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New statistics of a low-parameter distribution of the sech (g, p) type are presented,
which reproduce the results of plasma simulation by the method of dynamics of many
particles (DMP) with high accuracy. The distribution is based on a conceptual model of a
two-component plasma — virtual quasiparticles of negative energy (exciton phase £<0);
the scattering region of positive energy (gas phase £>0). Optimization and elementary
estimates of the applicability of the sech (g, n) distribution statistics were made after the
results of DMP experiments. The sech (g, 1) distribution reduces the number of param-
eters of the three-piece DMP distribution from 4 energy diffusion coefficients (Dy, D,, D5,
D,) to two — the chemical potential p and the asymmetry coefficient a. The functional
relationship Dy, D,, D3, D, with the chemical potential of the system u in the sech (g, n)
distribution is introduced in a similar way to the Einstein relation between mobility and
energy diffusion constants. The functional variety of the differential equation belongs to
the family of elliptic functions. It is much wider than the hyperbolic solution given, which
has significant physical application for complex values of the energy €. The proposed
simplified scheme grounded in the physical interpretation of negative energies can be
written for the electrometric electrons of the atmosphere, which previously presented
significant methodological difficulties. The chemical potentials of the fluid (metastable
states) and gas phases are presented as functions of the plasma imperfection parameter.
The problem is posed as an application to the problem of electrometric electrons in the
atmosphere. The proposed distribution is not represented in mathematical statistics and
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statistical physics; it is new and extremely relevant.
Key words: cold plasma, electron distribution function, elliptical functions, atmospheric

electrons.

Excess electrons of metastable atoms and
molecules lie in the vicinity of the ionization
threshold with a width of ~kT, capture the re-
gion of the discrete and continuous spectrum,
and have increased polarizability (~n®)and co-
herence [Anderson, 2015], where 7 is the main
quantum number. The single-particle distri-
bution of such electrons in contact with the
thermostat does not coincide with the single-
particle Boltzmann energy distribution €. The
transition to an equilibrium distribution for a
quasi-classical cold plasma was performed in
the research on DMP simulation [Maiorov et
al., 1991, 1992], where a fundamental result
was obtained — the existence of a significant
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number of single-particle total electron ener-
gies. The numerical nonparametric DMP dis-
tribution has the classical form of mathemati-
cal statistics functions with a Gaussian vertex
and separate asymmetric asymptotics in the
region of negative states — the manifestation
of quasi-stable structures (electrons, Boron at-
oms, classical negative ions). A characteristic
factor for such a plasma was the presence of
large fluctuations in the negative regions of
the supra-threshold ionization energy. In this
context, there was a problem of interpretation
of the classical thermodynamic temperature
and the residual number of parameters of
the analytical distribution, which the authors
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solved [Maiorov et al., 1995] on the basis of
the Focker-Planck process by obtaining a new
three-piece distribution function with four en-
ergy diffusion parameters Dy, D,, D5, D4, and
the plasma imperfection parameter 5.

In engineering and physical terms, such a
distribution accurately describes the equilib-
rium state of the plasma as a function of the
parameters (D, D,, D5, Dy, 3). However, its
classical application for the analysis of sta-
tistical plasma physics is complicated by the
complexity of parametrization and the physi-
cal meaning of the process.

In this report, a small-parametric distribu-
tion of the sech (g, 1) type is proposed, which
allows reproducing three-piece distributions
from the parameters (D, D,, D5, Dy, 8) [Maio-
rov et al., 1992] using only two parameters:
p— the chemical potential of the plasma and
the asymmetry parameter a, in the vicinity of
equilibrium.

The physical meaning of the new distribu-
tion corresponds to a two-component model
of real plasma — virtual quasiparticles of neg-
ative energy, the scattering region of positive
energy. Such a mechanism corresponds to the
structure of the phase space of a multiparticle
system adopted in ergodic theory — ergodic
divergence of trajectories in the region of
positive energies and homoclinic destruction
of separatrices in the region of quasi-bound
states. A characteristic feature of the sech(g,
p) distribution is quasi-Fermi (the presence
of unity in the denominator), which is due to
the classical displacement of neutral particles
from a dense plasma volume — the Van der
Waals effect.

Optimization and elementary estimates of
the applicability of the sech (g, p) distribution
statistics were performed using DMP experi-
ments [Maiorov et al., 1992]. The numeri-
cal correspondence in accuracy between the
sech(g, p) and DMP distributions is given in
the Appendix.

DMP distribution of classical Coulomb
plasma. This section shows the distribution
function fp\;p (see expression (1)) from re-
search [Maiorov et al., 1992], according to
which the distribution function is optimized
/., (see expression (2) below).
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We quote according to the research [Maio-
rov etal., 1992]: «the study of classical Cou-
lomb plasma by methods of dynamics of many
particles (DMP) allowed us to obtain the elec-
tron distribution function over the total en-
ergy in a piecewise analytical form consisting
of three asymptotics

Jyexp(-y)
f(y)= 2—:/4; Dyexp(Dyy+D,y* [2),

e D, eXp(By/Vg)

y > a81/3
y[<as" (1)
y<_a81/3

where 4 is the normalization constant, oo and
 are the adjustable constants, d is the plas-
ma imperfection parameter, and y=¢/T7, is the
dimensionless energy. The distribution de-
scribes the statistics of strongly interacting
particles. It solves the problem of crosslink-
ing the output of two-particle states from the
Rydberg series €<0 to the scattering region
>0, using four energy diffusion coefficients
Dy(3,), D(3,), D5(3,), D4(5,) depending on the
plasma imperfection parameter o:

D, =[-1+1/(208")+p/5" ] 2,
D, =[-1+1/(2a8")-B/8" | /(2a8"),
D, =a'"*8"%exp [—aé‘)m (1 +D, +D,08" /2)} ,

D, = 0L1/28”6exp[a[3 —ad"”? (1 +2D, ):| .

Note for Geophysics. The considered type
of cold plasma is close in parameters to the
electrometric cold plasma of dense layers of
the atmosphere, clouds, and auroras, where
the concentration of charged particles is of
the order N~10%+10%. It is obvious that such
distributions can hardly be obtained by solv-
ing kinetic equations since relaxation is non-
linear in nature with delayed recombination,
as noted in research [Tkachev, Yakovlenko,
1997]. It is delayed recombination that pro-
vides the electrical activity of the atmosphere.
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Problem statement. Let us set the fraction
of particles with positive and negative energies
in the DMP simulation by p, and p_. Accord-
ing to [Maiorov et al., 1995], the total num-
ber of particles in the simulation (512 cm’3)
will correspond to p,+p_=1. Then, for particles
with negative energies p =200/512=0.4, posi-
tive p,=0.6.

Knowing these parameters, we can obtain a
definite integral for the value p_, (y=x—) for p:

¢ 1 . 1
=1/ n|l—dx=1 —ady.
P /n;[cosh(x—u) * /nj;cosh(y) Y

Performing computations of the integral,
we obtain the equation for the chemical po-
tential p providing p:

Mn(m(%jj.

If we substitute the parameters from [Maio-
rov et al., 1995], we get meaningful values
of the chemical potential of the system p: at
p=0.6, n=0.32; at p=0.84, p=1.36.

To describe the equilibrium state of a plas-
ma with a different number of particles for
negative €<0 and positive >0 energies, we
write down the shape of the cosh(y—u) distri-
bution by entering a dimensionless parameter
of fluctuations y=e/g:

S S
R cosh(y—p)

The function fch has a more acute maxi-

mum than the DMP distribution fpy\p (see
expression (1)), which has a flat appearance
due to an equilibrium state ¢=0, to which a
system of Coulomb particles with probability
1 tends. Optimization of distribution param-
eters f,, can occur both by varying the asym-
metry coefficient and by chemical potential.
The results of such variations are shown in
Fig. 1.

Let us write down f,, the distribution for
a system with effective three energy levels
e=0 and ze:

1

So :1+cosh(y—p) '

Then, similarly to the distribution with a
single ground state, we obtain the equation
for the chemical potential p:

u—)—ln(—_“_pj.
p

Substituting the parameters p, we obtain
acceptable estimates of the chemical poten-
tial n: p=0.6, p=0.41; p=0.84, p=1.65.

It can be seen that by introducing different
chemical potentials for the fluid and gas phas-
es (the vicinity of the ionization threshold), it
is possible to obtain a reasonable correspon-
dence with the experimental distributions
[Maiorov et al., 1992] by introducing only
two parameters, the chemical potential p and
the asymmetry coefficient of the asymptotics
a. Thus, we will write down the general form
of statistics in the following form:

10 5

Fig. 1. Variations of cosh(y—p) distributions with shifts corresponding to different p, and different o right and left
asymptotics f,,: a — a=1, u=0.75; u=5.5; u=10.5; b — p=0.75, 0=0.5; a=1; a=1.5.
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B 1
_El_’_e*a(X*Hl) +e(X’P2) '

Jen (2)
Here a considers the different nature of
ergodization for <0, actually, the asymptot-
ics of the wave function of a quasi-stationary
state (a materially dependent constant).
For symmetric o and a=1, the normaliza-
tion in (2) is given as N=1/S:

T
an =1+ 4ei) ’

where S is the distribution area. The normal-
ization calculation using the contour integral
(phase shift method) is given in the Appendix.

Let us note that with the chemical poten-
tials and asymmetries estimated above, the
normalization varies within 0.8—1.5, which
corresponds in order of magnitude to the
complex normalization of the DMP distribu-
tion [Maiorov et al., 1992]. Within the accu-
racy of the experimental spread, the distribu-
tion (1) has already been normalized, which
facilitates the optimization procedure for ob-
taining parameters during reparametrization
(2) by the DMP distribution (1).

Numerical reparametrization of the DMP
distribution. The problem of reparametriza-
tion of distribution (2)

1 1

- S e*al(xﬂll) +e“2(/‘*l—l2)

S =

e

by piecewise analytical distribution (1) is
solved. The initial conditions and plasma pa-
rameters (electron concentration — N,; tem-
perature — 7,; imperfection parameter — )
from the research [Maiorov et al., 1992] for
a series of experiments (26, 30, 40, 43) were

15 -1,0 —0,5 05 10 15

Fig. 2. Graphical representation of the machine optimi-
zation of the distribution f,;, (1) (black line), according
to the DMP distribution (2) (dots).

selected as optimization. The optimization re-
sults are summarized in Table. The graphical
match is shown in Fig. 2. Optimization was
performed by an interactive machine method
with a variation of the main parameters and
normalization, which in order of magnitude,
always lies within unity.

As shown in Fig. 2, the correspondence be-
tween distributions (1) and (2) matches the
experimental accuracy. Boltzmann asymptot-
ics merge graphically.

Functional reparametrization in the vicin-
ity of equilibrium. Einstein-type relations.
Using the asymptotics a=B/y and the expan-
sion of the function in a series in the vicinity
of the maximum points, we obtain functional
dependencies between the distribution pa-
rameters f_, — (2) and f;p — (1). The maxi-
mum points for (1) and (2) will be

b max (f,)=H Tt

max(fDMP):_Dz 2

Then the values of the function at the max-
imum points will be written as:

Reparametrization f,, (x, a, p;, p,) for different coefficients of asymmetry of the right and
left parts of the distribution (o, oy, p;, 1p) and for the symmetric case with different shifts

in energy (a, 1y, Ky)

N N, cm™ T, eV’ 5" oy Oy W ) o ' s

26 10" 0.018 0.102 0.15 0.49 0.97 1.01 0.024 0.20 0.79
40 10 0.02 0.074 0.02 0.04 0.07 0.60 0.031 | 0.258 | 0.820
30 10" 0.038 0.108 0.06 0.05 0.07 0.66 0.057 | 0.165 | 0.757
43 10" 0.20 0.074 | 0.361 | 0.263 0.13 0.67 0.323 | 0.234 | 0.780

* — plasma parameters are taken as an example from [Maiorov et al., 1992, table 1, p. 21].
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1 D’
=—D,exp| ——— |,
Sowr 1 p[ 2D2J

1 1
S 2exp a“] _ al’l2
2 2

where 4, § are normalizations; D, D,, Dy are
energy diffusion coefficients; u,, p, are chem-
ical potentials; o is the asymmetry coefficient.

Given the values of the function at the
points of maxima, two functional equations
can be obtained to determine the parameters

uy and py:

D12 _B/Y(_Ml 'H'lz)

In(2D,)— =

(2D;) 2D, 2 '
_ﬂzul"'l*z
D 2

2

Considering the normalization of order 1,
the system is solved analytically and has roots

uy and py:
2DB+ Dy —2D,yln(2D;)

l’llz 2D26 ]
2DB—D*y+2D,yln(2D
W= B Y LY ( 3). 3)
2D,B

Substituting the plasma parameters from
experiment 43 (see Table), we determine the
energy diffusion coefficients and the chemical
potential of the system: D;=0.598; D,=—1.198;
D;3=0.369; D,=0.429; p=0.4; y=0.333; 6=0.074;
1;=0.371; n,=0.627.

As can be seen from the estimates of the
chemical potential by expression (3), they are
close to the optimization ones but do not co-
incide (see Table). Reduction to equilibrium
parameters is stable within the limits of the
DMP experiment.

Conclusions. The report shows that the
kinetic distribution is significantly simplified
in the vicinity of equilibrium — the number

The right-hand side of distribution (2) has
a materially dependent exponential decline
connected with the asymptotics of an atom
or molecule immersed in a medium. The ab-
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of energy diffusion parameters is reduced,
similar to Einstein's relation between mobil-
ity and diffusion D/u=kT. This suggests that
in the vicinity of equilibrium, the statistical
process has a simplified Fokker-Planck na-
ture. The typef,, distribution identically satis-
fies a nonlinear cubic equation of the second
order for the distribution function, similar to
nonlinear noise generators. A similar cubic
equation for the distribution function is found
in research on Rydberg plasma [Morrison et
al., 2012; Aghigh et al., 2020] and quantum
optics [Tkacheyv, Yakovlenko, 1993, 2001]. The
distributions (2) given in the research have
a computational advantage — analytics for
application in statistical physics.

It should be particularly noted that the
functional variety of the differential equation
belongs to the family of elliptic functions and
is much wider than the hyperbolic solution
given, which has significant physical applica-
tion for complex values of the energy €. Mo-
ments are considered parametric differentia-
tion of a given distribution (Appendix).

The proposed simplified scheme ground-
ed on the physical interpretation of negative
energies can be written for the electrometric
electrons of the atmosphere, which presented
significant methodological difficulties previ-
ously. The authors suggest that the complex-
ity of parametrization for the case of equi-
librium of nonperfect plasma can hardly be
obtained by solving a kinetic problem without
partial simulation, and the presented equilib-
rium distribution is a good candidate for sim-
plifying the results of research (S.A. Maiorov,
A.N. Tkachev, S.I. Yakovlenko from period
1992—2008) on the equilibrium properties
of a nonperfect plasma. The chemical poten-
tials of the fluid (metastable states) and the
gas phase are presented as functions of the
plasma imperfection parameter. The problem
is posed as an application to the problem of
electrometric electrons in the atmosphere.

APPENDIX

sence of f, 1 in the denominator in the distri-
bution makes it possible to perform analytical
taking of integrals by the phase shift method.
The main integral is taken along the real axis,
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the second integral is shifted by the width of
the distribution. This will correspond to the
composite state of ionization of a quantum
system with a thermostat. For supercooled
plasma, it is necessary to introduce the full-
ness of the ground state, which is close to 1.
In other words, even in the absence of Fermi
degeneracy (8f~10’3+10’5), this value will be
much less than k7. Proximity to the ioniza-
tion threshold leads to a quasi-Fermi distri-
bution with 1 in the denominator. The nor-
malization of distribution (2) is obtained by
contour integration with a phase shift of the
function of a complex variable; the moments
are considered parametric differentiation of
this distribution.

The integral of distribution (2) is estimated
by a series of geometric progression or re-
parametrization of the analytical expression.
Below are 1—3 points and the general form
of the record:

(b2/a2 )7ﬁ

[1=1t ' (4)
a2(1+a)sin(n o j
1+a
20
b'/a*) e (1-
PR i U R
a4(1+a)2sin(n a]
1+a
3a
b*/a*) o (2 =50+ 20
[3 :1’[( / ) ( 3 )v (6)
2a6(1+oc)ssin(n aj
1+a
(/a0
a+l
[,=m -, (%)
2a”“sin(n na ]
1+ a
a-—-n) .
where F :(ﬁj is the Pochhammer func-
a n

tion.

Let us consider the accuracy of the calcula-
tion results for expressions (4)—(6) with the
results of numerical integration of expression
(2), with symmetric o, when there is no 1 in
the denominator

1

f;_ 2 ax

a‘e™ +be™

(8)
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We will consider /}, I,, and I3 — calculation
by analytical expressions (4)—(6), and I,,, I3
is a calculation of numerical integration. Let
us substitute the parameters (a=1.5, a=1, b=2)
into expressions (4)—(8) and get estimates:

a

(0/a?) 7

=0.575132,
a*(1+ a)sin(anj
l+a

I =7

Numerical integration:

X,

‘max 1

_[ 2 ax 2—xdx’
s oae” +be

‘mil

the area between x, ;. and 0
1;=0.234361297341549,
the area between 0 and x,,,

1,,=0.3407707179217075.
1,,=0.234361297341 + 0.3407707179217=

=0.5751320152.
We have for a square:

2o

(*/a*) e (1-a)

I, =m =0.08101196,
4 2 . 200
a (1 + OL) sm(n j
I+
Numerical integration:
the area between x ;. and 07, =0.02564997810,

the area between 0 and x,,, 1,,=0.05536199032.
1,,=0.02564997810+0.05536199032 =
=0.08101196.
We have for a cube:

(bz/az)_l% (2-5a+2a?)

3a
I+a
Numerical integration:

and 0 /;_=0.0036319352,
the area between 0 and x,,,, /5,=0.0104730676.

As we can see, the accuracy of matching
the results is of an order of magnitude 10719,
Let us estimate numerically the integral of
expression (8) when there is 1 in the denomi-
nator:

I,=n =0.0141050029,

2a° (1+ oc)3 sin(n

the area between x, .

X,

" 1
ooa (1 +e™ +bh'e” )

dx | )
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Integral (9) in the form of a geometric
progression up to the third order gives the
following approximation: 0.575132015-
0.081011968+0.014105002=0.508225049.

Comparing it with the exact value (/-
1,+1;=0.506002817) we obtain a discrepancy
of geometric progression up to the third or-
der equal to: 0.506002817-0.5082250497=
=-0.00222223269.

The calculation of the symmetric integral
gives a good approximation for the area with
a functional simplification of the integration

e
result (2), namely: ———————.
V-1+4a*b*o
Substituting the values (a=1, b=2, a=1.5)
we have a numerical result of 0.5. Then the
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Hogi rinep0oAiYHi CTaTUCTUKU AAS PIBHOBAyKHOI (PYHKILil
PO3IIOAIAY B3AEMOAIIOYNX eAeKTPOHIB

IO.A. 3eaenin!, T.A. Biauit?, 2022

1Mi}KHapo,A,H:[/II‘/'I donp «Xponorpad», Opeca, YKpaiHa
2IHCTI/ITyT reodizuku iM. C.I. Cy66oTtina HAH VYkpainu, Kuis, Ykpaina

[TopaHO HOBI CTATUCTUKU MaAOIIapaMeTPUYHOIro PO3IMOAIAY TUIY sech (g,1), SKi 3 BUCOKOIO
TOUHICTIO BIATBOPIOIOTE PE3YABTATU MOAEAIOBAHHS ITAA3MU METOAOM AMHAMiKU O0araThbox 4acTH-
HOK (ABY). B 0cHOBY HOBOT'O PO3IIOAIAY TOKAQAEHO KOHIIENITyaAbHY MOAEAB ABOXKOMIIOHEHTHOIL
NIAA3MU — BipTyaAbHI KBa3iYaCTUHKU HeraTUBHOI eHepril (ekcuToHa dasza £<0); odAacTb po3cito-
BaHHA ITIO3UTHUBHOI eHepril (ra3oBa daza £>0). OnTumizariis Ta exeMeHTapHi OI[iHKY 3aCTOCYBaHHS
craTuCTUKM sech (g,1) PO3MOAIAY IIpoBeAeHi 3a pe3yabraTaMu ekcnepuMeHTiB ABY. OyHKIig
po3mOoAiAy sech (g,11) CKOPOUYE KiABKICTE MapaMeTpiB TPUKYCKOBOTO ABY-p0o3MoAiAYy 3 HOTHPBOX
KoedinienTiB eHepreTuyHoi AUysii (Dy, D,, D3, D) A0 ABOX — XIMIUHMHA IOTeHIiaA 1 i Koedi-
nieHT acuMeTpii a. OyHKIIOHAABHUY 3B'I30K Dy, D,, D5, D, 3 XiMiYHUM ITOTEHIIAAOM CHUCTEMH [
y po3moaiAi sech (g, 1) BBOAUTBCSI @HAAOTIUHO CIiBBiAHOIIIEHHIO EMHINITENHA MiXK PYXAUBICTIO Ta
KOHCTaHTaMHU eHepreTUYHOI Audy3ii. OyHKIiOHaAbHEe Pi3HOMaHITTI AU(epPeHIiaAbHOTO PiBHIHHS
HaAeKUTb AO CIMeNCTBa eAINTUYHUX (DYHKIIN Ta 3HAQUHO IIUPIIe HaBEAEHOTO TillepOOAiuHOrO
PO3B'sI3aHH, 1110 MA€ CYTTEBO (Pi3MUHUN AOAATOK AT KOMIIAEKCHUX 3HaUeHb eHepril €. 3allporo-
HOBAaHa CIIpollleHa cXeMa Ha OCHOBI (pi3WYHOI iHTeplpeTallil HeraTUBHUX eHepriii MoykKe OyTH 3a-
HMcaHa AAS eAeKTPOMETPUUHUX eAeKTPOHIB aTMocdepH, IO paHillle CTAaHOBUAO 3HAUHI METOAWYHI
CRAAAHOCTI. XiMiuHi moTeHITiaAn (PAIOIAHOT (MeTacTabiAbHI CTaHM) Ta ra3oBoi a3 IIpeACTaBAeHI
K (PYHKIIII TapaMeTpa HeiAeaAbHOCTI TAA3MU. 3aBAAHHS IIOCTABAEHO SIK AOAQTOK A0 IIpOOAEMU
€AeKTPOMETPUYHUX eAeKTPOHIB aTMoc(epH. 3allpOIIOHOBAHUM PO3IIOAiA, He IPEACTAaBACHUN Y
MaTeMaTHU4Hil CTaTUCTULIl Ta CTATUCTUYHIN (DI3UKM, € HOBUM i BKpall aKTyaAbHUM.

KAr040Bi cA0OBa: XOAOAHA ITAA3MaA, PYHKILS PO3IOAIAY €A€KTPOHIB, eAiITUYHI PYHKIIT, erek-
TPOHU aTMOC(EepH.
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