Gravity data reduction, Bouguer anomaly, and gravity disturbance

N. Yilmaz, 2023

Karadeniz Technical University, Trabzon, Turkey Received 1 October 2023

Each point on the earth has a gravity and gravity potential value. Surfaces formed by connecting points with equal gravity potential values are called equipotential surfaces or level surfaces. Determination of gravity field of the earth and the geoid which is one of the earth's equipotential surfaces is very important for physical geodesy. Gravity values measured on the physical earth are not directly included in studies; firstly, they must be converted into gravity anomalies. For this, in this study precise leveling, gravity and GPS measurements were made in the field. Heights (H) with precise leveling measurements, gravity values (g) with gravity measurements and geographical latitudes (φ) with GPS measurements were recorded. Then, gravity reductions (free-air, Bouquer) were calculated at the points. The actual gravity g measured on Earth is not immediately directly comparable to the normal gravity of the ellipsoid surface. Gravity values must be reduced to the geoid. Since there are masses outside the geoid, reduction methods differ according to the way these topographic masses are handled. Bouquer gravity anomalies and gravity disturbances are derived. The gravity anomaly (Δg) is defined as the scalar difference between the Earth's gravity on the geoid and normal gravity on the surface of the reference ellipsoid. Gravity disturbance (δg) is defined as the difference between the actual gravity magnitude measured on Earth and its equivalent normal gravity in the normal gravity field for the same point. The changes and magnitudes of the calculated quantities are compared. Changes such as the observed gravity and height data, observed gravity changes versus calculated normal gravity changes, normal gravity on ellipsoid versus geographic latitude, observed gravity changes versus latitude changes, Bouquer gravity anomaly and gravity disturbance versus latitude and elevation, free-air reduction and Bouquer gravity reduction versus latitude and elevation have been investigated.

Key words: real gravity, normal gravity, ellipsoid, geoid, free-air gravity reduction, Bouguer gravity anomaly, gravity disturbance.

Introduction. Earth's gravity field is affected by various sources of tidal, subsurface density variation and topographic relief, and rotation of the Earth. Some sources will be removed using practical Earth's model from the measured gravity and retain only the subsurface effect for geophysical applications. The normal gravity potential is derived as the potential of a reference ellipsoid plus the rotational potential of the ellipsoid. The gravitational field of a reference ellipsoid of

rotation that closely approximates the real Earth is called the normal gravity field. The anomalous field is the discrepancy between the real and the normal fields.

The intensity of gravity, or gravity g, is the magnitude of the gravity vector. The force per unit mass, or acceleration, is a unit of gravity. The value of the normal gravity, γ_P , is the magnitude of the normal gravity vector. It is the magnitude of the gradient of the normal potential (contains centrifugal potential). It

ISSN 0203-3100. Geophysical Journal. 2023. Vol. 45. № 6

Citation: Yilmaz, N. (2023). Gravity data reduction, Bouguer anomaly, and gravity disturbance. *Geofizicheskiy Zhurnal*, 45(6), 153—161. https://doi.org/10.24028/gj.v45i6.293314.

Publisher Subbotin Institute of Geophysics of the NAS of Ukraine, 2023. This is an open access article under the CC BY-NC-SA license (https://creativecommons.org/licenses/by-nc-sa/4.0/).

can be calculated at a given point on the ellipsoid (λ , φ , *h*=0) and Earth's physical surface (λ , φ , *h*) [Alemu, 2021].

Topography plays an important role in solving many geodetic and geophysical problems. In the evaluation of a topographical effect, a planar model, a spherical model or an even more sophisticated model can be used. In most applications, the planar model is considered appropriate; recall the evaluation of gravity reductions of the free-air, Poincaré-Prey or Bouguer kind [Vaníček et al., 2001].

The magnitude g = ||g|| of the gravity acceleration vector g along the plumb line is observed on (land,marine), above (air- and space borne), or below (sea bottom, borehole, mines) the Earth's surface. The gravimetric information is required for numerous applications and studies not only in the Earth sciences but also in metrology and planetary and space sciences. The gravity (also the gravity anomaly) values are commonly expressed in the CGS (centimeter-gram-second) acceleration unit of mGal (1 mGal=10 µm/s²) [Oja et al., 2019].

Gravity anomaly, in geodesy, is the difference between the geoidal gravity and the normal gravity on the mathematical model ellipsoid. In the theory of *modern* physical geodesy, the normal gravity upon the reference ellipsoid was introduced as the reference gravity [Heiskanen, Moritz, 1967].

The classical Bouguer anomaly has been defined upon the geoid by the difference between the observed gravity reduced to the geoid and the reference gravity upon the geoid. The reference gravity has been equated to the standard gravity. No distinction was made between the reference and standard gravity [Nozaki, 2006].

In geodetic applications, Bouguer gravity data is primarily used for gravimetric geoid modeling. In contrast, its use in geophysical applications is often related to the modeling and interpreting of inner structures (e.g., sediment basin basements) and processes (e.g., flexural displacement of the lithosphere due to loading). Bouguer gravity data is obtained from observed (free-air) gravity data by applying a topographic gravity correction. Different methods have been developed and applied to compute this correction. When adopting the most basic approximation of the actual topography by an infinite Bouguer plate of a constant thickness and density, the application of the incomplete planar topographic correction to the free-air gravity data yields the simple planar Bouguer gravity data [Tenzer et al., 2019].

Mean free-air gravity anomalies are often needed in geodesy for gravity field modelling. Two possible ways of compiling the mean free-air gravity anomalies are discussed. One way is via simple Bouguer gravity anomalies; the other, more time-consuming, is via refined Bouguer gravity anomalies [Janák, Vaníček, 2005].

Methodology. Normal gravity (Theoretic gravity). Normal gravity is also known as the latitude correction. Its correction varies as a function of latitude caused by the centrifugal acceleration [Bramanto et al., 2021].

The normal (ellipsoidal) gravity on the ellipsoid can be calculated by Somigliana formula as below:

$$\gamma = \gamma_e \frac{1 + k \sin^2 \varphi}{\sqrt{1 - e^2 \sin^2 \varphi}}, \qquad (1)$$

where γ_e =9.780 325 3359 ms⁻² is the gravity at the equator, *k*=0.001 931 852 652 is the normal gravity constant and *e*²=0.006 694 379 990 14 is the first eccentricity squared (where *a* and *b* are the semi-major and semi-minor axes of the WGS84 reference ellipsoid) [Kılıçoğlu et al., 2010] (Table 1).

The normal gravity outside the ellipsoid can be computed with (2) equation as below:

$$\gamma(H) = \gamma \left[1 - \frac{2}{a} \left(1 + f + m' - \frac{2}{a} f \sin^2 \varphi \right) H + \frac{3}{a^2} H^2 \right], \quad (2)$$

where

f=(a-b)/a, $m'=(\omega^2 a^2 b)/GM=0.00335281066478$ (for WGS84) is the ratio between the gravitational and centrifugal forces at the equator and *H* is the normal orthometric height in meters [Heiskanen, Moritz, 1967].

Parameter	GRS80	WGS84						
а	6 378 137 m	6 378 137 m						
GM	$3\ 986\ 005{ imes}10^8\ { m m}^3\ { m s}^{-2}$	3 986 004.418×10 8 m ³ s ⁻²						
J2	108 263×10 ⁻⁸	108 187.4×10 ⁻⁸						
ω	7 292 115×10 ⁻¹¹ rad s ⁻¹	7 292 115×10-11 rad s^{-1}						
b	6 356 752.3141 m	6 356 752.3142 m						
Ε	521 854.0097 m	521 854.0084 m						
С	6 399 593.6259 m	6 399 593.6258 m						
e^2	0.006 694 380 022 90	0.006 694 379 990 14						
e'^2	0.006 739 496 775 48	0.006 739 496 742 28						
f	0.003 352 810 681 18	0.003 352 810 664 78						
f^1	298.257 222 101	298.257 223 563						
<i>R</i> 1	6 371 008.7714 m	6 371 008.7714 m						
<i>R</i> 2	6 371 007.1810 m	6 371 007.1809 m						
R3	6 371 000.7900 m	6 371 000.7900 m						
U0	$6\ 263\ 6860.850\ { m m}^2{ m s}^{-1}$	$6\ 263\ 6851.7146\ m^2 s^{-1}$						
γe	$9.780~326~7715~{ m ms}^{-2}$	$9.780~325~3359~{ m ms}^{-2}$						
γp	$9.832\ 186\ 3685\ {\rm ms}^{-2}$	$9.832\ 184\ 9378\ {\rm ms}^{-2}$						
k	0.001 931 851 353	0.001 931 852 652						

Table 1. Comparison of GRS80 and WGS84 parameters [Kılıçoğlu et al., 2010]

Gravity Reduction. The reduction of surface gravity data to on the geoid or another equipotential surface removes the gravitational effects of topography and distance from the geocentric. The reduction itself involves the application of a series of corrections. These corrections account for the vertical gradient of gravity near the Earth's surface, the gravimetric attraction of the topography, and the centrifugal acceleration and oblate ellipticity of the figure of the Earth [Featherstone, Dentith, 1997].

Bouguer gravity reduction. The Bouguer gravity reduction aims to completely remove the topographic masses outside the geoid. In this method, the surroundings of the Earth point P is considered flat and horizontal, and the masses between the geoid and the earth are considered to have a constant densityp. In this case, the gravitational effect of the masses outside the geoid can be calculated as the gravitational effect of a cylinder of infinite radius with thickness. This cylinder is called the Bouguer plate. Thus, the gravitational effect of the Bouguer plate can be calculated as follows:

$$A_B = 2\pi k \rho h, \qquad (3)$$

Where $\rho=2.67 \text{ g/cm}^3$ with standard density, *h* is height in meters, and *k* is the Newton's gravitational constant. So, the gravitational effect of the Bouguer can be written as follows:

$$A_B = 0.1119h$$
 mGal. (4)

Removing the plate means removing this gravitational effect from the measured gravity.

Free-air reduction. The Earth point P, measured by removing the topographic masses, remains in the air (space). This point needs to be lowered to the geoid (P_0). This is called free-air reduction. Free-air reduction is as follows:

$$F = -\frac{\partial g}{\partial h}h.$$
 (5)

Normal gravity gradient can be written as follows:

$$F \approx -\frac{\partial \gamma}{\partial h}h \approx +0.3086h \text{ mGal.}$$
 (6)

This combined operation of removing topographic masses and applying free air reduction is called the completed Bouguer reduction. The Bouguer gravity (g_B) at P_0 on

the geoid is expressed as:

$$g_{\rm B} = g - A_{\rm B} + F = g + 0.1967h,$$
 (7)

 $g_{\rm B}$ is on the surface of the geoid.

The gravity anomaly and gravity disturbance. In geodesy, the gravity anomaly (Δg) is the scalar difference between the Earth's gravity on the geoid and the normal gravity on the surface of the reference ellipsoid at the observation latitude.

A simple Bouguer anomaly is given by:

$$\Delta g_{\rm B} = g_{\rm B} - \gamma. \tag{8}$$

Gravity disturbance is given by [Heis-kanen, Moritz, 1967]:

$$\delta g = g - \gamma(H). \tag{9}$$

Study area. This application was made in the form of a route. The route extends from Çamoba Street above Trabzon Atatürk Mansion to the coastline of the Ayasofya neighbourhood. The study area is relatively mountainous and rugged, with a route length of 4.78 km and a maximum height difference of around 385 m between points. The measurement route is shown in Fig. 1.

Fig. 1. Between Çamoba and Ayasofya Measurement Route.

Land surveys. The measurements were collected over 2004—2005 years. Precise leveling and gravity measurements were made along Çamoba and Ayasofya Measurement Route. The latitude was determined by a hand GPS. Leveling measurements along the routes were made according to the round-trip measure-

ment plan. It is envisaged that the round-trip difference in dimensions should be smaller than $6\sqrt{K}$ mm (leveling passage length in *K*, km). Leveling measurements were made with the DL-101C Electronic Digital Level. In the measurements, attention was paid to ensure that the invar rods were on metal shoes and that the distance between the instrument and the invar rods was equal and did not exceed approximately 30 m.

Master-type Worden Gravimeter was used for gravity measurements. The measurements taken with this are presented in quadrant scales. To convert them in milligals, the instrument constant is used.

Latitude values were measured using SPORTRAK Map (MAGELLAN) handheld GPS.

Results and discussion. Normal gravity on the ellipsoid was calculated by equation (1), outside the ellipsoid — by equation (2). Free-Air gravity reduction was calculated by equation (6) and the Bouguer gravity reduction, by equation (4). Bouguer gravity anomaly was calculated by equation (8), gravity disturbance by equation (9). These results are shown in Table 2.

Some basic statistical information regarding these calculations is shown in Table 3.

From the measured gravity and height data, the variation of gravity with height is plotted in Fig. 2.

The variation between gravity measured in the field and the normal gravity calculated at the same points (outside ellipsoid) is plotted in Fig. 3.

The variation of the normal gravity calculated on the ellipsoid with respect to the latitude is shown in Fig. 4.

The variation of the real gravity measured on the land with respect to the latitude is shown in Fig. 5.

The variations of the Bouguer gravity anomaly and gravity disturbance with respect to the latitude and elevation are shown in Fig. 6.

The variations of Free-air gravity reduction and Bouguer gravity reduction with respect to latitude and elevation are shown in Fig. 7.

sturbances
di
/ity
grav
and
alies
nom
al
ity
gravj
er (
ň
ĵnĉ
Bo
a,
lat
V C
vit
Ira
d g
tee
ıla
lcı
ca
and
be
erve
b s
0
2
le
٩t
Ę

L_																								
Gravity distu bance, mGal	1439.15713	1439.98604	1442.81404	1445.03855	1446.77693	1449.41233	1451.93643	1453.42122	1456.33277	1458.38086	1461.60694	1463.97755	1466.83458	1470.01889	1474.09563	1476.61329	1475.34630	1477.84754	1479.73279	1485.04467	1484.73687	1488.55263	1488.56897	1487.67407
Bouguer gra- vity anomali- es, mGal	1435.98144	1435.80854	1436.87882	1436.93097	1436.75815	1437.17250	1437.26851	1436.72599	1438.10575	1437.81445	1439.14772	1439.67022	1440.52987	1441.29816	1442.92117	1443.13705	1441.50420	1442.77899	1442.74486	1445.93476	1443.70983	1445.22820	1444.24928	1444.06165
Bouguer Reduction, mGal	3.19237	4.19945	5.96647	8.15037	10.07177	12.30472	14.74589	16.78416	18.32427	20.67641	22.57959	24.43785	26.44626	28.87568	31.34308	33.65776	34.02567	35.25900	37.18922	39.32324	41.25125	43.56177	44.56270	43.85135
Free-Air Reduction, mGal	8.80397	11.58133	16.45445	22.47726	27.77614	33.93421	40.66649	46.28769	50.53502	57.02181	62.27042	67.39518	72.93401	79.63391	86.43856	92.82201	93.83665	97.23797	102.56116	108.44639	113.76351	120.13549	122.89589	120.93410
Normal gravity change outside the ellipsoid, mGal	-6.05335	-8.91368	-13.82453	-19.84617	-25.17597	-31.34279	-38.08401	-43.75165	-48.02605	-54.53984	-59.84877	-65.02223	-70.57068	-77.27783	-84.11456	-90.50650	-91.53664	-94.98074	-100.29454	-106.19785	-111.55574	-117.96864	-120.79640	-118.89865
Normal gra- vity outside the ellipso- id, Gal	978.84430	978.83824	978.83538	978.83047	978.82445	978.81912	978.81295	978.80621	978.80055	978.79627	978.78976	978.78445	978.77928	978.77373	978.76702	978.76018	978.75379	978.75276	978.74932	978.74400	978.73810	978.73274	978.72633	978.72350
Normal gra- vity on the ellipsoid, Gal	978.84706	978.84703	978.84694	978.84690	978.84689	978.84684	978.84682	978.84680	978.84674	978.84671	978.84667	978.84660	978.84654	978.84652	978.84650	978.84645	978.84643	978.84641	978.84636	978.84636	978.84633	978.84628	978.84623	978.84615
Observed gravity change, mGal	-2.39100	-4.42300	-6.50600	-10.30300	-13.89400	-17.42600	-21.64300	-25.82600	-27.18800	-31.65400	-33.73700	-36.54000	-39.23100	-42.75400	-45.51400	-49.38800	-51.68600	-52.62800	-56.05700	-56.64800	-62.31400	-64.91100	-67.72300	-66.72000
Height dif- ferences, m	19.56684	28.56673	44.35777	63.87434	81.04502	100.99988	122.81546	141.03063	154.79384	175.81391	192.82171	209.42819	227.37643	249.08706	271.13713	291.82234	295.11020	306.13198	323.38147	342.45219	359.68200	380.33004	389.27493	382.91790
Latitude, degree	41.00369	41.00288	41.00019	40.99875	40.99843	40.99718	40.99655	40.99588	40.99412	40.99304	40.99183	40.98967	40.98787	40.98724	40.98661	40.98521	40.98456	40.98403	40.98251	40.98246	40.98154	40.97997	40.97832	40.97609
Number	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24

Parameter	Min	Max	Mean		
Height Difference, m	19.56684	389.27493	214.742416		
Observed gravity change, mGal	-67.72300	-2.391	-36.962708		
Calculated normal gravity change outside the ellipsoid, mGal	-120.7964	-6.05335	-66.63033		
Free-Air Reduction, mGal	8.80397	122.89589	69.0351512		
Bouguer Reduction, mGal	3.19237	44.562701	25.0325127		
Bouguer gravity anomalies, mGal	1435.98144	1445.93476	1440.26505		
Gravity disturbance, mGal	1439.15713	1488.569	1465.16279		

Fig. 2. Observed gravity changes versus elevation changes.

Fig. 3. Observed gravity changes versus calculated normal gravity changes.

Conclusions. The heights in the study area vary from about 19 m to 389 m. The latitude spans 41.0037 degrees to 40.9761 degrees North.

Normal gravity on ellipsoid versus geographic latitude

Fig. 4. Normal gravity on ellipsoid versus the geographic latitude.

Fig. 5. Observed gravity changes versus latitude changes.

• From Table 2 and Fig. 2, it is seen that the gravity difference measured in the field is inversely proportional to the height, and the real gravity difference decreases as the

Fig. 6. Bouguer gravity anomaly (1) and gravity disturbance (2) versus latitude and elevation.

Fig. 7. Free-air reduction (1) and Bouguer gravity reduction (2) versus latitude and elevation.

height increases. This difference is approximately 65 mGal at 370 m height.

• From Table 2 and Fig. 3, it is seen that as the gravity difference measured in the field decreases, so does the normal gravity difference.

• As the height increases, the normal

gravity calculated on the ellipsoid and outside the ellipsoid decreases (Table 2).

• As the latitude increases, the normal gravity calculated on the ellipsoid and outside the ellipsoid increases. At the same time, the real gravity is increasing. It can be seen from Fig. 4 and Fig. 5.

• From Table 2, Fig. 6, Fig. 7, it is seen that as the height increases and latitude decreases, both free-air and Bouguer gravity

References

- Alemu, E. (2021). Evaluation of GGMs based on the terrestrial gravity disturbance and Moho depth in afar, Ethiopia. *Artificial Satellites*, 56(3), 78—100. https.//doi.org/10.2478/arsa-2021-0007.
- Bramanto, B., Prijatna, K., Pahlevi, A.M., Sarsito, D.A., Dahrin, D., Variandy, E.D., & Munthaha, R.I.S. (2021). Determination of gravity anomalies in Java, Indonesia, from airborne gravity survey. *Terrestrial, Atmospheric and Oceanic Sciences*, 32(5), 781—795. https.//doi. org/10.3319/TAO.2021.06.04.01.
- Featherstone, W.E., & Dentith, M.C. (1997). A geodetic approach to gravity data reduction for geophysics. *Computers & Geosciences*, 23(10), 1063—1070. https://doi.org/10.1016/ S0098-3004(97)00092-7.
- Heiskanen, W.A., & Moritz, H. (1967). *Physical geodesy*. San Francisco: Freeman and Company, 364 p.
- Janák, J., & Vaníček, P. (2005). Mean free-air gravity anomalies in the mountains. *Studia geophysica et geodaetica*, 49, 31–42.

reduction increase. At the same time, Bouguer gravity anomaly and gravity disturbance increase, too.

https://doi.org/10.1007/s11200-005-1624-6.

- Kılıçoğlu, A., Lenk, O., Direnç, A., Simav, M., Yıldız, H., Aktuğ, B., Türkezer, A., Göçmen, C., Paslı, E., & Akçakaya, M. (2010). Isostatic gravity anomaly map of Turkey. *Map Journal*, (144), 1—10 (in Turkish).
- Nozaki, K. (2006). The generalized Bouguer anomaly. *Earth, Planets and Space, 58*, 287—303. https://doi.org/10.1186/BF03351925.
- Oja, T., Artu Ellmann, A., & Märdla, S. (2019). Gravity anomaly field over Estonia. *Estonian Journal of Earth Sciences*, 68(2), 55—75. https:// doi.org/10.3176/earth.2019.06.
- Tenzer, R., Foroughi, I., Hirt, C., Novák, P., & Pitoňák, M. (2019). How to calculate Bouguer gravity data in planetary studies. Surveys in Geophysics, 40, 107—132. https.//doi. org/10.1007/s10712-018-9504-0.
- Vaníček, P., Novak, P., & Martinec, Z. (2001). Geoid, topography and the Bouguer plate or shell. *Journal of Geodesy*, 75, 210—215. https://doi. org/10.1007/s001900100165.

Обробка гравітаційних даних, аномалія Буге та гравітаційне збурення

Н. Йілмаз, 2023

Технічний університет Караденіз, Трабзон, Туреччина

Кожна точка на Землі має гравітаційне значення. Поверхні, утворені сполученнями точок з однаковими значеннями гравітаційного потенціалу, називаються еквіпотенціальними або поверхнями рівня. Визначення гравітаційного поля Землі та геоїда, що є однією з еквіпотенціальних поверхонь Землі, має велике значення для фізичної геодезії. Значення сили тяжіння, виміряні на фізичній Землі, не включені безпосередньо в це дослідження. По-перше, їх необхідно перерахувати на гравітаційні аномалії. Для цього в польових умовах виконано точні вимірювання рівня, гравітації та GPS. Були записані висоти (H) з точними вимірюваннями рівня, значення сили тяжіння (g) з вимірюваннями сили тяжіння та географічні широти (ϕ) з вимірюваннями GPS. Після того в точках розраховували зниження сили тяжіння (Free-air, Буге). Фактична сила цього g, виміряна на Землі, не може бути безпосередньо співставлена з нормальною гравітацією поверхні еліпсоїда. Необхідно звести *g* до геоїда. Оскільки за межами геоїда існують маси, методи приведення різняться залежно від того, було оброблено ці топографічні маси. Виведено гравітаційні аномалії Буге та гравітаційні збурення. Аномалія сили тяжіння (Δg) визначається як скалярна різниця між силою тяжіння Землі на геоїді та нормальної сили тяжіння на поверхні опорного еліпсоїда. Збурення гравітації (δg) визначається як різниця між фактичною величиною гравітації, виміряною на Землі, та її еквівалентною нормальною гравітацією в нормальному гравітаційному полі для тієї ж точки. Порівнюються зміни та значення розрахованих величин, а саме: дані гравітації та висоти, зміни сили тяжіння на сила тяжіння на еліпсоїді залежно від географічної широти, спостережені зміни сили тяжіння залежно від змін широти, гравітаційна аномалія Буге та гравітаційне збурення залежно від широти й висоти, зменшення вільного повітря. Також було досліджено зменшення сили тяжіння Буге залежно від широти й висоти.

Ключові слова: реальна гравітація, нормальна гравітація, еліпсоїд, геоїд, зниження сили тяжіння у вільному повітрі, зменшення сили тяжіння Буге, гравітаційна аномалія Буге, збурення гравітації.