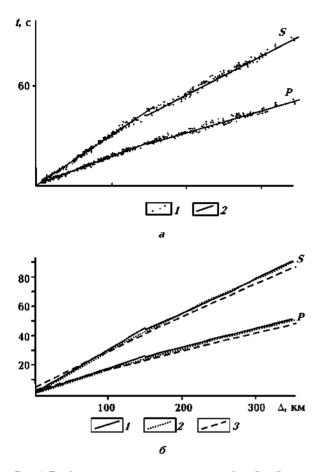


Рис. 4. Графики зависимости времени пробега P- и S-волн от эпицентрального расстояния: a — единичные значения времени пробега волн, зарегистрированных при локальных сейсмических событиях из очагов h_0 =0÷5 км (I); экспериментальный годограф (I); σ — сопоставление экспериментального годографа (I) с данными таблиц [Kennett, 1991] для h_0 =0 км (I), 15 км (I).

Волыно-Подолии.

Значения времени пробега *P*- и *S*-волн от промышленных взрывов при построении годографа взяты в основном по записям станций УСГ. Несколько взрывов зарегистрировано также и карпатскими станциями, расположенными на платформе на расстоянии 50—200 км от карьеров, которые находятся в западной части щита. Однако в каталогах [Сейсмологический..., 2007—2009] они представлены как землетрясения, очаги которых отнесены к интервалу глубин 2—5 км. В период 2005—2007 гг. в УСГ была разработана методика идентификации природы слабоинтенсивных сейсмических событий, с помощью которой удается распознавать их происхождение. Характерные особенности записи и спектрограмм землетрясений (тектонических и техногенных) и промышленных взрывов, зарегистрированных на УЩ, приведены в работах [Андрущенко, Гордієнко, 2009; Андрущенко и др., 2010; 2012].

Расчет годографа. Разброс значений времени пробега волн в зависимости от расстояния (см. рис. 4, *a*) связан с погрешностями в определении координат эпицентров сейсмических событий, обусловленными недостаточным количеством регистрирующих станций, влиянием особенностей строения среды на пути распространения колебаний (70 % которых вызвано взрывами в карьерах), в ряде случаев с нечеткостью вступлений волн на записях и др.

Для оценки влияния методики расчета, в частности интервалов расстояний, в которых произведена выборка значений t_P , t_S , рассчитано несколько вариантов зависимости $t_{PS} = F(\Delta)$

Таблица 1. Исходный материал, используемый для расчета годографа, и отклонение рассчитанных значений времени пробега *P-* и *S-*волн относительно приведенных в [Kennett, 1991]

Количество измерений	Интервал расстояний, Δ, км	Среднее значение Δ, км	Среднее значение времени пробега волн $t_{P,Scp'}$ с	Дисперсия $t_{P, { m Scp}}$, с	Коэффициент корреляции значений $t_{P,Scp'}^{}$ с	Коэффициент b линейной зависимости $t_{P,S} = F(\Delta)$	Отклонение значений $t_{P,S\text{cp'}}$ С (с учетом σ) от $t_{P,S}$, по [Kennett, 1991]					
Р-волна												
144	0—150	74,6	13,7	±0,5	0,99	0,172	0,4—1,4					
108	150—300	223,5	36,0	±0,5	0,96	0,131	0,3—1,3					
121	150—350	233,6	37,3	±0,6	0,97	0,130	0,2—1,4					
S-волна												
152	0—150	72,0	22,5	±0,9	0,99	0,300	0—1,8					
103	150—300	227,8	62,5	±1,0	0,99	0,238	-0,5—1,5					
115	150—350	237,0	64,8	±1,1	0,99	0,235	-0,5—1,5 -0,8—1,4					

Δ , KM	<i>t_P,</i> c	<i>t_{S'}</i> c	Δ , KM	<i>t_P,</i> c	<i>t_S</i> , c	Δ, κΜ	<i>t_P,</i> c	<i>t_S</i> , c
10	2,6	3,9	130	23,2	39,9	240	38,2	65,4
20	4,3	6,9	140	24,9	42,9	250	39,5	67,8
30	6,0	9,9	150	26,7	45,9	260	40,8	70,2
40	7,7	12,9	150	26,4	44,0	270	42,1	72,5
50	9,5	15,9	160	27,7	46,4	280	43,4	74,9
60	11,2	18,9	170	29,0	48,7	290	44,7	77,3
70	12,9	21,9	180	30,3	51,1	300	46,0	79,7
80	14,6	24,9	190	31,6	53,5	310	47,2	82,0
90	16,3	27,9	200	32,9	55,9	320	48,5	84,3
100	18,1	30,9	210	34,2	58,3	330	49,8	86,7
110	19,8	33,9	220	35,5	60,6	340	51,1	89,0
120	21,5	36,9	230	36,9	63,0	350	52,4	91,4

Таблица 2. Годограф Р- и S-волн, рассчитанный для изучаемого района западной части ВЕП

для расстояний 0—350 км. Средние значения времени пробега P- и S-волн вычислялись в пределах разных по протяженности вырезок: 25, 50, 150 и 200 км. При вычислении годографа использована зависимость t_i = $t_{\rm cpeA}$ ± $b(\Delta_i$ - $\Delta_{\rm cpeA}$). В окончательном варианте расчета осреднение значений времени пробега проведено в интервалах 0—150 и 150—350 км (см. табл. 1, 2).

Параметры, характеризующие рассеяние единичных значений времени пробега, r — коэффициент корреляции t_{P_1} t_{S} при осреднении их линейной зависимостью и σ — дисперсию значений $t_{P{
m cpe}{
m A'}}$ $t_{S{
m cpe}{
m A'}}$ первоначально были вычислены в узких полосах эпицентральных расстояний: 25 и 50 км. Наибольшее количество значений t_{P} , t_{S} относится к интервалу 50—100 км (n=75), наименьшее — к интервалу 300—350 км (n=13).

На участках протяженностью 50 км для Р-волны получены следующие данные: высокий коэффициент корреляции (0,98) и небольшая дисперсия t_{PcpeA} (±0,3 с) на Δ =50÷100 км; наименьшие значения r (0,8 и 0,7) и более значительная дисперсия (± 0.4 и ± 0.7 с) на Δ =250÷300 и Δ =300÷350 км. Для S-волны на этих расстояниях отмечены следующие значения r и σ : 0,98 и \pm 0,5 с; 0,9 и \pm 0,6 с; 0,8 и \pm 1,0 с. В интервалах большей протяженности коэффициенты корреляции и дисперсия значений t_P равны: 0,99 и \pm 0,5 с (0—150 км); 0,97 и \pm 0,6 с (150-350 км), значений t_S соответственно 0,99 и ± 0.9 с; 0.96 и ± 1.1 с. Количество значений t_P и $t_{S'}$ использованных для вычисления годографа, коэффициенты их корреляции и дисперсия среднего значения времени пробега волн показаны в табл. 1.

Значения времени пробега *P*- и *S*-волн («точ-

ки» экспериментального годографа) рассчитаны с шагом 10 км (табл. 2). Сопоставлены результаты вычисления t_P , t_S в разных по протяженности интервалах расстояний. Различия в значениях t_{P} вдоль всей длины годографа, независимо от рассматриваемых интервалов, не превышают 0,3 с. В значениях t_S на близких расстояниях различия больше — 0,5÷0,7 с $(\Delta \le 130 \text{ км})$ и 1,1 с ($\Delta = 140 \div 150 \text{ км}$). По-видимому, это связано с особенностями структуры земной коры, оказывающими большее влияние на поперечные колебания.

Средние значения времени пробега Р- и S-волн в выборках, равных 50 км, сопоставлены с табличными данными для очагов, расположенных на земной поверхности (h_0 =0 км) и глубже (h_0 =15 км) [Kennett, 1991]. Установлено, что рассчитанные средние значения t_{p_1} по сравнению с приведенными в таблицах для $h_0=0$ км, выше на 0,5—1,5 с в интервалах 0—50, 50—100 и 100—150 км и приблизительно на 2 с в интервалах 150—200 и 300—350 км. Средние значения $t_{\rm S}$ (относительно табличных) различаются в основном не более, чем на 2,0 с: 0—1,1 с на Δ до 50 км; 1,0—2,0 с на 50—100 и 100—150 км; от -0.4 до +1.0 (150—200 и 200—250 км) и от -1.0 до +1,5 с на 250—300 и 300—350 км. Отклонение средних значений времени пробега объемных волн, вычисленных в более протяженных интервалах (0—150, 150—350 км), также не превышает 2,0 с.

При сопоставлении с данными, приведенными в сейсмологических таблицах [Kennett, 1991] для источника колебаний, расположенного на h_0 =15 км, отмечены более значительные отклонения экспериментального годографа, рассчитанного при использовании записей сейсмических событий из очагов h_0 =2÷7 км. Средние значения времени пробега больше на 3—4 с: P-волны — на эпицентральных расстояниях 150—350 км, S-волны — на 130—160 и 220—350 км.

Графическое представление экспериментального годографа Р- и S-волн, рассчитанного по записям локальных сейсмических событий, очаги которых находятся в западной части ВЕП, и годографа Кеннетта, используемого для расчета координат эпицентров землетрясений в других регионах, показано на рис. 4, б. Кажущаяся скорость распространения P- и S-волн оценена по коэффициентам b (см. табл. 1), характеризующим угол наклона прямых линий, которые «осредняют» значения времени пробега волн в выбранных интервалах расстояний. Получены значения V_P и V_S : 5,8 и 3,3 км/с на Δ =0÷150 км, 7,7 и 4,3 км/с на Δ =150÷350 км. Согласно результатам оценки скорости распространения сейсмических объемных волн в зависимости от расстояний по данным о времени их пробега, приведенным в таблицах IASPEI-1991, в интервалах 0—150 и 150—350 км значения V_P и V_S равны: 6,0 и 3,5 км/с; 7,7 и 4,4 км/с соответственно.

Заключение. При исследовании сейсмичности древних платформ отмечено проявление сейсмической активности в краевых прогибах и на участках, граничащих с ними, а также в шовных зонах и на окраинах щитов [Хаин, 2001].

Цель изучения слабоинтенсивных сейсмических проявлений на ВЕП в 2005—2011 гг. — установление расположения сейсмотектонических структур и оценка уровня сейсмического потенциала в районе Волыно-Подолии, на границе УЩ с Днестровским перикратонным прогибом и в центральной части УЩ.

При наиболее сильных землетрясениях с mb≥3,0, произошедших на юго-западном крае и в центральной части УЩ, интенсивность сотрясений в эпицентрах соответствовала 4 и 5 баллам по шкале MSK-64. Зарегистрированы и более слабые сейсмические события с $mb=1,5\div2,9$. В большинстве случаев возникали сомнения в отношении их происхождения (слабоинтенсивные тектонические землетрясения или промышленные взрывы) и в точности координат эпицентров, установленных при расчетах по записям разных групп станций. Последнее связано с небольшим числом станций в группах (ГЦСК и Карпатской ОМСП), расположением их в узких азимутальных створах, с особенностями строения среды в районах записи колебаний и на пути распространения волн к станциям, а также в значительной мере с применением годографов, существенно различающихся на расстояниях 0—200 км. При перерасчетах, проведенных по данным обеих групп станций, отмечены изменения в координатах эпицентров некоторых землетрясений, не превышающие в основном значений 0,2—0,3°.

Приведенный в настоящей работе годограф P- и S-волн для интервала расстояний 10—350 км рассчитан по записям 25 местных землетрясений с mb= $2,0\div3,4$ и 43 промышленных взрывов, зарегистрированных в районе ВЕП, ограниченном координатами: ϕ = $48\div51\,^\circ N$, λ = $25\div29\,^\circ E$. Проведено сравнение этого годографа с другими, применяемыми при обработке записей сейсмических событий, происходящих в разных регионах.

Отклонение рассчитанного годографа P- и S-волн относительно годографа Джеффриса— Буллена весьма существенно на эпицентральных расстояниях до 150 км: на Δ =10—50 км на 5—6 с (P) и 7—8 с (S); на 100 км на 3 с (P) и 4 с (S). С ростом расстояний расхождение времени уменьшается — на Δ =150 км до значений 1,5 с (P) и 2 с (S), на 200—350 км до 1 с в P- и S-волне. Различие значений времени пробега волн, соответствующих экспериментальному годографу, относительно данных, приведенных в таблицах IASPEI-1991, меньше — на протяжении всего рассматриваемого интервала расстояний в P-волне не превышает 1,5 с, в S-волне — 2,0 с.

При обработке записей местных сейсмических событий, происходящих в рассматриваемой части платформы на расстояниях до 350 км от пунктов наблюдений, можно использовать годографы: экспериментальный, представленный в цифровом виде в настоящей работе, карпатский, рассчитанный ранее, и Кеннетта. Карпатский годограф, применяемый при расчете координат эпицентров в ОМСП, на эпицентральных расстояниях до 300 км совпадает с годографом Кеннетта, в интервале 300—500 км отмечены небольшие отклонения— в пределах 1,5—2,0 с.

Использование рассчитанного годографа будет способствовать точности установления координат эпицентров локальных землетрясений и более надежному выделению сейсмоактивных участков земной коры. Уточнение годографа осуществимо при продолжении работы в начатом направлении — при накоплении данных о времени пробега объемных волн, регистрируемых при местных сейсмических событиях.

Список литературы

- Андрущенко Ю. А. Контроль промислових та аварійних вибухів на території України сейсмічними станціями Головного центру спеціального контролю // Геофиз. журн. 2006. 28, № 3. С. 110—115.
- Андрущенко Ю. А., Гордієнко Ю. А. Аналіз ефективності застосування критеріїв ідентифікації вибухів і землетрусів для локальних та регіональних подій в умовах платформної частини України // Геофиз. журн. 2009. 31, № 3. С. 121—129.
- Андрущенко Ю. А., Кутас В. В., Кендзера А. В., Омельченко В. Д. Результаты сейсмических наблюдений на Восточно-Европейской платформе в районах Волыно-Подолии и Украинского щита в 2005—2011 гг. // Сейсмол. бюл. Украины за 2010 г. Севастополь: НПЦ «ЭКОСИ-Гидрофизика», 2011. С.42—52.
- Андрущенко Ю. А., Кутас В. В., Кендзера А. В., Омельченко В. Д. Слабые землетрясения и промышленные взрывы, зарегистрированные на Восточно-Европейской платформе в пределах территории Украины 2005—2010 гг. // Геофиз. журн. 2012. 34, № 3. С. 49—60.
- Андрущенко Ю. А., Кутас В. В., Кендзера А. В., Омельченко В. Д., Гордиенко Ю. А., Калитова И. А. Природа сейсмических событий, зарегистрированных на западе Украинского щита в 2005—2007 гг. // Геофиз. журн. 2010. 32, № 2. С. 64—74.
- Кендзера А. В. Юго-западные регионы Восточно-Европейской платформы // Землетрясения и микросейсмичность в задачах современной геодинамики Восточно-Европейской платформы. — Петрозаводск: Изд-во КНЦ ИГ РАН, 2007. — С. 310—327.
- Кутас В. В., Кендзера А. В., Омельченко В. Д., Дрогицкая Г. М., Калитова И. А. Проявление сейсмичности в XVIII—XX вв. и потенциально сейсмоо-

- пасные зоны западной части Украины // Геофиз. журн. 2006. 28, № 4. С. 3—15.
- Кутас В. В., Омельченко В. Д., Дрогицкая Г. М., Калитова И. А. Криворожское землетрясение 25 декабря 2007 г. // Геофиз. журн. 2009. 31, № 1. С. 42—52.
- Кутас В. В., Омельченко В. Д., Кендзера А. В., Дрогицкая Г. М., Калитова И. А. Сейсмичность западной части Восточно-Европейской платформы в пределах Украины // Геофиз. журн. — 2007. — 29, № 5. — С. 59—72.
- Сейсмологический бюллетень Украины за 2005 год. Севастополь: НПЦ «ЭКОСИ-Гидрофизика», 2007. —203 с.
- Сейсмологический бюллетень Украины за 2006 год. Севастополь: НПЦ «ЭКОСИ-Гидрофизика», 2008. 296 с.
- Сейсмологический бюллетень Украины за 2007 год. Севастополь: НПЦ «ЭКОСИ-Гидрофизика», 2009. —143 с.
- Сейсмологический бюллетень Украины за 2008 год. Севастополь: НПЦ «ЭКОСИ-Гидрофизика», 2010. —178 с.
- Сейсмологический бюллетень Украины за 2010 год. Севастополь: НПЦ «ЭКОСИ-Гидрофизика», 2011. 200 с.
- *Хаин В. Е.* Тектоника континентов и океанов (год 2000). Москва: Научный мир, 2001. 606 с.
- Харитонов О. М., Костюк О. П., Кутас В. В., Руденская И. М. Экспериментальные годографы объемных волн землетрясений Карпатского региона // Доп. НАН України. — 1996. — № 5. — С. 103—107.
- Jeffreys H., Bullen K. E. Seismological Tables. London: Britsh Association Seismological Committee, 1940. — 145 p.
- Kennett B. L. N. IASPEI-1991 Seismological Tables: Research School of Earth Sciences Australian National University. Canberra, 1991. 143 p.