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The results of modern studies of the earthquakes impact indicate that the soil layers
located under buildings and structures can significantly transform seismic wave pass-
ing through their thickness and have a catastrophic effect on these objects. Hence, the
study of wave processes in soil massifs is extremely important and relevant. It is known
that soils are characterized by significant heterogeneity, which affects the spectral
characteristics of seismic waves, so this should be taken into account when analyzing
wave fields in the soil layers. In this paper, it is proposed to describe the dynamics of
an inhomogeneous soil massif within the model of an elastic continuum with oscillat-
ing non-interacting dissipative inclusions. To examine vibrations in the layer of finite
thickness with a free surface and harmonic perturbation applied to its lower edge, it
is formulated the boundary value problem for this medium. Based on the solution of
this problem, the influence of inclusions on the characteristics of waves is analyzed. It
is found out that the natural frequency of inclusions significantly affects the transfer
function, which characterizes the amplification of the displacements on the free surface
relative to the displacements at the lower boundary of the layer, i. e. when the natural
frequency of inclusions increases, near the leading resonant peak additional resonant
frequency appears, while for high frequencies a degeneration of resonant frequencies is
observed. In the case when the natural frequencies of the inclusions have a non-discrete
distribution with two separate frequencies, the effect of the inclusions is manifested
at low-frequency oscillations, and in the high-frequency region only the resonant am-
plitude decreases. The approach, which uses the model with oscillating inclusions to
the analysis of layer response to seismic disturbances, is promising for seismic design
and construction.

Key words: amplitude-frequency characteristics, resonant phenomena, models of
heterogeneous media, ground response modeling to seismic load.

Introduction. Analysis of seismic effects of earthquakes (degree and regularity of damage
to buildings) allowed one to conclude that the intensity of oscillations and subsequent dama-
ge to weakly consolidated soils may significantly exceed these parameters in neighboring
regions, such as those composed of dense rocks. Depending on the type, composition and
thickness of the soil layers, oscillations at some frequencies may be amplified, while at other
frequencies they may be suppressed or even completely absorbed. When the frequency of
soil oscillations coincides with the natural frequency of buildings, resonant phenomena are
detected, which are the most common causes of damage to buildings [Pratt et al., 2017]. Assess-
ment of the impact of local soil conditions in the region on the seismic intensity distribution is
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the main problem of seismic microzoning [Aleshin, 2010]. Despite the large number of works
in this field of research, the problem of adequate prediction of soil behavior under seismic
loads remains one of the most pressing challenges of seismology. First of all, this is due to
insufficient study of the mechanism of influence of physical and mechanical soil properties
on the deformation under seismic loading and dynamic properties that characterize the soil
as a medium for the propagation of oscillations.

Evidence that seismic action is affected by soil conditions rather than the magnitude or
energy of an earthquake is the aftermath of the 1925 Quebec earthquake in the Lawrence Val-
ley, Canada. The most serious damage and destruction of buildings was recorded at a distance
of more than 100 km from the source of the earthquake. Note that the buildings were located
on the loose sediments of the St. Charles River. The damage inspection revealed that the steel
structures of the granary were bent, the concrete floors were torn down, and the foundations
of the reinforced concrete columns were destroyed. At the same time, at a distance of about
800 m from the epicenter of the earthquake, residents of a large hotel built on a rocky slope,
almost did not feel the earthquake. The local intensity on loose sediments was 8 points, and
on rocky soils — 3 points according to the Modified Mercalli Intensity Scale [Smith, 1962].
Thus, the difference in the behavior of structures due to soil conditions reached 5 points.

At theinitial stage of research on the seismic effects of earthquakes, the influence of physi-
cal and mechanical properties of the soil on the intensity of earthquake manifestations was
underestimated [Bovenko, Dontsova, 1987; Khalturin et al., 1990]. These works used a simp-
lified approach (differentiation of soils by their seismic properties) and obviously required
further improvement.

The problem of amplification of seismic signals is the main task of the ground respond
analysis [Kramer, 1996; Wolf, 1985]. It has been studied by various quantitative methods, in-
cluding the technique of transfer functions based on the linear concept of elastic soil [Kramer,
1996; Gazetas, 1982; Rezaie et al., 2018; Kendzera et al., 2020]; equivalent linear approxima-
tion as the simplest generalization of a purely linear approach; a nonlinear approach [Kausel,
Roésset, 1984] using nonlinear stress-strain relationships; multidimensional generalizations
of the above methods, etc.

Nowdays, modeling methods are used to solve the problems of predicting soil behavior
during an earthquake [Kramer, 1996; Yoshida, 2015; Kokusho, 2017], which are based on
the approximation of real soils by mathematical models that take into account the struc-
tural properties of soils and patterns of their behavior under seismic loading. Predicting soil
behavior during an earthquake is complicated by insufficient knowledge of soil properties
under seismic loading.

The purpose of the work is a theoretical estimation of the amplitude-frequency characteri-
stics of an inhomogeneous soil layer with oscillating inclusions under seismic loading on its
base. Particular attention is paid to identifying the effects caused by taking into account the
dynamics of inhomogeneities.

Mathematical model of the soil taking into account the oscillatory dynamics of inclu-
sions. During modeling wave processes in the layer of heterogeneous elastic medium [Ken-
dzera et al., 2020], the dynamic equation of state with temporal and spatial nonlocalities was
used. This generalized model allows one to describe the dynamical properties of structured
media taking into account the correlation between the elements of the structure, as well as
the phenomena of self-organization [Danylenko et al., 2011].

Another technique to the medium's structure description is based on the incorporation
of additional volumetric forces, caused by structural element movement, in the equations of
motion. Among the models of this approach, it is worth to indicate the models of moment
continuum theories [Cosserat, Cosserat, 1909; Green, Rivlin, 1964; Mindlin, 1964; Nowacki,
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1970, 1986; Eringen, 1999; Erofeev, 2003; Maugin, Metrikine, 2010]. In the continual approach,
these theories take into account the asymmetry of the stress tensor and describe the auxiliary
degrees of freedom of the generalized microvolume of the medium. It is noteworthy that these
degrees of freedom are associated with deformations and rotations of microstructural elements.

In this research we are interested in the model for a heterogeneous medium representing
the soil as a structure in which heterogeneity is formed by different inclusions distributed in
carrying uniform medium. It is considered the inclusions which interact with carrying medium
only and do not interact with each other. It is assumed that these inclusions form an auxiliary
quasi-continuum that interacts with the carrying classical continuum. Such models for media
with inclusions have been developed by a number of experts to search the peculiarities of wave
fields in natural and artificial materials with microstructure [Slepjan, 1967 Palmov, 1998; Milton,
Willis, 2007; Mishuris et al., 2019]. The detailed studies of features of wave fields at different
properties of carrying medium and inclusions have been carried out by V.A. Danylenko and
S.I. Skurativskyi in a number of works [Danilenko, Skurativskyi, 2008, 2012a,b, 2016, 2017;
Skurativsky, 2014; Skurativskyi, Skurativska, 2018; Skurativskyi et al., 2019].

Based on the basic principles of continuum theory, we postulate that the model of elastic
medium with inclusions [Palmoyv, 1998; Danilenko, Skurativskyi, 2008, 2012a,b] consists of
an infinite number of inclusions. In wave processes, they behave like oscillators. Their size |
is much smaller than the characteristic size of the problem | << L, as well as the wavelength
| << 1. Each inclusion as a separate oscillator is characterized by the natural frequency Q,
relaxation time 1, and moves under acting the force depending on the difference of displa-
cements between carrying medium and oscillator. The structure of quasicontinuum is cha-
racterized by the distribution m(Q) of oscillators with respect to the natural frequency Q.
It is obvious that the total mass of oscillators my,, placed in microvolume 8V is evaluated by
integration over all natural frequencies of the oscillators

Mgy =p | M(Q)dVdQ, (1)

o — 8

where p is the carrying medium density.
Then the equation of motion for the carrying medium coincides with the well- known Lame
equation of classical elastic theory enriched by the inclusions [Palmov, 1998]:

(A+2u) VVU+pAu—puy +N+Q =0, (2)

where N is the force acting on the medium from the inclusions, Q is the external mass force,
A and p are the Lame constants. The equation of motion for inclusions with natural frequency
Q reads as follows

pm (Q) wy + K(Q) (W —u)+K(Q) t-(w-u), =0. (3)

Here w is the inclusion displacement, K (Q) is the stiffness of bond between the inclusion
and carrying material. The last add in equation (3) is associated with the description of dissi-
pation of oscillator energy. The total force N of interaction of inclusion and carrying medium
per unit volume is evaluated by the relation

N=—p [ m(Q)wgdQ. (4)
0

After substitution (4) into equation (2), the equation of motion for carrying medium can
be written in the following form
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(A +2p) VVU+pAU-pug —p [ m(Q) wedQ+Q=0. (5)
0

Thus, the system of equations (3) and (5) together with appropriate boundary conditions
describes the dynamics of elastic continuum with oscillating dissipative inclusions.

Statement of the boundary value problem for the soil layer and analysis of its solu-
tions. As in our previous work [Kendzera et al., 2020], we consider the simplest one-dimen-
sional problem on the wave shear deformation which is the most dangerous for the buildings
and constructions. A layer of soil with density p and thickness H lies on a rigid badrock and
has a free surface. Let us introduce the reference frame (u, z) with the origin placed on the
free surface (Fig. 1).

For the one-dimensional shear deformation the system of equations (3), (5) is as follows

puy =Guy, —pf m(Q) wedQ, wy +QZ(W—U) +QZT(W—u)t =0. (6)
0

Here u(z, t) and w(z, t) are the horizontal displacements of carrying medium and attach-
ed oscillator respectively, and G = p is the shear modulus. The relation Q? = K (Q)/pm(Q) is
used. In general, it should be assumed that each type of oscillator has a unique value of the
relaxation time, but to obtain quite general conclusions, it is sufficient to assume the same
relaxation time t, which is constant for all oscillators. We also neglect the external volumetric
forces (Q = 0), in particular the gravity force. To identify the function m(QQ) describing the
distribution of oscillators over their natural frequencies, the following laws are used:

n
-m(Q) = Z MjS(Q - Q; ) , where 5 (*) is the Dirac delta function;
j=1

— continuous n-modal distribution:
n Q-Q 2
M (@-9;)

m(Q) = > exp | -
j

1 O] A 2T 25%

It should be noted that in the case of delta @
distribution, model (6) has no integral term and is 3V S5V
reduced to the model with oscillators that are dis-
tributed over their natural frequencies discretely. Q é =
The multimodal distribution can be regarded as the oV
sequence of functions converging to the Dirac delta H
function. This allows one to compare the results
of studies of models with continuous and discrete
distribution of oscillators.

The boundary conditions are prescribed at the Fig. 1. Schematic representation of the soil layer

free surface that requires the absence of stresses ~ With thickness of H with inclusions. The left
upper inset stands for the microvolume 8V with
inclusions, whereas right one shows the micro-

Gu,|,_,=0 (7)

volume 6V with their model analogy-oscillators.
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Thus, the aim of the studies is to examine the properties of the solutions of system (6)
subjected to the boundary condition (7).

Consider the solutions of model (6) in the form of standing waves defined by the expres-
sions harmonic in time

u=U(z)e™, w=w(z)e'®, (8)
where o is the circular frequency of ground vibration.
The substitution of expressions (8) into the system (6) reduces it to pair of ordinary dif-
ferential equations

~pU (2) ©* =GU, (2) +pW(2) [ m(Q) 0?dQ,

O — 8

~W(z)o® +Q*(W(z) -U(z)) + Q%1 (W (z) -U(z)) iw=0,
which in turn reduces to quadrature

(QZ + erim) U

W =
Q%tio+ Q% - »?

and the following second order differential equation

- Q% (1+tio
pw’U +GU, +po’U [ m(Q) ( )_4a-0.
Q% (1+ tio)-o?
0
It is useful to rewrite this equation as follows
U,, +v?U =0, 9)

T m(Q) Q% (1+ i
where vzzﬁm2 1+I ( ) ( +TI(D) aQ
G Qz(l+ric0)—c02

0
The solution of equation (9) is presented in the well-known form:
U = Acosvz + Bsinvz.

The constants A and B can be specified from the boundary condition (7). Then B = 0, and
ultimately u(z, t)= Ae'®' cosvz.

To characterize the wave passing through the soil deposit, it is used the quantity called
the transfer function [Kramer, 1996]

u(z=0;t)
“u(z=H;t)’

where U (z = H; t) is the deformation at the depth H. The modulus of this function | F| is the
amplification factor [Kramer, 1996]. It should be emphasized that when deformations at the

layer edges are defined by standing waves, then the function F is independent on the time.

In particular, in our considerations
1

T cosQH
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Formally, it coincides with the transfer function derived for the Kelvin—Voight models
from [Kramer, 1996].

Let vy = & be the shear wave velocity. Then
\f c

” QZm(Q
VH=o 1+ (1+tio) | () da.
Us 0 QZ(1+‘Ei(,O)—u)2
Hence, the amplification factor is
1
Fl=
Q2m(Q
@ 5

COSooi 1+(1+ rico) _[
U "

Q? (1+tiw) - ®°

Remark 1. Note that the argument of function | F| cannot be written via the quantity kH (k =
= m/vgis the wave number) the way this is done in classical models [Kramer, 1996]. Therefore,
the function | F| will be studied directly with respect to the argument ». Moreover, the quan-
tities with time dimension H/vg = y (time of passing the shear wave through the layer) and
T (time of relaxation) can represent the characteristic parameters of soil layer and medium.

Remark 2. The number of parameters in the function | F| can be reduced by means of scale
transformation oy = ®, Qy = Q , ©/x =7, where new quantities ®, Q and T are dimension-
less. Then

0 j—

Q’m(Q _
dQ =cos® 1+(1+?ic‘o)_[ (2)

Q*m(Q)
Q% (1+7iw) - & i
0

9% (1+1io) - 0’

cosoy |1+ (1+tio) I
0

and the function m (Q) = 1 m (QJ . Forinstance, in case of the Gaussian distribution it is valid
x X

=—= —exp|-

_ — 2
SETEIN(. NV (LY
x Y01 2T 2y %o}

From the last expression it follows that m (Q) represents the distribution with the scaled
mean value Q2 and standard deviation xc;. This means that the solution of the problem at
different values y can be obtained from the solution derived at ¢ = 1 performing in parallel the
appropriate scaling of distribution parameters. Therefore, further we consider the problem at
v = 1. The amplification factor obeys the relation

|F| = 1 : (10)

QZm(Q)

Q? (1+tio) - w°

dQ

coso [1+(1+rio) |
0
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Let us find out the peculiarities appearing on the graphs of function (10) when oscillating
inclusions are taken into account. To compare, it is worth to recall the fact when the hetero-

1
geneity is absent, i. e. m(Q) = 0, the function (10) degenerates into the function | F | = | |
COS ®
whose graph (Fig. 2, a) shows the periodically located maxima
yis
wn=5(2n+l), n=0,1, 2.., (11)

which determine the natural frequencies of the soil layer providing the most strong response
amplification, i. e. the occurrence of resonance. Note that a distinction should be made be-
tween the three types of frequencies used in this paper, namely natural frequencies of inclu-
sions, circular frequencies of standing waves, and natural frequencies of soil deposit. To avoid
misunderstandings, we prefer to use the term «resonant frequency» instead of the latter term.

Since the model does not include viscosity effects at m(Q2) = 0, the function | F ()| at reso-
nant frequencies has the discontinuities of second kind. The introduction of the dissipative
process generates finite maxima on the graph of the function | F (o) |. The structure of resonant
frequencies, their number, and intensity are of both theoretical and practical interest. Next
it is considered the cases when the function m(Q) = 0.

The medium with identical oscillators. Let the soil contain inclusions having the same
natural frequency Q;. Then the inclusion distribution is m(Q2) = M3 (Q — Q,) and the ampli-
fication factor is as follows

|F| = ! ) (12)

Qf (1+ tie) My

cosm |1+

Q2 (1+ i) - o’

We choose the parameter M; = 1.2 corresponding to the inclusions with density greater
than the carrying medium. The natural frequency of oscillators is fixed as well, i. e. Q; = 1.
The resulting graph of the function |F| defined by (12) is depicted in Fig. 2, b.

To analyze the function (12) in details, we need to pass from complex-valued to a real-

IR |F|
e E 3 O CFE OB 0§ R T e e e T
151
10
E X 5 h h :
2} /! s U 1 \_J\_J
0,50 1,50n 2,50n 3,50m 4,50n 5,50 1 5 8 3,521 4,51n 5,517 ®
a b

Fig. 2. The amplification factor |F| versus  at m =0 (a), m = 1.2 (b).
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valued function. Let

Using the formula

Ja+bi=t+ |q|2+a+isgn(b) |q|2—a . al=4a% +b*,

the denominator of (12) can be transformed in the following manner

cos (-):cos(xal—ixbl), (13)

where &, Z,/ |q|2+a, b, =,/ |q|2_a.

Taking into account that |Cos (X - iy)| = \/ cos? x + sinh? y , the expression (12) can be pre-
sented in the simplified form

1

\/cosz (xal) + sinh? (xbl)

[F|=

From the analysis of expressions a and b it follows that for large values of X these quanti-
ties tend to 1 and O respectively, thus @; = 1, b; > 0. This means that at high frequencies
the resonant frequencies approach the set (11) and hence it can be stated that the presence
of inclusions in the medium is not manifested.

The increasing of natural frequency 2 causes a change of graph of the function | F| mainly
in the vicinity of the first resonant frequencies (Fig. 3, a). In particular, the comparison of the

\Fl
2 |Fl
3t

- 0,=15 ;

- Q=25 2

(. (!)mu_‘thz 30 1,042,67 200 1,042,85 20

a b C

(Umax. 1

Fig. 3. The dependencies of amplification factor |F| on @ at m = 1.2, t = 0.1 and Q; = 1.5, Q, = 2.5 (a),
Q,=4(b), Q2 =5(c).
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graphs built at 2; = 1.5 and €2 = 2.5 reveals the creation of additional resonant frequency
®max,2 Near the leading resonant peak o,y 1- Analysis of resonant spectra for higher natural
frequencies Q) testifies that intensity of second resonant peak w,, o increases, and the set of
resonant frequencies in the high-frequency region degenerates. In particular, comparing the
Fig. 3, band c, we can conclude that the oscillatory asymptotics of the function | F|is changed
to the monotonic one. In fact, there is case when the spectrum is divided into the low-frequency
region consisting of a finite number of resonant frequencies and the high-frequency region
with a countable set of resonant peaks that tend to degeneration when the natural frequency
of inclusions increases. Here, as a point of spectrum division, we can choose the place of the
global minimum of the function |F ()], i. e. the point o,

It is interesting that the dependence (Fig. 4) of the coordinates of the first two resonant
peaks ®may 1,2 On the parameter Q; shows a monotonic nonlinear character. Note that the
relative change o,y 1 is 4.3 %, while for ®ay 5 is 39.1 %.

The dependence of the value of the critical frequency o, on the parameter M, (Fig. 5) is
monotonic and has a local minimum.

Media with oscillators of two types. First of all, it should be noted that regardless of the
analytical expression of the function m (), the behavior of the function |F| can be estimated
for relatively large values ®. To do this, let us expand part of the function under integral sign

2,2

1,8

L N L6 ™55 30 35 40 45 500,

Fig. 4. The dependencies of the first (a) and second (b) maxima ®

, on the natural
frequency Q,.

max, 1,

Oy into the Taylor series (or to use a formula for
infinite geometric progression). Then we get

0?2 Q2 (1+rio) o*
= — - +
Q? (1+ i) - w? w2 o’
+ 0 (QG) ,

k--x Ak a Lo o o A o o o A & & i---lx-
\_04 06 08 10 1,2 14M,

when © > Q.
Fig. 5. The global minimum ¢ versus M. Thus
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> m(Q 2 (1+tio) QZm(Q 2 (1+ti0)? Q*m(Q
(o) | D gq LT g g () O(0) 4
0 1+‘CI(,0) ® 0 ® 0 [0)
(1+r|03) (1+‘CI(,0)
== 2 2 4 4
(O] w

0
Here I,, = [ Q*"m(Q) dQ.
0

Finally, we obtain the result that for large Q the function |F| can be approximated by the
expression
IF|= L . (14)

Cosm\/l_(1+rim)l (1+ tio)’

S
2 4
(J)2 (1)4

In particular, it is easy to see that as Q becomes large in (14) the positions of resonant
frequencies are close to the set (11), which is valid for the classical case when the inclusions
are absent.

To realize the quality of | F| approximation, the result obtained is applied to the model with
the two-modal distribution m (Q).

Thus, consider the case of the medium containing the same number of inclusions of two
types oscillating mainly at the natural frequencies € and Q, = 2Q,. Then the distribution
m (Q2) of oscillators is described by the two-modal distribution

2 2
M, (@-9) (Q@-20;)
mQ)=——|exp| ————— |+exp| ~——— | |, (15)
26 . 2m 262 262

wherec=0.1,M; =12, Q,=0.9.

The distribution parameters are chosen in such a way that the oscillator masses are loca-
lized strongly in the vicinity of two fixed values (Fig. 6, a). Using the distribution (15), the
Fig. 6, b is plotted and shows the graphs of function (10) (solid curve) and its approximation
(14) (dashed curve). It is seen that as soon as the function m(QQ) goes to its right asymptotic
value, the function (14) is fit for the actual function (10) very well.

Using the formula (10) and (12), the amplification factors | F| corresponding to the medium
with the same type inclusions and two-type inclusions are derived and plotted in Fig. 7. The-
se dependences indicate that the influence of the inclusion characteristics is manifested in
the low-frequency domain, in particular, additional maximum appeared. In high-frequency
domain the decay of intensity of resonant frequencies is encountered. This means that the
influence of inclusion characteristics is manifested in the low-frequency region, whereas in
the high-frequency region the decreasing of resonant peak intensity is observed.

Concluding remarks. To estimate the response of the soil deposit under the action of se-
ismic disturbances, the problem of shear wave deformation of the soil layer is considered. It
is proposed to model an inhomogeneous soil massif by the elastic medium with dissipative
oscillatory inclusions. The obtained harmonic solutions of the model in the form of standing
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m(Q)
2,5

2!0
1,5
1,0

0,5

Q

2 1 6 8 10 12 14 o

b

Fig. 6. The function m(Q2) (a) and the comparison of amplification factors |F| derived by means of the
function (10) (solid line) and (14) (dashed curve) (b).

IR
L : : ;

107

95— 6 8§ 10 12 14 a

Fig. 7. The amplification factor |F| versus o for the
case of one type of inclusions (dashed line) and two
types of inclusions (solid curve).

waves allowed us to analyze the influence
of inclusions on the wave characteristics. In
particular, it was found that the presence of
dissipative inclusions leads to finite resonant
oscillation amplitudes and, accordingly, to
limited heights of resonant peaks in the trans-
fer function, which characterizes the amplifi-
cation of displacements on the free surface
with respect to displacements on the lower
surface of the layer. It is also shown that the
natural frequency of inclusions significantly
affects the properties of the transfer function:
1) when the natural frequency of inclusions
increases, then the auxiliary resonant peak
appears near the leading resonant frequency;
2) degeneration of resonances is observed at
high circular frequencies of standing waves.

When the medium incorporates two types of inclusions and, thus, the bimodal distribution
is used, the structure of the resonant frequencies changes only in the low frequency domain,
in the high frequency domain the intensity of the resonant peaks decreases.

These studies inspire further investigations of wave fields in the layer of the medium with
inclusions, which should help to elucidate the influence of viscosity and multimodality of
the distribution on it. The obtained results contribute to the improvement of methods of re-
sponse to soil deposits on seismic disturbances, which provide reliable seismic protection of

artificially created objects.

The work is partially supported by the project 0118U000044.
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OriHKa ceicMiuyHOI peakiiii NpoiapKy I'PyHTY 3
KOAUBHUMHU BKAIOYEHHSIMHU

O.B. Keap3sepa, C.B. Mukyask, FO.B. CemeHoBa, 1.A. CKypaTiBCbKa,
C.I. CkypariBcbKuti, 2020

IacturyT reodizuku im. C.I. Cyoootrina HAH Ykpainn, Kuis, Ykpaina

PesyabTaTi CyyacHUX AOCAIAJKEHB HACAIAKIB 3€MAETPYCIB CBIAUATH IIPO Te, 1[0 I'PYHTOBI
IIAQCTH, PO3TAIIOBAHI MiA OYAIBAIMU Ta CIIOPYAAMU, MOJKYTh CYTTEBO TPaHC(OpMyBaTH
CerCMIUHYy XBUAIO, III0 IPOXOAUTH Yepe3 IX TOBIILY, Ta KATaCTPO(MIUHUM UMHOM BIIAMHYTH
Ha 11i 00'ekTu. ToMy AOCAIAKEHHS XBUABOBUX IIPOIIECiB Y I'PYHTOBUX MaCUBaX € HaA3BU-
YalHO Ba’)KAMBUMMU i aKTyaAbHUMHU. BiaoMO, IIJO I'PYHTH XapaKTePU3YIOThCS 3HAYHOIO
HEOAHOPIAHICTIO, SIKa BIAWBAE Ha CIIEKTPaAbHI XapaKTEePUCTUKU CEMCMIYHUX XBUAB, TO-
My BOHa ITIOBUHHA BPaxXOBYBATHUCh IIPU aHaAi3i XBUABOBUX MOAIB y I'PYHTOBUX IIAACTaX.
VY ni¥ mparii 3anIpoIlOHOBAHO ONMCYBATU AMHAMIKY HEOAHOPIAHOTO I'PYHTOBOTO MAaCHUBY
B paMKaxX MOAEAl IPY>KHOT'O CEPEAOBHINA 3 OCIMAIOIOUNMU HEB3aEMOAIIOUMME MiXK CO-
0010 AUCUTIATUBHUMHU BKAIOUEHHSIMU. AAST TAKOTO MOAEABHOT'O CEPEAOBUINA CTABUTHCS
KpakoBa 3apava IIpo BiOparjiro IpomapKy CKiH4eHHOI TOBIIUHY 3 BIABHOIO IOBEPXHEIO
Ta TapMOHIYHUM 30ypeHHsIM Ha HOTro HM)KHLOMY Kpai. Ha ocHOBI po3B's13Ky I1i€l 3apaui
IIPOaHaAi30BaHO BIIAUB BKAIOUEHb Ha XapaKTEePUCTHUKHU XBHUAb. 3'sICOBAHO, IO BAACHI
YaCTOTU BKAIOUEHBb CYTTEBO BIIAMBAIOTH Ha IepeAaBaAbHY (PYHKILiO, IKa XapaKTepusye
MACHUAEHHS 3MillleHb Ha BIABHINW ITOBEPXHI BIAHOCHO 3MIillleHb Ha HMJKHIW MeXKi LIapy:
IIPY 3POCTaHHI BAQCHOI YaCTOTH KOAMBAHb BKAIOUEHb ITIOOAM3Y OCHOBHOTO PEe30HAHCY
BUAIAIETHCS AOAATKOBA PE30HAHCHA YacTOTa IPOIIapKy I'PYHTY, @ Ha BUCOKUX YaCTOTaxX
BiAOYBa€THCS BUPOAJKEHHS Pe30HAHCIB. AAST BUNIAAKY, KOAW BAACHI YaCTOTH BKAIOUEHbD
MarOTh HEAUCKPETHUU PO3IOAIA 3 ABOMA BUAIAEHUMU YaCTOTaMU, BIIAUB BKAIOUEHB ITPO-
ABASIETBCS IIPU HU3bKOYACTOTHUX KOAMBAHHAX, @ Y BUCOKOUYaCTOTHOMY Alalla30Hi 3MeH-
LTYETBCS AHUIIE Pe30HAHCHI aMIAiITyan. TTiaXia A0 @aHaAI3y BIATYKY NPOIIAPKY I'PYHTY Ha
celcMiuHi 30ypeHHS, B IKOMY BUKOPUCTOBYETBECSI MOAEAD 3 KOAUBHUMU BKAOUEHHSIMU,
€ NIEePCIIEKTUBHUM AAS 38784 CEMCMOCTIMKOTrO IPOEKTYBAHHSA Ta OYAIBHUILITBA.

KAr04o0Bi cAOBa: aMIIAITYyAHO-4aCTOTHA XapaKTEPUCTUKA, PE30HAHCHI SBUIIA, MOAEAL
HEeOAHOPIAHUX Te0CepeAOBUIL], MOAEAIOBAHHS PeaKIlil I'PYHTY Ha CEMCMIYHI BIAMBU.
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O1ieHKa CerCMUYECKON PeaKIIuu CAOS
IPYHTA C KOA€OAIOUINMMUCS BKAIOYEHUSIMU

A.B. Keaa3epa, C.B. Mukyasak, IO.B. CemeHOBa,
H.A. Ckyparosckas, C.U. CkyparoBckum, 2020

NuctutyT reocnsuku um. C.1. Cy6oornna HAH Ykpauss!,
Kues, Ykpauna

Pe3yabpTaThl COBpEMEHHBIX MCCAEAOBAHUY IIOCAEACTBUU 3€MAETPSICEHUN CBUAETEAD-
CTBYIOT O TOM, UTO TPYHTOBBIE IIAGCTHI, PACIIOAOKEHHBIE ITOA 3A@HUSIMUI U COOPY KEHUSIMY,
MOTYT CYIILeCTBEHHO TPAaHC(POPMHUPOBATE CECMUYECKYIO BOAHY, IIPOXOAAIYIO Yepes UX
TOAILY, ¥ KQTaCTPOPUUECKUM 00PA30M IOBAUATH Ha 3TU OOBEKTHL [1oaTOMYy MCCAepOBa-
HUS BOAHOBBIX IIPOIIECCOB B IPYHTOBBIX MAaCCUBAX YPE3BBIYAMHO BA’KHBI U AKTYAABHEL.
WM3BeCTHO, 4TO T'PYHTHI OOAQAAIOT 3HAUYUTEABHOU HEOAHOPOAHOCTBIO, BAUAIOLLEU Ha
CIIeKTPaAbHbIE XapaKTEePUCTUKU CENCMUYECKUX BOAH, IO3TOMY OHA AOAYKHA YUUTHIBATh-
Cs IIPU aHaAW3€e BOAHOBBIX IIOA€M B IPYHTOBBIX IAAcTax. B aToi paboTe mpearosKeHO
OIMCHIBATh AMHAMUKY HEOAHOPOAHOT'O TPYHTOBOTO MaCcCHBa B paMKaX MOAEAU yIIPpYTON
CPEABI C OCIIMAAUPYIOIIUMYU HEB3aUMOAENCTBYIOIIUMHU MeXXAY COOOM AMCCUTIAaTUBHBIMU
BKAIOUEHUSAMU. AN TaKOW MOAEABHOU CpeAbl CTAaHOBUTCS KpaeBasd 3apada O BUOpaluu
CAOsI KOHEUHOU TOAIIIMHEL CO CBOOOAHOM ITIOBEPXHOCTBIO ¥ TaPMOHUYECKUM BO3MYIIIeHUEM
Ha ero HM>KHeM Kpae. Oniupasich Ha pellleHue 3TOM 3aAa4y, TPOaHaAN3UPOBAHO BAUSHUE
BKAIOUYEHUU Ha XapaKTEPUCTUKU BOAH. BEISICHEHO, UTO COOCTBEHHBIE YaCTOTHI BKAIOUEHUN
CYLIIeCTBEHHO BAUSIOT Ha IIEPEAQTOYHYIO (PYHKIIHUIO, OIIMCHIBAIOIIYIO YCUAEHHE CMellleHU N
Ha CBOOOAHOU NMOBEPXHOCTU OTHOCUTEABHO CMEIeHUN Ha HUJKHEHN T'PAaHUIle CAOS: IIPpU
YBeAWYeHNU COOCTBEHHOU YaCTOTHI KOAeOAHNN BKAOUEHNN BOAN3M OCHOBHOT'O Pe30HAHCa
BBIAGASIETCSI AOIIOAHUTEAbHAsI pe30HAaHCHAsI 9aCTOTa CAOSI I'PYHTA, @ Ha BLICOKUX 4aCTo-
Tax IIPOUCXOAUT BHIPOJKAEHME Pe30HAaHCOB. AAST CAyYasi, KOTAQ COOCTBEHHBIE YaCTOThI
BKAIOUEHUN MMeIOT HEAUCKPETHOe paclpeAeAeHre C AByMsI BBIAGA€HHBIMM YaCTOTaMH,
BAUSTHUE BKAIOUEHUUN MIPOSIBASIETCS IPHU HU3KOUYACTOTHBIX KOAeOaHUAX, @ B BBICOKOYA-
CTOTHOM 0OAAQCTH YMEHBIIAIOTCS TOABKO Pe30HAHCHBIe aMIAUTYABL. [TOAXOA K aHaAU3Y
PeakIIuM CAOS FPYHTA Ha CelCMUUeCKHe BO3MYIIeHUs, B KOTOPOM MCIIOAB3yeTCsI MOAEAD
C KOAEOAIOIIUMUCS BKAIOUEHUSIMH, IBAIETCS IEPCIIEKTUBHBIM AAS 3aAa4 CEUCMOCTOUKOTO
NIPOEKTUPOBAHMS U CTPOUTEABCTBA.

KAaroueBnle cAOBa: aMIAUTYAHO-4YaCTOTHAS XapaKTePUCTHUKA, Pe30HAHCHEIE IBAEHNUS,
MOAEAU HEOAHOPOAHBIX T€OCPeA, MOAEAMPOBAHUE peaKIuU I'PYHTa Ha CelCMUYeCKUue
BO3AEUCTBUS.
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