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It is known that soil massifs can amplify or weaken seismic waves generated by earth-
quakes. Therefore, the problem of studying the impact of soil deposits on the passage of
seismic waves is important in terms of the facilities in operation and the design of new
earthquake-resistant objects. Soil deposits, which are allotted for building, are mainly
layered. In addition, the materials in these layers are also significantly heterogeneous. To
describe the dynamics of inhomogeneous soil massif, the model of an elastic continuum
with oscillating non-interacting inclusions is used. Within the framework of this model,
the resonant properties of multi-layered soil deposit are analyzed at the conditions of
harmonic perturbations applied to the bedrock. On the basis of the solution to the boun-
dary value problem concerning oscillations of the system subjected to the free surface and
conjugation conditions on the boundaries between layers, it is derived the transfer func-
tion which characterizes the amplification of shear displacements by the layered system.
Within the framework of problems on the oscillations of two- and five layered systems,
the analytical studies were confirmed by numerical evaluations of transfer functions. In
particular, using the built-in functions of the system «Mathematica», it is developed the
numerical procedure for evaluating the frequency dependencies of amplification factor
for layered Kelvin—Voigt media and media with oscillating inclusions. Moreover, for the
two-layered system, it is analyzed the effect on the transfer function for the ratio of layers'
shear moduli and the ratio of the inclusions' natural frequencies. It is also shown that the
maxima in the transfer function correspond to the eigenfrequencies of the boundary value
problem.The obtained results and the proposed approach to the study of the response of
the layered inhomogeneous medium to vibrational perturbations can serve as a theoretical
basis for earthquake-resistant design and construction.

Key words: layered soil deposit, amplitude-frequency characteristics, resonant phe-
nomena, models of heterogeneous media,earthquake resistance, ground seismic response
modeling.

Analysis of the destructive effects of past
and recent earthquakes [Ishihara, 1996; Adi-
moolam, Banerjee, 2019] has shown that the
pattern of damage during earthquakes is ma-
inly determined by the reaction of local soils
to seismic loading. The near-surface layers of
soil strata act as a filter that amplifies/weakens
the amplitude of seismic waves.

Since the amplification of seismic oscilla-
tions by soil deposit can be very significant
[Kausel, Roésset, 1984; Pratt et al., 2017; Adi-
moolam, Banerjee,2019; Kumar et al., 2020],
the analysis of the soil response became one
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of the most important tasks of engineering
seismology [Gutowski, Dym, 1976]. The soil
reaction modeling allows one to determine
the dominant frequencies of a local ground
site, to estimate the enhancement of seismic
oscillations by local soils [With, Bodare, 2007,
Hosseini, Pajouh, 2010; Kumar et al., 2020],
and to obtain accelerograms and response
spectra of soil oscillations on the surface. In-
formation on the probabilistic characteristics
of seismic oscillations on the soil surface is
required for evaluating the critical dynamic
stresses and strains that cause loss of soil
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stability and, consequently, the destruction
of buildings and structures [Gutowski, Dym,
1976; Takemiya, Yamada, 1981; Mandal et al.,
2012] located on such ground.

To assess the seismic ground response
of the local area, it is used the well-known
[Sarma, 1994; Ishihara, 1996; Kramer, 1996]
approach based on the shear waves which
propagate vertically upwards from the under-
lying bedrock through the layers of ground.
In engineering practice, as a rule, linear or
equivalent linear methods are used with the
involvement of SHAKE [Schnabel et al., 1972],
EERA [Bardet et al., 2000], Deepsoil [Hashash,
2012], and others. The algorithms [Gutowski,
Dym, 1976; Sarma, 1994; Hosseini, Pajouh,
2010] incorporated in these programs are
based on the assumption that all boundaries
between the layers are horizontal and each
layer is homogeneous.

To take into account the structure of na-
tural soils [Kundu et al., 2019; Kumar et al.,
2020; Mondal et al., 2020], classical models of
continuum mechanics are generalized in two
major ways. One approach is based on the
modification of medium's equations of state.
Starting from the simplest model, i. e. Hook's
law, the more advanced models have been
developed, namely Maxwell, Kelvin—Voigt,
Zener (standard linear solid) models [Ka-
liski et al., 1992; Ishihara, 1996; Kramer, 1996;
Erofeev, 2003], in particular, derived within
the framework of internal variables concept
[Danylenko et al., 2011], as well as nonloca-
lity ideas [Kaliski et al., 1992; Eringen, 1999;
Danylenko etal., 2011; Kendzera et al., 2020a].

Another way to improve the description
of soil state is related to the modification of
equations of motion by means of introducing
the auxiliary equations for the additional de-
grees of freedom. The bright example of this
approach is the Cosserat model where the ro-
tational degrees of freedom are incorporated
[Erofeev, 2003; Green, Rivlin, 1964]. In this
paper, we use the generalization of classical
Lame equations [Slepjan, 1967; Palmov, 1969;
Mishuris et al., 2019] taking into account the
oscillating degrees of freedom. To do this,
two continua are considered. The carrying
medium is classical, while the other consists
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of a set of partial oscillators representing the
medium's inclusions. Such models and their
applications for the investigation of wave dy-
namics were studied in the papers [Danilenko,
Skurativskyy, 2008; Danylenko, Skurativskyi,
2012, 2016, 2017].

The aim of the present studies is to evalu-
ate the resonant properties of multilayer soil
systems using a generalized model with oscil-
lating inclusions.

Analytical estimation of soil response to
the harmonic disturbances. The assessment
for seismic response of heterogeneous soil
deposit (single layer) on the basis of the model
of mutually penetrating continua has been
developed in [Kendzera et al., 2020b]. The
equations of motion for the one-dimensional
shear deformation of the single layer soil de-
posit read as follows

o0
puUr =GU, —p I m(Q) wydQ,
0

wy + Q% (w-u)+ Q%t(w-u), =0, (1)

where u (z, t) and w (z, t) are the horizontal dis-
placements of carrying medium and attached
oscillator respectively, and G is the shear mo-
dulus. The quantity Q stands for the natural
frequency of a partial oscillator. Assume also
that the relaxation time t is constant for all
oscillators. The function m (x) describing the
distribution of oscillators over their natural
frequencies is chosen as follows

m(x)=md(x - Q),

where 6 (°) is the Dirac delta function and the
parameter m coincides with the ratio of densi-
ties of continua.

It should be noted that in the case of delta
distribution, model (1) has no integral term
and is reduced to the model with oscillators
possessing the identical natural frequencies.
In this work, we deal with the generalization
of the approach developed in [Kendzera et
al., 2020Db] to the case of layered soil deposit.

Thus, we consider the layered medium of
thickness H (Fig. 1), which is composed of N
layers and rests on arigid base. Each layer is of
thickness hgand contains inclusions (internal
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Fig. 1. The scheme of layered soil deposit.

oscillators). In what follows, in each s-th layer
the medium is described by the equation of
motion (1), so that

(0= (6 (0),), - o (),
(Ws)tt+Q§(WS_uS)+Q§Ts(Ws_us)t =0,
s=1,.., N. (2)

As shown in Fig. 1, each layer is subjected
to the own reference frame with the origin
placed at the upper layer boundary and the
axis directed downwards. The typical assump-
tion [Sarma, 1994; Kramer, 1996; Kundu et al.,
2019; Mondal et al., 2020] about the absence
of stresses at the free ground surface is used:

(z=0)=0.

We also assume that the bedrock is de-
formed according to the harmonic law

oy,

o 3)

N
uy | zy = D hs | = Qe'®t, (4)
s=1

where Q and o are the amplitude and fre-
quency of external disturbances respectively.
Since we are interested in resonant properties
of soil deposit, then it is suitable to assume
that disturbances at the bottom edge are of
unity amplitude, i. e. Q = 1. The value of am-
plification factor F for the deposits defined
as a ratio of displacement amplitudes at its
edges [Kramer, 1996; Rivin, 2003; With, Bo-
dare, 2007]
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_ lu(z=0;t)]
lu(z=H;t)|’

where u (z = H; t) is the deformation at the
depth H, and coincides with the value of dis-
placement at the ground surface.

In contrast to the problem on the single soil
layer, the problem on the multilayered me-
dium contains auxiliary conditions related to
the conjugation of displacements and stresses
at the boundaries between layers. In this work,
we use the physically motivated conditions
of smoothness of deformations and stresses
[Kramer, 1996; Kundu et al., 2019; Mondal et
al., 2020]

ou OUs 11
si(zs:hs):Gs+1 07, 1 (s+1:0)v
s=1,..,N-1 5)

Applying the approach described in works
[Kramer, 1996; Kendzera et al., 2020b], the
dependency of amplification factor of layered
soil deposit on the frequency o is constructed.
To do this, let us derive the solution of model
(1)—(3), which relates to the regime of depo-
sit's oscillations with the constant amplitude
and frequency o.

In each layer, the partial solution can be
found in the following form

U =US(ZS)eiwt, W, ZWS(ZS)eimt ,(6)
where

Ug = Ae'fs? 1 Bee % W, = BUs,

ms Q2 (1+ rsim)

k2=Ps o2]14 ,
> G Q§(1+rsim)—w2
. 0} (1+ t5i0)

B 02 (1+ tsim)—mz .

Using the boundary condition (3) the cons-
tantsA; and By canbespecified,i.e. A; =B = A.
Then u, (zl,t) = Ae'®t (e'klz1 +e ki ).From
the condition (4) it follows that
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Using the solutions (4), the conditions at
the discontinuities can be written in the form
of algebraic equation [Kramer, 1996]

iksh —iksh,
Ase SS+Bse SS:A5+1+Bs+1,

Gk [ Age s — B el )
:Gs+1iks+1(As+1_ Bs+1)a

s=1,.,N -1

Solving the together with relation (7) and
taking into account A; = B; = A, one obtains
the following values of coefficients Ag and Bqg
[Kramer, 1996]:

1-

1+p ) elkshs
)e |kshs]
1 .
Bs+1:E|:As(1_Hs)elkshs+
+BS(1+us)e*ikShS},

GS kS
GsiKs i
worth noting that from relations obtained it
follows that the coefficients are the function
of the quantity A only, i.e. A; = Ag(A) and Bg=
= B5 (A). In turn, equation (7) allows one to
derive the value of A. Thus, the evaluation of
amplification factor F can be realized via the
formula

AS+1 -

. r\>||—\

+ B

where pg = ,s=1,..., N-1.1It's

F:

Aeiwt(eiklzl+e—iklzl)

21:0

. =|2A|.
| e ot |

The resonant curve for the two-layered
media. The main features of the analytical
treatments presented above can be outlined
for the two-layered soil deposit. In this case,
it is easy to derive the analytic expression for
the quantity
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A=
1
kl . .
2| coskyhy cosk,hy — N sink,h, sink,h,
202
Thus,
F =
1
cosk, h, cosk,h, — 7; sink,hy sink, h,
2 X2

()

For comparison, it's convenient to take the

Kelvin—Voigt medium [Sarma, 1994; Kramer,
1996] obeying the equation of motion

RYA 3

ot?

_ 0

__(%

0z

0

—Vsj+

01

, (9)

Ps

otoz?

where n=2&/® stands for viscosity. The
amplification factor F is defined by the sa-
me formula (8), but in this case, we should
put G, —G1 Gy —G2 where G, = G + 2&i,
k? = w’ps /Gy, S=1,2.

Numerical simulation of soil response
to the harmonic disturbances. To check the
analytic studies and develop the procedures
for the more general form of functional de-
pendencies of soil characteristics on depth,
the numerical approach for evaluation of
amplification factor is utilized. During nu-
merical simulations tools incorporated into
«Mathematica» system are used. To apply
numerical methods, the system (2)—(4) should
be adapted. At first, let us fix the reference
frame (the point O is the origin, Oz is the axis)
as it is shown in Fig. 1. We replace the set of
systems with the conjugation conditions at the
boundary between layers by the single system
with discontinuous coefficients:

p(2) Uy =(G(2)u, ) —p(2)m(2) W,

Wy + Q2 (2) (w—u) +
+Q%(z) t(z) (W-u), =0,
M (z=0)=0,
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u(z=H)=e'"', ze[0;H]. (10)

The functions describing the soil characte-
ristics with depth are defined as follows

(0(2):6(2): 07 (2); <(2)} =

p
=> ®(Z—Zk){pk;GkaQi;Tk}’
k=1

where O (o) is the Heaviside step function.
Next, the discontinuous function G (z) should
be smoothed out. To do this, we apply the fol-
lowing procedure:

G(Z)zé(z):(p(z;Gl,Gz, h):

G, -G,
= ——— arctan (e(z-h)) +

G, + G,
— (11
5 (11)

where the parameters G, » define the asymp-
totic values of function G (z), h represents
the coordinate of discontinuity, € is the rate
of smoothness (the function G (z) tends to a
step function as € — ). When the function
G (2) possesses several discontinuities, the si-
milar procedure can be used. Leth;, j=1, ... K
be the coordinates of discontinuities, then

G(z)~G(z)=

N -1 S N -1
= > 9| 2G5, Gg g, D, 0y [ = D Gs.(12)
s=1 j=1 §=2

So, the system (10) with prescribed boun-
dary and zero initial conditions is solved by
the command NDSolve [...]. The solution is
evaluated at a long time interval to provide
that all transient processes are passed and
the system reaches the steady oscillating re-
gime. We are interested in the solution at free
surface (z = 0). Namely, it is evaluated the am-
plitude of free surface oscillations when the
steady mode is realized. This amplitude co-
incides with the amplification factor F due to
its definition we are used. Finally, varying the
frequency o and deriving the corresponding
values of F, the resonant curve is constructed.

To check the properties of numerical pro-
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cedure, we consider the Kelvin—Voigt two-
layer (N =2) model (9) with the boundary con-
dition (3), (4). The parameters are fixed as fol-
lows:

pj =121, G;=13", h;=1 &=005,
(13)

and, according to relation (11), the function
G(z2) =G (2) :(p(z; Gy, Gy, hl).TheFig.Z,a
represents the results of the numerical deriva-
tion of resonant curve (points). The analyti-
cal expression (8) of amplification factor F is
drawn by solid curve which fits the points well.
The same numerical simulation was repeated
for the five layered soil deposit which is cha-
racterized by the same power dependencies
(13) but now N = 5. The resulting resonant
curve is depicted in Fig. 2, b.

The similar numerical procedure is used
for the estimation of F in the case of two-
layered medium with oscillating inclusions.
At first, we consider the layers when only
their shear module G are different. So, as-
sume that G; =1.37, hj=1, j=1,2, where
as py=pp=1, m=m=06, 1=1=1,
Q, =Q, =0.9. The resulting numerically
evaluated values of the amplification factor F
are plotted in Fig. 3, a with filled points.

For comparison, the analytically derived
function F is drawn by the solid line. It is evi-
dence of the perfect fitting of both approaches.
Fig. 3, b shows the case when both layers do
not possess identical characteristics. Thus,
Gj=13) hj=1, j=1,2, p,=1,p, =1.2,
m =06 m, =081 =11=110,=09 Q, =11,
The good fitting of numerical and analytical
curves is observed as well. In both cases, there
are two resonant frequencies in the range
o € [0.2, 4], and the amplification factor for
the first resonant frequency o is much higher
than for the second resonant frequency w,.
Analytical expression (8) for the amplifica-
tion factor in the case of two-layer applica-
tion allows us to analyze how it is affected
by the relationship between the parameters
of the layers. The contours of the surface
F = F (y, ®) shown in Fig. 4 indicate that the
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Fig. 2. Amplification factor F versus frequency o derived for the two-layer (a) and five-layer (b) Kel-
vin—Voigt model. The solid lines correspond to the analytical solution, and the points represent the

results of numerical simulations.

resonant frequencies depend on the ratio of
the shear moduli for the second and first lay-
ers Y =G, / G;: when this ratio y increases,
the resonant frequencies shift towards their
increase. In addition, in the case of the ratio
vy = 1, the amplification factor F for the first
resonant frequency is much higher than for
subsequent resonant frequencies. As the ratio
y increases, the amplification factor becomes
more uniform for all resonant frequencies. It
should be noted that only cases when y =1
are analyzed, because the second layer, be-
ing under the first layer, is denser, and hence
G, >G;.

It is also important to analyze the influen-
ce of the ratio of natural frequencies of par-

o =
r 1

[5%] w o
T Y T

25 w,
a

1,5 2

tial oscillators 8 = Q, / Q; on the dependen-
ce F =F (o). Fig. 5 shows that there is the
range 0 € [1, 2] that separates the two areas
with the different nature of the dependencies
F =F (®). In the area 0 € [0, 1] the maxima
of the function F (®) are shifted toward the
low frequencies relative to the maxima in the
area 0 € [2,11]. In the area 0 € [1, 2] there s
almost none except one natural frequency. It
should also be noted that in the aria 6 € [2, 11]
there is no shift of the maxima of the function
F (o) with increasing the ratio 6 = Q, / Q,.
The construction of the amplification fac-
tor is performed also for the five-layered soil
deposit with oscillating inclusions. Used pa-
rameters are as follows: Gj =1.3/J, pj = 1.27,

NOW e Gl O W

1,0 1,5 20 25 30 35 40w
b

0,5

Fig. 3. The dependence of amplification factor F on the frequency o derived for two-layer soil deposit
when the only function G (z) is discontinuous (a) and in addition other functions m (z), p (z), Q (2).

1 () are discontinuous as well (b).
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_-Y:l
_Y=3

Ao

Fig. 4. The dependence of amplification factor F on
the frequency o and the ratio of shear moduli y =
= G,/G, derived for the two-layer model with oscillat-
ing inclusions (bottom panel). Amplification factor F
versus the frequency o for the four ratios y highlight-
ed by the lines on the bottom panel (upper panel).

[C I~ I - - K]

Fig. 5. The dependence of amplification factor F on
the frequency o and the ratio of natural frequen-
cies of partial oscillators 6 = Q, / Q) derived for the
two-layer model with oscillating inclusions (bottom
panel). Amplification factor F versus frequency o for
the five ratios 0 highlighted by the lines on the bottom
panel (upper panel).
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m; =0.8+0.1j,rj =0.5+0.02j,Qj =1.57,
hj =1, j=1,2,.., 5. The acceptable fitting
is observed as well (see Fig. 6).

Relation to the boundary value problem.
It is worth noting that the estimation of factor
F and solving the boundary value problem are
related tasks. To show this, consider the sys-
tem (10) written for the two-layer soil deposit.
Itis easy to show that the boundary conditions
can be reduced to homogenous (zero) by the
change of variable u >u -Qe 't Then the
eigenvalues of the boundary value problem
are defined by the system (10) and boundary
conditions u, (z=0)=u(z=H)=0. The
auxiliary conditions at the discontinuity at
z =h, coincide with the relations (5). Thus,
assuming that all quantities m(z),G(z),
p(z), Q(z), ©(z) are the step functions and
using the solution (6), we derive the solution
in the first layer

e ikjz I e—lklz

ikh —ikhy
el oot

u; (z)= wy (z) =Byuy (2)

and in the second one

eeikz(l—hl) N e_ikl(z_hl)

u,(z)= 011 ,

-2ik, (H = h
o 2 ( 1).

Wy (2) =Byuy (2), 6=-

Here we take into account zero boun-
dary conditions and the assumption that
Uy (z=hy)=u, (z=h;)=1providing the va-
lidity of the first relation of conditions (5).
From the second equation of conditions (5)
it follows that Gy (U ) =G, (u, )Z which, in
turn, is reduced to the algebraic equation

Gyky 1

Goky

tan(klhl)tan(kzhz)

The relation obtained is a characteristic
equation for the boundary value problem and
provides its complex-valued eigenvalues A o

j=1,2,....Itis obvious, the natural frequen-
cies of the two-layer medium coincide with the
real part of kj ie o;=Re ( A ) . In particu-
lar, the evaluation of two first natural frequen-
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Fig. 6. The dependence of amplification factor F
on the frequency o derived for the five-layer model
with oscillating inclusions.

cies ®; and o, gives the values 0.698 and 2.826,
which coincide perfectly with the maxima in
the profile of F (see Fig. 3, a). The similar pro-
cedure can be developed for the estimation
of eigenfrequencies of multilayered deposit.

Concluding remark. The presented re-
search is concerned with the assessment of
resonant properties of multi-layered non-ho-
mogenous soil deposits. To describe the dy-
namics of these media, the mathematical mo-
delin the form of mutually penetrating conti-
nua was used. The procedure for amplification
factor evaluation was adapted on the basis of
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CelicMiuHa peakiiisi miapyBaToi IPYHTOBOI
TOBIIIi 3 BKAIOYEHHSIMU

O. B. Kenaszepa, C.B. Mukyask, IO.B. CemeHOBa,
LA. Ckypariscbka, C.1. CKypariBcbKu, 2021

Iacruryt reodizukm im. C.I. Cyo6oTtina HAH Ykpainmy,
KwuiB, Ykpaina

BipoMo, 110 I'PYHTOBI MaCUBU MOJXKYTh MIACHAIOBATU ab0 ITOCAAOAIOBATU CEUCMIiYHI
XBUAI, FeHepOBaHi 3eMAeTpycaMu. ToMy 3apada AOCAIAKEHHS BIIAUBY I'DYHTOBMX TOBIII HA
IIPOXOAKEHHS CEeMCMIYHIUX XBUAD BA’KAWUBA 3 IO3UIIil €KCIIAyaTallil CIIOPYA Ta IPOEKTY-
BaHHSI HOBUX CEMCMOCTIHKUX 00'€KTiB. prHTOBi TOBIIIi, Ha IKUX 3AIMCHIOETHCA 3a0yA0Ba,
3Ae0IABIIIOTO MAOTh IaPyBAaTy CTPYKTYpPY. MaTepiaa UX MIapiB TAKOK CyTTEBO HEOAHO-
piaHUN. AAS OIMCY AMHAMIKKA HEOAHOPIAHOTO I'PYHTOBOTO MAaCUBY BUKOPUCTAHO MOAEAD
IIPY>KHOTO KOHTUHYYMY 3 OCIJUAIOIOUMMU HEB3aEMOAIIOUMMU BKAIOUEHHSIMU. B pamKax
i€l MOA€eAl MpoaHaAi30BaHO Pe30HAHCHI BAACTHUBOCTI 0araToIIapoBOTO IPYHTOBOIO Ma-
CHBY B YMOBAaX rapMOHIYHOTr0o 30ypeHHs, IIPUKAAAEHOTO A0 HUJKHBOI MesKi MacuBy. Ha
IMiACTaBi PO3B'3Ky KpaloBOi 3aAa4i PO KOAUBAHHS TAKOI CUCTEMU 3 BIABHOIO BEPXHBOIO
IIOBEPXHEIO0 Ta YMOBAMM CIIPSIKEHHS Ha Me’Kax MPOLIapKiB OTPUMAHO IIepepAaBaAbHY
YHKIIiO, IKa XapaKTepU3ye MiACUAEHHS [IOIIepeYHNX 3MillleHb IIIapyBaTO0 CUCTEMOIO.
B Merkax 3apad IIpO KOAMBAHHS ABO- Ta I1'SITUIIAPOBOI CUCTEM aHAAITUUHI AOCAIAKEHHS
OyAO HIATBEPASKEHO YHCAOBUM PO3PAXyHKOM IepepAaBaAbHUX (PYHKIIIN. 30KpeMa, 3 BU-
KOpUCTaHHAM BOypOBaHOI (pyHKIITI cucTtemMu «Mathematica» po3poOAeHO IIPOLEAYPY
OO4YMCAEHHS YaCTOTHUX 3aA€KHOCTeN KoedilieHTa MACUACHHS AAS IaPYBATUX CEPEAO-
Bul KeabBina—@oUrTa Ta CepeAOBUIN 3 KOAMBHUMM BKAIOUEHHAMU. AAST ABOIIIAPOBOI
CHCTEMU TAKOJK IIPOAHAAI30BaHO BIIAUB Ha IIepEAABAABHY (DYHKIIIO BIAHOIIIEHHS MOAYAIB
3CyBY MaTepianiB ABOX IIapiB 1 BIAHOLIEHHS BAQCHUX 4aCTOT BKAIOUEHb. [TokasaHo, 110
MaKCHUMyMHU y II€PEAABAABHIN (DYHKIIIT BIAIIOBIAQIOTh BAQCHUM YaCTOTaM KPaloBOI 3aAa-
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yi. OTpuUMaHi pe3yAbTaTH Ta 3allPOIIOHOBAHUM MIAXIA AO BUBYEHHS BIATYKY IIapyBaTOIO
HEOAHOPIAHOT'O CEPEAOBHUIIA Ha KOAUBAABHI 30ypPEHHS MOJKYTb OYTHU TEOPETUYHUM IIiA-
IPYHTAM AASL CEMCMOCTIUKOIO IIPOEKTYBAHHA Ta OYAIBHUIITBA.

KAro4oBi caroBa: mapysaTa IPyHTOBA TOBINE, aMIIAITYAHO-4aCTOTHA XapPaKTEPUCTUKA,
PE30HAHCHI IBUIIQ, MOAEAL HEOAHOPIAHUX re0CEePEAOBHUIL, CEMCMOCTIUKICTh, MOAEAIOBAH-
HS peakliil IPyHTYy Ha CEeMCMIuHI BIIAUBMU.

CelicMuuyecKasi peakiusi CAOUCTON I'PYHTOBOM
TOAIIY C BKAIOYEHUSIMHU

A.B. Kenasepa, C.B. Mukyasak, IO.B. CemeHoBa,
H.A. Ckyparosckas, C.U. CKkyparoBckuii, 2021

Wucrturyt reopusuku um. C.U. Cycootura HAH Yrpausner, Kues, YkpauHa

M3BeCTHO, UTO I'PYHTOBBIE MACCHUBLI MOT'YT YCUAMBATEL UAU OCAAOASTE CelicMUYecKue
BOAHBI, TeHepHUpYyeMble 3eMAeTPsICeHUIMHU. [T03ToMy HCCcAeAOBaHNEe BAUSHUSA TPYHTOBBIX
TOAII] Ha CKOPOCTB IIPOXOKAEHHUS CeMCMUYEeCKUX BOAH Ba)KHa C TOYKU 3pPEHUs 3KCIIAYa-
Tallu¥ COOPY KEeHUMN U IIPOEKTUPOBAHUS HOBBIX CEMCMOCTOUKUX OOBHEKTOB. [ pyHTOBEIE
TOAIIIY, HA KOTOPHBIX BEAETCS CTPOUTEABCTBO, B OCHOBHOM UMEIOT CAOUCTYIO CTPYKTYPY.
Marepunan 3THX CAOEB TaK)Ke CyIIeCTBEHHO HEOAHOPOAHBIN. AN ONMCAHUS AMHAMUKHU
HEOAHOPOAHOTO IPYHTOBOTO MaCCHBA UCIOAB30BaHA MOAEAB YIPYroro KOHTUHyyMa C
OCIIMAAMPYIOIIUMHU HEB3aUMOAENUCTBYIOIIMMU BKAIOUEHUAMU. B paMKax 3TOM MOAEAU
IIPOAHAAM3UPOBAHBl PE30HAHCHBIE CBOMCTBA MHOIOCAOMHOTO TPYHTOBOT'O MAaCCHUBA B
YCAOBUSX rapMOHUYECKOr'O BO3MYIIEHNs, IIPUAOKEHHOTO K HUJKHEU IPaHnulle MaCCUBa.
Ha ocHoBaHuu pelnieHns KpaeBou 3aAa4i O KOAeDAHUSAX TaKOM CUCTEMBI CO CBOOOAHOU
BepXHel IIOBEPXHOCTHIO U YCAOBUSIMU COIPSI>KEHMS Ha 'PaHUIaX CAOEB ITIOAyUYeHa Ilepe-
MATOYHas PYHKIMS, KOTOPas XapaKTepu3yeT YyCUAEeHHUe IIOIIepeYHBIX CMellleHUM CAOMCTON
cucTeMo. B paMKax 3apad 0 KOAeOaHUAX ABYX- U IATUCAOUHBIX CUCTEM aHAAUTHUYEeCKHe
HCCAEAOBAHUS OBIAM IIOATBEPIKAEHBI UMCAOBBIM PACyeTOM IIE€PEeAATOTHBIX (DYHKIUN. B
YaCTHOCTH, C UCTIOAB30BaHMEM BCTPOEHHBIX (QYHKIUM cucTeMbl «Mathematica» paspa-
OoTaHa IIpoIleAypa BBIUMCAEHHUS YaCTOTHBIX 3aBUCHUMOCTEN KO3 PUIMEeHTa YCUAEHUS
AT cAouCTHIX cpep KeabBuna—@oMrTa 1 Cpep, ¢ KOAEOAIOIITUMUCS BRKAIOUEHUSAMU. AN
ABYXCAOWHOM CUCTEMBI TAK Ke IIPOAaHAAM3UPOBAHO BAUSHIE Ha IePeAATOUHYIO (DYHKITUIO
OTHOIIIEHUS MOAYAEHN CABUTa MATEPUAAOB ABYX CAOEB, @ TAK)K€E OTHOIIEHUS COOCTBEHHBIX
4acTOT BKAIOYeHUU. [ToKazaHo, 4TO MAaKCUMYMBI B II€PEAATOYHOM (DYHKIIMU COOTBETCTBYIOT
COOCTBEHHBIM 4aCTOTaM KpaeBOU 3apaud. [ToayuyeHHBIE Pe3yABTATHL U IPEANOSKEHHBIN
IIOAXOA, K U3YYEHUIO OTKAMKA CAOUCTOU HEOAHOPOAHOM CPEABI Ha KOAeOaTeAbHBIE BO3-
MYILLeHUS MOT'YT CAY’KUTb TEOPETUUYECKUM OCHOBAHHUEM AAST CEMCMOCTOMKOIO IPOEKTHU-
POBaHUS U CTPOUTEALCTBA.

KAaAroueBble CAOBa: CAOUCTas IPYHTOBAS TOAINQ, aMIAUTYAHO-4aCTOTHASA XapaKTe-
PHCTUKaA, pe30HaHCHbBIE SIBAEHUS, MOAEAU HEOAHOPOAHBIX T'eoCpep, CEeMCMOCTOMKOCTD,
MOAEAUPOBaHMeE PeaKIIuU I'PyHTa Ha CeiCMUYeCKUe BO3AEHCTBUSA.
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