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In recent research, the dynamics of the medium located in the seismic region at the
boundary of tectonic plates is considered as the behavior of a complex open system that
is in a state of self-organized criticality. Such an approach results from the very laws of
earthquake generation and the complex structure of these areas. The network of faults
and cracks makes seismic zones significantly heterogeneous and fragmented. Therefore,
discrete models are increasingly used to model the dynamics of these media. The basis
for comparing the model and the full-scale object serves the statistical regularities of
their dynamic deformation. Relying on this concept, in the paper it is modeled the shear
dynamics of a granular massif composed of identical cubic granules and is compared sys-
tem's statistical characteristics with the similar characteristics obtained for the earthquake
generation zone. Shear deformation is carried out by means of the box consisting of two
parts — movable and immovable ones. The movable part possesses the cover which receives
kinetic energy from the granular massif in the process of shear deformation. For numerical
simulations of the shear dynamics, the discrete element method is applied. The numeri-
cal calculations result in the distribution of cover's kinetic energy jumps simulating the
perturbations transmitted from the granular system to an external medium. It turned out
that the distribution for these perturbations is the power dependence with an exponent that
is inherent in earthquakes (Gutenberg-Richter law). Before and after large perturbations
it is observed the swarms of smaller perturbations which are the analogues of foreshocks
and aftershocks. The distributions of element's velocity fluctuations and the correlation of
velocity fluctuations are calculated as well. It is revealed the similarity of distributions for
velocity fluctuations in the model massif and in the seismically active region of California,
which includes the San Andreas fault. Moreover, the similarity of corresponding correlation
functions is shown. They both are the functions of the stretched exponent. The obtained
result indicates that shear processes in granular massifs and natural seismic processes in
the San Andreas Fault are statistically similar.
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Introduction. It is well known that the me-
dia in seismically active areas are significantly
fragmented by numerous faults and cracks
[Ben-Zion, Sammis, 2003; Billi, Storti, 2004;
Meade, Hager, 2005; McCaffrey, 2005; Love-
less, Meade, 2011]. The medium's structure-
ness causes a special behavior during their
deformation, which differs significantly from
the behavior of continuous media. The main
characteristic feature of the structured me-
dium deformation is the irreqgular release of
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accumulated elastic energy in the form of
earthquakes in a wide range of energies, weak
seismic signals, and tremors of non-volcanic
origin [Shelly et al., 2006; Beroza, Ide, 2011;
Kanamori, Schubert, 2015; Scholz, 2019].
According to recent research, the process of
granular medium deformation is similar to the
deformation of fragmented media in seismi-
cally active zones [Meroz, Meade, 2017
Mykulyak, 2019; Mykulyak et al., 2019a,b]. In
particular, the deformation of granular media
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occurs intermittently and it is accompanied
by the generation of acoustic perturbations.
These stochastic perturbations obey the same
statistical laws as earthquakes: Gutenberg-
Richter law, Omori's law, the universal low
for distribution of intervent times between
avalanches [Geller et al., 2015; Lherminier et
al., 2019; Mykulyak et al., 2019b, 2021; Kumar
et al., 2020].

Meroz and Meade studied in detail the
motion of tectonic structural elements in
California, in the area between two tecton-
ic plates: the Pacific and the North Ameri-
can, which includes the San Andreas Fault
[Meroz, Meade, 2017]. This area is divided
by a network of faults into a large number
of tectonic elements, which as a result of the
tectonic plate movement are also involved in
the movement. Their studies have shown that
the behavior of this area is similar to the shear
deformation of the granular medium. In this
case, the distribution of velocity fluctuations
differs from the Gaussian distribution, reveal-
ing «heavy» tails, and the correlation function
attenuates as a stretched exponent [Meroz,
Meade, 2017].The authors compared the ve-
locity field with the two-dimensional veloc-
ity field, which takes place in the process of
shear deformation of the granular medium
with spherical grains.

In this paper, we study the properties of the
velocity field in a three-dimensional model
granular medium formed by cubic elements.
This problem statement is closer to the real
shear process in the seismically active zone
in comparison with the problem of shear of
smooth spherical granules because in the
kinematics of the granular medium a signifi-
cant role is played by the rotational degrees
of freedom. Moreover, the three-dimensional
shear process is more in line with the natural
process.

The model for simulating the shear dy-
namics of cubes. The simulation of shear
granular dynamics is performed by the dis-
crete element method (DEM) [Cundall, 1971].
The well-known advantage of this method
consists in the ability to describe the dynam-
ics of each element of structure in detail.

The equations of motion of the structural

162

elements have the following form:

d’r,
—ZM( D, i=1,. (1)

Here r, is the coordinate of the center of
i-th cube and m; is its mass; Fl-j is the contact
force appearing between i-th and j-th cubes;
K ; is the kinetic moment of i-th cube with
respect of its center; M (F l-j) is the torque with
respect to the center of i-th cube. Nis the total
number of elements. The summation is per-
formed for all j-th cubes contacting with i-th
cube.

The kinetic moment is related to the body's
angular velocity via the tensor of moments of
inertia. In the general case, their directions
do not coincide. Due to the symmetry of the
cube, its central ellipsoid of inertia degener-
ates into a sphere. Therefore, the vectors of
the kinetic moment and angular velocity al-
ways have the same direction, i. e. K= ;0
where o, is the vector of angular V610Clt for
the cube rotatlng about the center, /,; =2 3m
is the cube's moment of inertia. The moment
of contact force acting on i-th cube during
the contact with j-th cube is M (F,, ) =r; xF;,
where ¥, 1s the vector pointing from the cube
center to the contact point of adjacent cubes.

The description of the translational mo-
tion of the cube center is a relatively simple
task, whereas the consideration of rotational
motion demands more effort. The use of the
quaternion technique [Giirlebeck, Sprossig,
1997] greatly facilitates the task. In the mo-
tionless reference frame, the kinematic equa-
tion for the rotation quaternion has the fol-

lowing form — =—, ° A, where A=(%, A,
dt 2 0r ™1

Xy My)=hgth i+t Asis=h(tA is the rotation

quaternion. During calculations, we also per-

form the correction of the quaternion norm to
1 in accordance with the modified equation

dA 1

o 2%cAmalAl-). @

The parameter g belongs to the interval (0;
1). We put ¢=0.5. Thus, relations (1)—(2) form
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the closed system of equations for describing
the interaction of pair of cubes. The transfor-
mation of the vector r to the vector r’ during
rotation, that is described by the quaternion
A, is determined by the formula r'=AoroA ,
To solve Egs. (1), Beeman's algorithm is used
[Beeman, 1976]. Equation (2) is solved by the
Runge-Kutta 4-th order method.

The interaction between bodies is deter-
mined by a single force, which decomposes
into a normal force F" and a tangential force
F’. The coordinates of the point, where the
contact force is applied, coincide with the
mean values of coordinates of vertices of over-

lapping region x° = D x;/m, where m is the

number of vertices of the overlapping region.

The direction of the normal force F" is
defined by the contact normal. To derive the
contact normal, we use the vertices of the
contact line which is the broken line of in-
tersection for the surfaces of two contacting
particles [Zhao et al., 2015]. Based on these
vertices, we construct the fitting plane by
means of the linear square fitting. To do this,
the singular value decomposition method
[Shakarji, 1998; Forsythe et al., 1977] is ap-
plied. The normal of this plane coincides with
the contact normal and defines the direction
for the normal force of interaction between
particles. To determine the absolute value of
the normal force, a model proposed by Nas-
sauer and Kuna [Nassauer, Kuna, 2013] is
used that is suitable for finding this force for
particles of different shapes. According to this
model, the contact interaction force between
bodies depends on the volume V of the inter-
section domain of interacted bodies and the

depth of penetration d: F" =kE \/Vd . Here
the coefficient k =4/ 3Jn . V:1/6-d-dmax-dp, and
d_ . isthe maximal distance between vertices

max

of f:lhe overlapping domain (direction /), dp is
the maximal distance between vertices in the
direction np=nf xl,. The depth of penetration
d is defined as a distance of penetration of
intersection domain in the direction of normal
force and is derived by the following formula:
d=max(n’p°y—min(n’p°), p¢ is the vertex coor-
dinates of the penetration figure.

The tangential forces F/ are determined
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using a friction model taking into account
static friction (adhesion) F°<p’F" and kinetic
friction (sliding) F*<u*F", where p* and p* are
the empirical coefficients. The transition from
one model to another one occurs smoothly
using the ratio proposed in [Nassauer, Kuna,
2013]:

2 k 2
s s« k X Bx n
F —{(ZM n )1+x4+ }F,

1+ x2

4

where p* =p’ Ll - 0,09(uk/us) J and x=v'/v°.
Here V' is thetangential velocity, v* is the
velocity of transition from static to kinetic
friction. The direction of friction force F/ is
parallel to the relative tangential velocity of
cubes at the contact point. The application
of this algorithm results in finding all pairs
of contacting cubes and the characteristics
of their contact. Based on the described algo-
rithm, the code CuBluck has been developed
[Mykulyak et al., 2019a].

In the simulations, it is fixed the following
constants: density p=1.2‘103 kg/m3; Young's
modulus £=3-10° N/m? Poisson's ratio v=0.3;
static friction coefficients u’=0.7; Kkinetic
1*=0.4; the characteristic velocity of transition
from static to kinetic friction is v*=0.01 m/s.

Granular medium shear at a constant
rate of deformation. Shear deformation of
the granular massif is carried out due to the
movement of the upper part of the box. It con-
sists of two parts, namely, the fixed lower part
with a height of 60 mm and the movable upper
part of height of 80 mm. In total, the massif
contains 3000 cubes of the same size 10 mm.
At the top it is located the cover weighing
14 kg, which can move freely in the vertical
direction. The bottom has the size 0.2x0.3 m.
The box filled with randomly placed cubes is
shown in Fig. 1. The massif used for modeling
is obtained with compacting cubes randomly
placed initially in the volume of 0.2x0.3x0.5 m.

The velocity of the upper box part is con-
stant /=1 m/c. For clarity, the locations of the
cubes at two different moment of time are
presented in Fig. 2. In the process of shear
deformation, it is occurred dilatation causing
the cover's vertical movement. The movement
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Fig. 1. Box filled with the granular massif in the initial
time.

of the cover is intermittent in the form of a
sequence of jumps. The dependence of the
cover's kinetic energy on time is shown in
Fig. 3, a. The fragment of this dependence
shown in Fig. 3, b indicates that this curve
has many local maxima and minima. Energy
jumps from adjacent minima to maxima can
be considered as excitations that are transmit-
ted from the granular system to the environ-
ment. The total number of perturbations is
N_,=7464. This number is sufficient to investi-
gate the statistical properties of the perturba-
tion sequence.

Fig. 4 shows the cumulative complemen-
tary distribution of radiated energy jumps AE,
in the logarithmic coordinates. The straight
line has a slope =0.94+0.01.This model repro-
duces accurately the Gutenberg—Richter law
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Fig. 3. Time dependence of the cover's kinetic energy £, (a) and its fragment in time interval 19.15<#<19.25 ms

with marked maxima and minima (b).
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in the energy representation N(>E)oc EP,
in which the exponent varies in the range
0.80—1.05 [Olami et al., 1992].

Statistical analysis of the sequence of per-
turbations shows that it is possible to iden-
tify large jumps before and after which the
swarms of smaller amplitude perturbations
are observed. This is evidenced by the de-
pendence of the average relative number of
disturbances before and after the main dis-
turbance shown in Fig. 5.

Fluctuations of element's velocities in the
shear process. Meroz and Meade [Meroz,
Meade, 2017] studied in detail the velocity
field observed over a period of about 10 years
in the area between the Pacific and North
American plates in California. They exam-
ined the area from the Pacific Plate, where
they determined y=0, to the North American
Plate y=565 km, which runs parallel to the San
Andreas Fault. The axis x is directed parallel
to the San Andreas Fault. They have calcu-
lated then the average velocity profile along
the y axis, <V( y,~)>, by discretizing the y axis
into n=65 layers, with dy=8.7 km. Velocity fluc-
tuations in each layer were also calculated as
ov, =v, — <V( V; )) , where v, is the velocity in the
i-th layer, <V( Vi )> is the average velocity in the
i-th layer. It turned out that the fluctuation
distribution calculated later is significantly
different from the Gaussian distribution.

To characterize the system's kinemat-
ics, which is determined by velocity fluc-
tuations, Meroz and Meade also calcu-
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—4,0

-3,0 -2,5

-2,0 -15 -1,0 05 0 0,5
log,,AE,

Fig. 4. The cumulative complementary distribution of
energy jumps AE,_ of the cover.
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lated the correlation function

<8V(r) . 8V(0)>
<6v(0) . 8v(0)> '

were ris a distance between two reference
points. The authors found that the corre-
lation function is best approximated by a
stretched exponential function

C(r)= 3)

Cry=e ', (4)

where values B=0.75, and £=92 km ob-
tained by the method of least squares.

In this paper we compare the above sta-
tistical characteristics of tectonic move-
ments with similar characteristics obtained
in the simulation of 3D shear deformation of
the granular array with cubic grains. For this
purpose, the entire volume of the granular
massif is divided into 20 equal horizontal lay-
ers 6 mm thick and the average velocity < v,>
is calculated in each layer. The dependence
of the average velocity on the z coordinate is
shown in Fig. 6. It is seen that the elements
at the bottom of the box are motionless, and
near the cover move at the velocity of 1 m/s
coinciding with the cover velocity. Between
these areas there is a transition area where
the average velocity varies. For this region,
namely for 0.04<z<0.10, fluctuations are cal-
culated and the distribution function is con-
structed (Fig. 7, a). This distribution, as in
[Meroz, Meade, 2017], is best approximated
by an exponential function O(r)=4e ™"

1,01 ]
09r T
=c
3 08T T
0,7r T
0,6 T
-0,1 0 0,1
t—t, ms

Fig. 5. The average disturbances occurrence versus that
relative to main shock occurrence times.
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In our case, the coefficients are as follows:
A=473+12, £=0.131£0.02. We also have built
correlation function (3), which is shown in
Fig. 7, b. Approximation of this dependence
by the function of the stretched exponent (4)
using the method of least squares gives the
following values of constants: $=0.96%0.05,
£=0.01440.001.

Thus, the velocity field in shear deforma-
tion of the model granular medium has similar
properties to the velocity field in the bound-
ary region, namely, the distribution of fluctua-
tions relative to the mean velocity also has an
exponential dependence, not Gaussian, and
the spatially correlated fluctuation function
is best approximated by the stretched expo-
nent higher than the transition zone in the
San Andreas fault area.
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Fig. 6. The dependence of the average velocity < v, >
of the elements on the coordinate z at time /=15.0 ms.
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Concluding Remarks. The simulation re-
sults confirm the complexity of the behavior
of the granular medium formed from ribbed,
namely cubic, grains. This complexity is simi-
lar to the complexity that is inherent in the
natural media in seismic areas. We obtained
that the shear deformation of the granular
medium has an intermittent stochastic char-
acter. The vertical movement of the cover,
which is caused by the dilatancy effect, also
occurs intermittently. The distribution of the
cover's kinetic energy jumps manifests the
power nature, similar to that for earthquakes.
Jumps of kinetic energy can be considered as
the energy of perturbations that radiates the
granular array into the environment. In addi-
tion, both aftershocks and foreshocks occur
for large energy spikes, like in natural seismic
processes.

The distribution of velocity fluctuations is
also constructed and the correlation of veloc-
ity fluctuations is calculated. The similarity of
the distributions of velocity fluctuations in the
model medium and in the seismically active
region in California, which includes the San
Andreas fault, is revealed. There is also a simi-
larity of correlation functions: in both cases
they are functions of the stretched exponent.
This analogy makes it possible to investigate
in more detail the properties of such complex
phenomena as earthquakes.

The work is partially supported by the
projects 0118U000043 and 0118U000044.
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Fig. 7. Distribution of velocity fluctuations 6vy and its approximation by exponential dependence (a). Spatial cor-
relation function of velocity fluctuations 8vy and approximation of this dependence by the stretched exponent

(4) (b). Both graphs refer to the time r=15.0 ms.
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IIpo noAiOHICTE 3CyBHOro AepOpMyBaHHS
rPaHyAbOBAHOI0O MacCMBy Ta )parMeHTOBaHOIO
cepeAOBHIla B CEICMOAKTUBHIN 30Hi

C. B. Mukyask, B. B. Kyaiu, C. I. CKypartiBcekui, 2021
IacturyT reodizuku im. C. I. Cy66otina HAH Ykpainu, Kuis, YkpaiHa

Y cy4acHUX AOCAIAKEHHSX AMHAMIUHY OBEAIHKY CEPEAOBHINQ, IIJO 3HAXOAUTHCS B
CelICMOTeHePYIOUil 30Hi Ha MeXKi TEKTOHIYHUX IIAUT, PO3TASIAAQIOTH SIK IIOBEAIHKY CKAQAHOI
BIAKPUTOI cucTeMH, 1110 TepebyBae B CTaHi CaMOOPraHi30BaHOI KPUTUYHOCTI. Takuii mia-
XipA 3yMOBAEHHMHU K CAMMMU 3aKOHOMIPHOCTSIMU IreHepallil 3eMAeTPYCiB, TaK I CKAQAHOIO
OyAOBOIO L€l 30HU. Mepeska pO3AOMIB 1 TPIllIUH 3yMOBHAA CyTTEBY HEOAHOPIAHICTB 1 par-
MEHTOBAHICTb 30HU. TOMY AAST MOAEAIOBAHHSA AUHAMIKM TAKOT'O CEPEAOBHUIIA BCE YACTIIIE
3aCTOCOBYIOTE AMCKPeTHI Moa€eAi. OCHOBOIO AN ITIOPIBHAHHS MOAEAL Ta HATYPHOTO 00'€KTa
€ CTaTUCTUYHI 3aKOHOMIPHOCTI 1X AMHaMiuHOT0 Ae(pOpMyBaHH:. 3 OTASAY Ha IO KOHIIeIl-
I1i}0 3MOAEABOBAHO 3CYBHY AMHAMIKY 'PaHYABOBAHOTO MACHUBY, YTBOPEHOTO 3 OAHAKOBUX
KyOIYHMX I'PaHyA, Ta NOPIBHSIHO AMHAMIUHI CTaTUCTUYHI XapaKTepPHUCTHUKU IIi€l CUCTEMU
3 QHAAOTIYHUMU XapaKTEePUCTUKAMU, IIJ0 OTPUMAaHI AN 30HU F'eHePYBAaHHS 3€MAETPYCIB.
3cyBHe AeDOPMYBAHHS 3AIMCHEHO 3@ AOIIOMOTOIO Pe3epByapa, 10 CKAAAAETHCA 3 ABOX
YaCTHH — PYyXOMOI Ta HEPYXOMOi. B pyXoMil 4aCTHHI TAKOJK 3HAXOAUTHCS KPUIIKQ, AKIN
rpaHyAbOBAHUM MaCHUBOM IIePeAA€EThCS KiHEeTHYHA eHePrisd B Ipolleci 3CyBHOTO AepOpMy-
BaHHA. AAS PO3PAXyHKY 3CYBHOI AMHAMIKM BUKOPUCTAHO MeTOA AUCKPETHUX €AE€MEHTIB.
Y pe3yAbTaTi YHCAOBOI'O MOAEAIOBAHHS OTPUMAaHO PO3IIOAIA CTPUOKIB KiHETHUUHOI eHepril
KPHUIIIKY, SIKi IMITYIOTb 30ypeHHS, 110 IePeAAIOThCS BiA 'PAHYABOBAHOI CUCTEMHU AO 30B-
HINTHBOTO cepepoBUIlla. OTPUMAHUN PO3MIOAIA IIMX 30YPEHB € CTEIIEHEBOIO 3aAeKHIC-
TIO 3 TIOKA3HUKOM CTeIleHsI, BAACTUBUM AASI 3€MAETPYCiB (3akoH ' yren6epra—PixTepa).
A0 Ta micAst BEAUKHX 30ypeHb CIIOCTEPITraloThCs CKyITUeHHsI MeHINUX 30ypeHb, AHAAOTIB
dopuIokiB Ta adrepniokiB. [To6yAOBaHO PO3MOAIAM (PAYKTYaAllilN IBUAKOCTEN eAreMeH-
TiB Ta 00YHNCAEHO KOPEeAdIlito (PAYKTYaIlil HIBUAKOCTeMN. BUusiBA€HO MOAIOHICTE PO3MOAIAIB
(AYKTyalid MBUAKOCTEN Y MOAEABHOMY CEPEAOBHUINI Ta CEMCMOAKTUBHOMY PETIOHI B
KanidopHii, axkuit Bmimye po3daom CaH AHApeac. BusHaueHO MOAIOHICTE KOPEAAIIMHUX
(DPYHKIJIN: 9K Y YUCAOBOMY PO3PaxXyHKY, Tak i B HATYPHUX €KCIIepUMeHTaxX BOHU € (PDYHK-
LiAIMU PO3TATHYHOI eKCIoHeHTU. OTpUMaHUM pe3yAbTaT 3acBipuye, IO IPoIleC 3CYBY ¥
IPaHyABOBAHOMY MAaCHBI Ta IPUPOAHUY CeNCMIUYHMY IIpoliec y 30Hi po3aoMy CaH AHApeac
€ CTaTUCTUYHO IIOAIOHUMU.

KAI040Bi cAOBa: rpaHyABOBaHE CEPEAOBUIIE, 3CYBHE Ae(DOPMYBAHHS, CEUCMIYHO aK-
THUBHA 30HA, METOA AUCKPDETHUX €eAEMEHTIB.
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O nnopo0uu CABUroBOro AepopmMupoBaHus
rPaHyAMPOBAHHOIO MacCHUBa U (pparMeHTUPOBAHHON
CpeAbl B CEMCMOAKTUBHOM 30HE

C. B. Mukyask, B. B. Kyany, C. . CKyparoBckui, 2021
NuctutyT reodusuku um. C. 1. Cy66ornna HAH Ykpaunsl, Kues, Ykpanna

B coBpeMeHHBIX NCCAEAOBAHUSIX AMHAMUYECKOE TIOBEACHHE CPEAB], PACTIOAOSKEHHOM B
CelCMOTEeHEePHUPYIOIIeH 30He Ha TPaHUIle TEKTOHMYECKUX IIAUT, PACCMaTPUBAETCS Kak I10-
BeAEHHE CAOJKHOU OTKPBITOM CUCTEMBI, HAXOASAIIEUCS B COCTOSTHUYU CaMOOPTaHU30BaHHOM
KPUTHUYHOCTHU. TakoM moapxop 0OYyCAOBAEH KaK 3aKOHOMEPHOCTSIMU TeHepalluu 3eMAETPS-
CEeHUM, TaK U CAOKHBIM CTPOEHUEM 3TOM 30HEL. CeTh PA3AOMOB U TPEIUH OOYCAGBAMBAET
CYIIIECTBEHHYIO HEOAHOPOAHOCTD 1 (pparMeHTUPOBaHMe 30HEL. [103TOMY AAST MOAEATPO-
BaHUS AMHAMUKM TaKOM CPeABI BCe Yallle IPUMEHSIOT AUCKpEeTHBIe MOAeAn. OCHOBY AAS
CpaBHEHUS MOAEAU ¥ HATyPHOT'O O6'bEKTa COCTABASIIOT CTaTHCTUYECKIE 3aKOHOMEPHOCTH
UX AMHaMU4ecKoro AedpopmupoBanusi. C yueToM 3TOYM KOHIIEIITUY MOAEANPYETCS CABU-
roBasi AMHaMUKa 'PaHyAMPOBAHHOTO MaCCHUBa, COCTOSIIIIETO M3 OAMHAKOBBIX KyOMIeCKHX
TPAHYA, 1 CDABHUBAIOTCA AMHAMUYECKUE CTATUCTUYECKUE XaPAaKTePUCTUKU 3TOU CUCTEMEI
C AHAAOTUYHBIMU XaPAKTEPUCTUKAMU, ITIOAYUEHHBIMU AASL 30HBI T€HEePUPOBAHUS 3E€eMAe-
TpsiceHnt. CABUTOBOE Ae(DOPMHUPOBAHIE OCYIIIECTBASIETCS C IOMOIIIBIO pe3epByapa, Co-
CTOSAIIETO U3 ABYX YaCTeN — MOABU)KHOU U HEITIOABUJKHOM. B TOABM>XHOM YaCTH UMeETCS
KPBIIIKE, KOTOPOM I'PaHyAMPOBAHHBEIM MaCCHBOM ITepeAaeTCss KWHeTHYecKasi 9HepIrus B
Iporiecce CABUTOBOIO Ae(DOPMUPOBAHUA. AAS pacueTa CABUTOBOM AMHAMUKY HCIIOAB3YET-
CsI METOA AMICKPETHBIX 9AEMEHTOB. B pe3yAbTaTe 4MCAEHHOTO MOAEAVMPOBAHUS ITIOAYUEHO
pacrpepeAeHNe CKaYKOB KMHETUYECKOM 9HEPTUH KPHIIIKY, KOTOPBIEe UMUTHPYIOT BO3MY-
LIIeHNUd, ITIepeAaronrecs OT TPAHYAMPOBAHHOM CUCTEMEI K BHeIlTHel cpepe. [ToayueHHOE
pacIpeaeAeHye 3TUX BO3MYIIIeHNH XapaKTepu3yeTCsl CTeIIeHHOMN 3aBUCHUMOCTLIO C ITOKa3a-
TEAEM CTeIleHH, KOTOPHIN CBOMCTBEHEH 3eMAETPSICeHUsIM (3aKOoH ['yrreHOepra—PuxTepa).
A0 1 mocae OOABIINX BO3MYILLEHUIN HAOAIOAQIOTCS CKOIIAEHUS MEHBIINX BO3MYILEHUH,
aHaAOTOB (DOPIIOKOB U apTepiiokoB. [TocTpoeHs! pacnpepereHUT (DAYKTyAIUNd CKOPO-
CTeM SAeMEeHTOB M PACCUUTAHBI KOPPEAAIIUU (PAYKTYallui CKOPOCTEeU. BEIIBAEHO CXOA-
CTBO pacCIpeAeAeHUN (PAYKTyallui CKOPOCTEN B MOAEABHOU CPEAE U B CEMCMOAKTUBHOM
pernoHe B KaandopHUY, KOTOPEIN BKAIOYAeT B ce0da pasaoM CaH AHppeac. MiMeeT mecTo
CXOACTBO KOPPEASTIMOHHBIX (DYHKIINY: OHU KaK B YNCAEHHOM pacueTe, TaK U B HaTYPHBIX
JKCIIEPUMEHTAX SIBASIOTCS (DYHKITUSIMY PACTSHYTOM S9KCIIOHEHTHI. [ IOAyYeHHBIN Pe3yALTaT
CBHAETEABCTBYET O TOM, UTO ITPOIIECC CABUTA B TPAHYAMPOBAHHOM MaCCHBE U IPUPOAHBIHN
celicMMUYeCKHU IIpoiiecc B 30He padaoma CaH-AHApPeac CTaTUCTUYECKU TTOAOOHHI.

KAaroueBble cAOBa: FPaHYAMPOBAHHAS CPEAQ, CABUTOBEIE AehopMariyy, CeiCMUYeCcKU
aKTUBHAS 30HA, METOA AVCKPETHBIX SAEMEHTOB.
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